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Abstract
Qubit, operator and gate resources required for the digitization of lattice λφ4 scalar field theories

onto quantum computers are considered, building upon the foundational work by Jordan, Lee and

Preskill, with a focus towards noisy intermediate-scale quantum (NISQ) devices. The Nyquist-

Shannon sampling theorem, introduced in this context by Macridin, Spentzouris, Amundson and

Harnik building on the work of Somma, provides a guide with which to evaluate the efficacy of

two field-space bases, the eigenstates of the field operator, as used by Jordan, Lee and Preskill,

and eigenstates of a harmonic oscillator, to describe 0 + 1- and d + 1-dimensional scalar field

theory. We show how techniques associated with improved actions, which are heavily utilized

in Lattice QCD calculations to systematically reduce lattice-spacing artifacts, can be used to

reduce the impact of the field digitization in λφ4, but are found to be inferior to a complete

digitization-improvement of the Hamiltonian using a Quantum Fourier Transform. When the

Nyquist-Shannon sampling theorem is satisfied, digitization errors scale as | log | log |εdig||| ∼ nQ
(number of qubits describing the field at a given spatial site) for the low-lying states, leaving the

familiar power-law lattice-spacing and finite-volume effects that scale as | log |εlatt|| ∼ NQ (total

number of qubits in the simulation). For localized(delocalized) field-space wavefunctions, it is

found that nQ ∼ 4(7) qubits per spatial lattice site are sufficient to reduce theoretical digitization

errors below error contributions associated with approximation of the time-evolution operator and

noisy implementation on near-term quantum devices. 1

1 Only classical computing resources have been used to obtain the results presented in this work.
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I. INTRODUCTION

While offering the potential to greatly refine calculations that can be performed through
classical computation, Quantum Computing (QC) also holds the potential to enable cal-
culations of quantities in quantum field theories and other quantum many-body systems
that are not possible with classical techniques [1–20]. In particular, real-time dynamics,
such as the fragmentation of quarks into hadrons at particle accelerators, the dynamics of
non-equilibrium systems, and the nature of finite-density systems for which sampling with
classical computation is limited by sign problems, are key areas for which a quantum ad-
vantage is anticipated to be achieved. Quantum devices with a range of underlying qubit
architectures without error correction are now becoming available for domain scientists to
seek inroads into these problems and other important scientific applications, and to envisage
attributes of quantum devices necessary to outperform classical computations of scientific
significance. The performance of present day quantum devices is limited by a number of
basic attributes, including coherence times and the number of gates (specifically entangling
gates) that can be applied prior to decoherence, the accuracy and precision of applied gates,
the number and interconnectivity of qubits, and the lack of error correction. While signifi-
cant efforts are in progress to reduce or eliminate these deficiencies, and remarkable progress
is being made, these limitations are expected to persist in near-term quantum devices. This
has led John Preskill to name the present and upcoming time period the “NISQ era” (Noisy
Intermediate-Scale Quantum era) [21]. While formidable in its destruction of pure quan-
tum states, quantum noise has been recently suppressed sufficiently for a number of small
quantum simulations of physical systems [22–27], encouraging the expectation of meaningful
scientific applications of NISQ-era devices.

Scalar field theories are ubiquitous in physics, from describing densities in condensed
matter systems, to fundamental fields in the electroweak sector from which the Higgs Bo-
son emerges after spontaneous symmetry breaking. The quantum theory describing the
dynamics of a self-interacting, real scalar field represents, perhaps, the simplest quantum
field theory (QFT) that can be explored through direct digitization of the field with a
quantum computer. Such studies are anticipated to provide important insights into how
quantum devices can be used to simulate gauge field theories, such as quantum electro-
dynamics (QED) and quantum chromodynamics (QCD) that describe the interactions in
electronic systems and between quarks and gluons responsible for the nuclear forces and the
structure and dynamics of strongly interacting matter. It is exciting to observe the advances
that are being made in developing [6–9, 14, 16, 18–20, 26, 28–44] and implementing [10–
13, 15, 17, 22, 26, 43, 45] algorithms for both Abelian and non-Abelian gauge theories and
scalar field theories that may be useful for QFT calculations with quantum computers.

It is not expected that NISQ-era devices will surpass the computational capabilities of
classical devices for the evolution of scalar fields discussed in this paper. While an advantage
may be found in a contrived endeavour for increased precision in the ground state energy
of a non-local spatial wavefunction (see section IV C 1), the more-likely regimes of quantum
advantage in simulation are those highlighted at the beginning of this introduction. Creating
a computational framework making these systems accessible, taking advantage of superposi-
tions and interference while remaining robust to quantum noise, is arduous and has become
the focus of many current avenues of research; porting the knowledge and understanding of
high-performance classical computation will be vital but insufficient to achieve this goal. As
is the case in classical computing, performance and scaling of quantum devices for scientific
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application cannot be completely understood before computations are implemented at scale
on hardware. While quantum calculations at scale are unreasonable today and the currently-
available hardware is likely far from future fault-tolerant devices, this document examines
scalar quantum field theory calculations on near-term quantum devices in preparation for a
future in which substantial quantum resources allow exploration of classically-unattainable
states of matter.

In a series of foundational papers, Jordan, Lee and Preskill (JLP) formulated and analyzed
scalar field theories for quantum computers [6–9] and estimated the resource-requirement
scaling of calculations of static properties and of elastic and inelastic particle scattering
processes determined through direct time evolution. A real scalar field, φ(x), is discretized on
a spatial lattice using techniques that are standard in lattice QCD (LQCD) calculations using
classical computers. The spacing between lattice sites along a cartesian axis is denoted by a
and the extent of each spatial direction is denoted by L, and φ(x) is subject to, for example,
periodic boundary conditions (PBCs) or twisted boundary conditions (e.g. Refs. [46–49])
in each direction. However, in NISQ-era quantum computations, φ(x) can only assume
values from a modest-sized set of possibilities, with extreme values of |φ(x)| ≤ φmax and a
digitization δφ(x). Therefore, the computational layout of these JLP simulations is that a
number of qubits, nQ, describe the value of φ(x) at each position x, with a total number of

qubits of NQ = nQ (L/a)d for spatial dimension, d. This system is evolved under the action

of the time-evolution operator, Û(t) = e−iĤt where Ĥ is the Hamiltonian operator, to evolve
isolated wave packets forward in time to determine scattering amplitudes.

In nice work by Macridin, Spentzouris, Amundson and Harnik (MSAH) [34, 36], focused
on phonon-electron interactions and building upon work by Somma [50], it was emphasized
that the Nyquist-Shannon (NS) sampling theorem should be considered in the architecture
of a quantum computer, the mapping of φ(x) and the implementation of the Hamiltonian to
achieve the desired accuracies in quantum simulations. The localization of the φ(x) wave-
function in φ-space and its curvature determine the extent and interval of sampling in φ-
space, i.e. φmax and δφ(x) (which dictate nQ), required to reproduce the φ-space wavefunction
with exponential precision, scaling as | log | log |εdig||| ∼ nQ, where εdig is the error introduced
through digitization, thereby removing inaccuracies due to field digitization. These studies
of the NS sampling theorem determined the minimum number of qubits per phonon field
required to accurately describe harmonic oscillator (HO) wavefunctions up to a given excita-
tion level of the phonon field [34, 36, 50]. The digitization errors make contributions that are
parametrically smaller than spatial lattice-spacing artifacts and spatial finite-volume effects,
which typically scale as | log |εlatt|| ∼ NQ, where εlatt is the error introduced by the non-zero
spatial lattice spacing.

The use of ε in this paper indicates the precision to which the ground state energy of the
continuous scalar field can be reproduced by a Hamiltonian digitized with qubit degrees of
freedom (step (1) of Fig. 1). This is a theoretical source of systematic error accompanying
the formulation of the Hamiltonian before it is implemented on hardware or employed in a
simulation algorithm. Most importantly, this is not the ε commonly used in the quantum
simulation literature to express the precision with which properties of a given Hamiltonian
can be extracted on quantum hardware (steps (2,3) of Fig. 1). Thus, ε here character-
izes the physics of field-digitization necessary to map the system onto a qubit Hamiltonian,
and does not include precision reductions entering from the Hamiltonian simulation (e.g.,
Trotterization) or phase estimation that may be implemented to extract features of this
system on quantum hardware. Examples of progress in bounding these latter sources of

4



FIG. 1: Identifying three distinct sources of error in quantum simulations of scalar field theory:

(1) the error of digitizing and latticizing the continuous field onto qubit degrees of freedom; (2) the

error of simulation due to the use of approximations to the exact digitized propagator; (3) the error

due to noise in the quantum device’s implementation of the approximate digitized propagator. The

first two sources of error are independent of the quantum hardware. The first is the main focus of

this paper.

error can be found in Refs. [51–55]. The distinction between these three sources of error
are depicted in Fig. 1. The scalar field begins in a continuous representation in a formally-
infinite-dimensional Hilbert space. With the reduction in step (1), this infinite dimensional
Hilbert space is truncated, digitized, and formulated on qubit degrees of freedom. Step (2)
designs a quantum simulation algorithm to approximate the time evolution of the quan-
tum state e.g., Trotterization, which introduces errors scaling polynomially in the temporal
digitization step size δt. Step (3) implements this approximate time evolution on quantum
hardware susceptible to noise and (likely) without quantum error correction in the NISQ-era.

The digitization errors represented in step (1) of Fig. 1 are the only errors considered
in the main text of this paper. The results presented in this work establish the precision
of low-energy calculations that could be obtained on an ideal quantum device with exact
implementation of the time evolution operator based upon formal considerations of digiti-
zations and discretizations that must be performed when formulating the field theories onto
quantum devices with a modest number of qubits. These are presented in order to determine
the best-case scenarios for modest-sized devices of the near term, and intentionally neglect
the errors of steps (2,3) necessary to accurately reflect the precision attainable with realis-
tic NISQ-era devices. Simulations of the effects of first-order Trotterization (2) and simple
unitary gate noise (3) can be found in Appendix H. Together, Appendix H and the main
text indicate that digitization errors (1) may be controlled to high precision with a number
of qubits reasonable for the NISQ era, leaving the steps (2,3) to dominate the current scalar
simulation error budget.

In this work, we consider implications of the digitization of scalar fields when mapped to
qubit degrees of freedom, with a focus on the associated limits in accuracy of calculations
on NISQ-era scale devices. In particular, we examine digitizing 0+1 and 1+1 dimensional
λφ4 scalar field theory describing a single real scalar field, including estimating qubit re-
quirements, estimating the number of operators and number of gates required for such sim-
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ulations, and extrapolating these estimates to d+1-dimensional simulations 1. As the sign
of the mass-squared term in the Hamiltonian determines whether the ground state of these
theories are localized around φ = 0 or are delocalized around two minima of the potential,
estimates are provided for both situations. Making a connection with classical calculations
of lattice QFTs, we discuss Hamiltonian improvement that can be included to parametri-
cally reduce the impact of the field digitization by powers of δ2

φ(x). However, as used in

Refs. [6–9] and emphasized in Refs. [34, 36, 50], the use of the Quantum Fourier Transform
(QuFoTr) on the nQ qubits at each spatial site to evaluate the action of the conjugate-
momentum term in the Hamiltonian, and the freedom it provides in applying phases in
field conjugate-momentum space, provides the opportunity to arbitrarily improve the dig-
itized Hamiltonian, removing all polynomials in δφ(x) and rendering digitization effects to
be exponentially small (once the conditions imposed by the NS sampling theorem are satis-
fied). Analogous implementations have been utilized previously in Monte-Carlo calculations
of non-relativistic systems [56, 57]. We present the complete operator structure required
to implement simulations with nQ = 3, 4, 5 qubits per spatial site, along with associated
quantum circuits for nQ = 3. As different bases in φ-space can be used to span the Hilbert
space at each point in space, we examine the JLP implementation using the eigenstates of
the φ-operator and a basis defined by the eigenstates of a harmonic oscillator (HO), that is
distinct from the frameworks developed in Refs. [34, 36, 50]. From our analysis, we conclude
that the properties and dynamics of interacting scalar field theories may be simulated with
only a modest number of qubits per site required to render digitization artifacts negligible
compared to other expected systematic errors 2 in the NISQ-era.

II. LATTICE SCALAR FIELD THEORY WITH QUBITS

The continuum Lagrange density describing the dynamics of a scalar field with self interac-
tions, retaining only renormalizable terms in 3+1 dimensions, is

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4 , (1)

with a Hamiltonian density of

H =
1

2
Π2 +

1

2
(∇φ)2 +

1

2
m2φ2 +

λ

4!
φ4 . (2)

The conjugate momentum operator, Π(x) has the standard equal-time commutation relation
with the field operator, [ φ(x),Π(y) ] = iδ3(x − y). Numerical evaluation of observables
resulting from this Hamiltonian density can be accomplished by discretizing space with a
cubic grid with a distance between adjacent lattice sites on the Cartesian axes of a (the
lattice spacing) and extent L in each direction, as previously defined. The number of sites

1 The necessary ingredients for this extrapolation are detailed resource requirements for implementation of

1.) the 0+1 dimensional self-interacting scalar field and 2.) the nearest-neighbor finite-difference gradient

operator. We analyze these two pieces in depth and subsequently discuss the compilation procedure for

applying the analysis to scalar lattices of arbitrary size and dimensionality.
2 see processes (2,3) of Fig. 1 and Appendix H
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in each spatial direction is L/a. The discretized Hamiltonian on a d-dimensional spatial
lattice is

H = ad
∑
x

1

2
Π2 − 1

2
φ∇2

aφ+
1

2
m2

0φ
2 +

λ0

4!
φ4 , (3)

where the discretized Laplacian operator is defined as ∇2
aφ(x) =

d∑
j=1

(φ(x + aµ̂j) + φ(x− aµ̂j)− 2φ(x)) /a2 where µ̂j is the unit vector in the jth direc-

tion. The quantities m0 and λ0 are bare parameters that are tuned to recover, for example,
correct values of the φ mass, Mφ, and the 4φ scattering amplitude. The conjugate
momentum is required to satisfy

[ φ(x),Π(y) ] =
i

ad
δdx,y Î , (4)

where Î is the identity operator in field space. Redefining the fields, Hamiltonian and mass
as φ̂ = a(d−1)/2φ, Π̂ = a(d+1)/2Π, Ĥ = aH, m̂0 = am0, λ̂0 = a3−dλ0, Eq. (3) can be written
in terms of dimensionless quantities,

Ĥ =
∑
x

1

2
Π̂2 − 1

2
φ̂∇̂2

aφ̂+
1

2
m̂2

0φ̂
2 +

λ̂0

4!
φ̂4 , (5)

with an equal-time commutator of[
φ̂(x), Π̂(y)

]
= iδdx,y Î . (6)

The eigenstates of the momentum operator, |k〉, satisfy K̂|k〉 = k|k〉 where k is quantized
by the boundary conditions, and, for example, takes the values k = n2π

L
for PBCs, where

the integer-triplets n are constrained to lie within the first Brillouin zone |nx,y,z| < L
2a

. The

finite-difference operator that is used to define the latticized K̂ = ∇̂2
aφ̂ has eigenvalues such

that K̂|k〉 = k̂|k〉 with k̂j = 2
a

sin
(
kja

2

)
.

The construction of the latticized Hamiltonian in Eq. (5) is such that the long-distance,
or low-energy, quantities (compared to π/a) will be faithfully reproduced in numerical eval-
uations up to corrections that are polynomial in the lattice spacing, ∼ (aE)n, or exponential
in the volume, ∼ enMφL (for spatially localized states). Therefore, such lattice frameworks
should be considered as low-energy effective field theories (EFTs), with an ultra-violet (UV)
cut-off set by the inverse lattice spacing. Considerable effort by the LQCD community
has been put in to construct improved actions in which additional terms are added to the
Lagrange density that are parametrically suppressed by powers of the lattice spacing and
consistent with the underlying (hyper-)cubic symmetry of the spacetime lattice. The ad-
ditional terms in the QCD action are termed the Symanzik action [58, 59]. Coefficients of
the operators in the Symanzik action depend upon the lattice spacing and the discretized
action, and are determined both by tree-level matching and nonperturbatively through tun-
ing for higher precision. As an example, the Wilson discretization of the light-quark field in
LQCD calculations leads to spatial finite-difference discretization errors that scale linearly
with the lattice spacing, O(a). By adding one dimension-5 operator to the lattice action,
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the Sheikholeslami-Wohlert term [60], and tuning its coefficient, this improved action pro-
duces low-energy and long-distance observables that have errors at O(a2). In principle, an
arbitrary number of operators in the Symanzik action can be included in numerical compu-
tations to improve the action to high orders. However, the requirements for such calculations
that include, for instance, four-quark operators, make this impractical. We will apply simi-
lar considerations when proposing improvements for the digitization of the scalar field onto
quantum degrees of freedom.

III. IMPLICATIONS OF THE NYQUIST-SHANNON SAMPLING THEOREM

The work of MSAH [34, 36] stressed the importance of the NS Sampling Theorem, im-
plicit in the work of Somma [50], which is central to signal processing, communications and
data compression, to quantum computations. It is worth reminding the reader of its main
elements and implications. While the results of this theorem are used implicitly in the for-
mulation and analysis of LQCD calculations, connections between the two are typically not
dwelt upon.

Consider the reconstruction of a real function, C(x), that has support only between x = 0
and x = xmax in position space and between k = −kmax and k = +kmax in momentum space,
from discrete sampling. If C(x) is sampled over the interval x ∈ [0, L] with L > xmax and
at intervals of δx < π

kmax
then the NS Sampling Theorem ensures that C(x) can be recon-

structed up to corrections that are exponentially small. The Poisson resummation formula
is at the heart of this result, which is also used extensively in deriving, for example, finite-
volume effects in LQCD calculations. The implications of this theorem are clear. As long as
the function is sampled in both position-space and momentum-space over the entire region
where the function has support, then it can be reconstructed with only exponentially small
errors introduced by the discretization. In quantum simulations of field theories, and in par-
ticular the computation of the low-lying eigenstates and eigenvalues, this imposes constraints
for both the spatial discretization and the digitization of the field at any given spatial site.
From the viewpoint of lattice calculations, this dictates that the lattice spacing must be
small enough to include all spatial-momentum states that contribute (to the level of preci-
sion to which the calculation is being performed), and the volume large enough to contain
the eigenstates of interest, in order for deviations between the calculated eigenstates and
eigenvalues and the true eigenstates and eigenvalues to be exponentially small. For LQCD
calculations, this underpins Lüscher’s finite-volume analysis of QCD observables [61–63],
which is used extensively to both quantify uncertainties and to extract S-matrix elements.

The NS theorem does not specify how to “cover” the region of support in position-space
and momentum-space, i.e. what basis should be used to span the spaces, and some bases will
be better than others for any given function. For smooth functions that fall exponentially
(or as a Gaussian) at large distances, the plane-wave basis is efficient, defined over the
spatial interval where the function has support and with a discretization that encompasses
its highest frequency component. For a more localized function, such as those that fall as
a Gaussian at large distance, eigenstates of the HO that are approximately tuned to the
function can also be efficient.

For quantum computations of a field theory using a given set of basis functions to define
the spatial discretization and the field digitization, including plane waves or eigenstates of
the HO, this theorem dictates the number of qubits required to achieve a desired accuracy.
The number of qubits and the number and complexity of operators required to execute the
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computation are basis dependent. Identifying the optimal basis with which to perform the
quantum computation requires examining both the number of qubits and the number of
gates required to perform the computation with the desired precision.

It is worth commenting that the NS sampling bounds are likely satisfied in LQCD calcu-
lations of localized quantities, such as hadron masses and nuclear bound states. Therefore,
the eigenvalues and eigenstates obtained in such calculations would be exponentially close
to the values associated with the lattice Hamiltonian if infinite statistics were accumulated
in the stochastic sampling of the quantum fields. The power-law deviations that scale as
∼ (aE)n result from deviations in the lattice Hamiltonian from the continuum Hamiltonian
and are not due to under-sampling in the NS sense. We are unaware of the NS theorem be-
ing implemented in classical quantum Monte-Carlo calculations, and consider the possibility
worthwhile to explore.

IV. 0+1 DIMENSIONAL SCALAR FIELD THEORY

In order to demonstrate some important features of the construction presented in the pre-
vious section, we examine a 0+1 dimensional non-interacting scalar field theory, which is
simply a HO. After a further field and Hamiltonian redefinition, φ̂ = 1√

m̂0
φ̄, Π̂ =

√
m̂0Π̄,

Ĥ = m̂0H̄, the HO is described by the Hamiltonian,

H̄ =
1

2
Π̄2 +

1

2
φ̄2 , (7)

with a commutation relation
[
φ̄, Π̄

]
= iÎ. It is the digitization of this system that was

studied by Somma [50] and by MSAH [34, 36] with the identification φ̄ → X, Π̄ → P and
H̄ → Hh. Without field digitization, δφ̄ = 0, this is simply the Hamiltonian describing a HO
without self-interactions, with energy eigenstates |ψn〉 and energy eigenvalues En = n + 1

2
.

The conjugate momentum operator can be identified with a derivative in field space, Π̄ =
−i d

dφ̄
, to satisfy the equal-time commutation relation.

A. Jordan-Lee-Preskill Basis

When the field is digitized, φ̄→ φ̃ (using the notation of MSAH), and sampled at regular
intervals δφ̃ 6= 0, the conjugate momentum operator can be replaced by a finite difference
operator in field space, in analogy with lattice field theory spatial discretization. It has a
matrix representation in φ̃-space of

〈φ̃′| Π̃2 |φ̃〉 =
1

δ2
φ̄


2 −1 0 0 · · · −1
−1 2 −1 0 0 · · ·
...

...
...

...
...

...
0 0 · · · −1 2 −1
−1 0 0 · · · −1 2

 , (8)

and acts in the space defined by field values −φ̄max,−φ̄max + δφ̃, · · · ,−
δφ̃
2
,
δφ̃
2
, · · · , φ̄max −

δφ̃, φ̄max. For a space spanned by ns = 2nQ basis states in field space, the field takes values

φ̄ = −φ̄max + δφ̃ βφ , δφ̃ =
2φ̄max

ns − 1
, (9)

9



where βφ = 0, 1, ..., ns − 1. Note that this formulation allows the field operator to be

decomposed as φ = φ̄max

ns−1

nQ−1∑
j=0

2jσzj (with qubits labeled right to left in tensor product spaces)

and thus requires only single-qubit Pauli-Z operators for its implementation. As is familiar
from classical lattice simulations, the momentum modes of this system satisfying PBCs are,

kφ̃ = −kmax
φ̃

+ βk δkφ̃ , kmax
φ̃

=
π

δφ̃
, δkφ̃ =

2π

δφ̃ns
, (10)

with βk = 1, 2, ..., ns. It is interesting to note that this conjugate momentum-space basis
may not be optimal in terms of the number of gates in a quantum circuit required to apply the
Hamiltonian to any given state. Satisfying the NS theorem does not require any particular
momentum components to be present in the conjugate momentum-space basis set and, as
such, there is freedom to shift each momentum state by the same constant momentum. It
is convenient to shift each basis state in conjugate momentum space by ∆kφ̃ = −δkφ̃/2, so
that

k∆
φ̃

= −kmax
φ̃

+

(
βk −

1

2

)
δkφ̃ , (11)

which is equivalent to imposing twisted boundary conditions in field space [46–49], resulting
in +1’s in the off-diagonal corners of Eq. (8) and momentum states that are symmetrically
distributed within the edges of the first Brillouin zone between values of ± π

δφ̃

ns−1
ns

. For any

choice of basis states spanning conjugate momentum space, the finite-difference operator
has matrix elements

〈k′
φ̃
| Π̃2 |kφ̃〉 = k̂2

φ̃
δkφ̃,k′φ̃

, k̂2
φ̃

=
4

δ2
φ̃

sin2

(
kφ̃ δφ̃

2

)
. (12)

The Hamiltonian resulting from this field digitization is denoted by H̄ → H̃. The precision
expected from computations on an ideal quantum computer for a range of values of φ̄max

is shown in Fig. 2. Encouragingly, this calculation indicates that a φ̄max of 4.7 for a 4-
qubit representation of the scalar field can achieve a precision of better than 10−3% on the
energies of the lowest 5 eigenstates of the HO with an ideal quantum simulation. For explicit
examples of this field digitization implementation with three, four, and five qubits per site,
see Appendix A.

With any finite computing device, classical or quantum, only a finite representation of a
continuous quantity is possible. In the JLP formulation, |φ| is bounded by φmax and sampled
at intervals dictated by the number of qubits per site. Focusing on the φmax truncation of the
scalar field and allowing an infinite momentum-space coverage, formal quantum field theory
studies [64, 65] have shown that the asymptotic perturbative series becomes convergent.
For a sufficiently large φmax, results for low-lying quantities are exponentially close to those
obtained with unbounded values of the field.

In a quantum simulation of this HO, the JLP framework using the eigenstates of φ̃ and
its conjugate momentum can be used, as discussed above. By tuning φ̄max to be larger than
the spatial support of the nth state of the HO at some level of precision, the NS sampling
bound will be satisfied for these levels as long as the largest value of |kφ̃| in Eq. (10) is greater

than the region of support in conjugate momentum-space of the nth state. The action of
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FIG. 2: The precision of the energies of the lowest five states of the HO in Eq. (7) expected from

calculations on an ideal quantum computer with JLP digitizations over a range of values of φ̄max

for a system digitized on nQ = 3, nQ = 4 and nQ = 5 qubits (minimized at φ̄max =3.1, 4.7, and 6.9,

respectively) . The vertical gray-dashed lines correspond to saturation of the NS sampling bound.

the Hamiltonian on this set of qubits is most easily accomplished in two parts, as prescribed
by JLP. First, the φ̃2 operator, represented by a diagonal matrix in this basis, is directly
evaluated. Second, a QuFoTr is performed to render the matrix representation of Π̃2 diagonal
and thus easily evaluated. The ability to move back and forth between representations in
which φ̃ or Π̃ is diagonal is typically not practical in classical field theory computations and
permits more freedom in choosing the operators that can be applied in either representation.
Using the Π̃ operator in momentum space that is conjugate to the finite-difference operator,
Eq. (12), yields exponentially-converged eigenvalues and eigenvectors for the lowest n states
(by the NS sampling theorem). However, these quantities differ from the corresponding HO

quantities by even powers of δφ̃ because of the difference between k̂2
φ̃

and k2
φ̃

in Eq. (12),

as shown in Fig. 3. However, if instead, the k2
φ̃

eigenvalues in Π̃2 are used in the quantum

computation, corresponding to using Π̄2 and not Π̃2, the eigenvalues and eigenvectors of the
lowest n states are exponentially close to the δφ̃ = 0 undigitized HO quantities [34, 36, 50],
as can be observed in Fig. 3. In performing the quantum simulations discussed in this
paragraph, as the number of qubits is increased from being insufficient to satisfy the NS
sampling bound to exceeding the bound for a given state, the deviation between the true
and calculated energies will reduce as a polynomial in δ2

φ̃
until the NS sampling bound is

satisfied, from which point on the gains will become exponentially small. It would appear
that working at this saturation point is an effective way to perform such computations.
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FIG. 3: The precision of the ground state energy of the HO in Eq. (7) for unimproved, improved

and exact conjugate-momentum operators, over a range of digitizations of φ̄ with different levels

of gate noise. The light-green points correspond to implementing the finite-difference conjugate

momentum operator, the light-blue corresponds to the O(δ2
φ̃
)-improved conjugate momentum op-

erator, and the purple-points correspond to the exact conjugate momentum operator. Gaussian

noise with a width σ is added to the diagonal elements of the eigenvalues of the conjugate mo-

mentum operators (resembling a simplified version of process (3) in Fig. 1). The maximum value

of the field is fixed to be φ̄max = 5.5, enabling a precision of ∼ 10−12 for an ideal quantum com-

puter. The vertical light-gray dashed lines correspond to the number of qubits associated with the

number of states, while the solid darker-gray line corresponds to the näıve estimate of saturation

of the NS sampling bound based upon the properties of the HO ground state wavefunction (the

six calculations cross the latter of these lines top-to-bottom in the order of the legend). For the

computational errors anticipated in the NISQ-era, 4 qubits are seen to be sufficient to eliminate

the digitization of the scalar field as a source of important error.

1. Perturbatively Improved Hamiltonian

It is interesting to note that terms can be added to the finite-difference conjugate-momentum
operator Π̃ in Eq. (8) to systematically improve it by powers of δ2

φ̃
. Finding the improvement

term is straightforward in conjugate-momentum space, which can then be transformed into
φ̃ space. By including appropriate terms to systematically cancel deviations from the true
conjugate-momentum operator,

k̂2
φ̃

=
4

δ2
φ̃

sin2

(
kφ̃ δφ̃

2

)
→ k2

φ̃
−

k4
φ̃
δ2
φ̃

12
+ ...
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k̂′2
φ̃

=
4

δ2
φ̃

sin2

(
kφ̃ δφ̃

2

)
+

4

3δ2
φ̃

sin4

(
kφ̃ δφ̃

2

)
→ k2

φ̃
−

k6
φ̃
δ4
φ̃

90
+ ... . (13)

and the corresponding effective action can be derived that is parametrically improved. In
φ̃-space, the first term in this improvement is reproduced by an additional term in the
Hamiltonian of the form,

δH̃ =
1

24
δ2
φ̃

Π̃4 . (14)

The quadratic improvement in the energy of the ground state of the HO due to the inclusion
of this improvement term in the Hamiltonian is shown in Fig. 3. Numerical improvements
on the order of one to two orders of magnitude in the accuracy of the improved calcula-
tions versus the unimproved calculations are found, and that the residual dependence on δφ̃

becomes O
(
δ4
φ̃

)
.

For systematic errors arising from approximation of the conjugate-momentum operator
with a finite difference operator, the exact form of errors introduced into the Hamiltonian are
well known. If the situation was not so fortunate, the polynomial digitization errors could
still be systematically removed. Through a series of modest-sized calculations (in which φ̄max

is chosen large enough) at a range of digitization scales, the leading polynomial dependence
on the small parameter, δφ̃, may be calculated and removed through the introduction of
additional Hamiltonian terms. While the form of such terms may be systematically informed
perturbatively or by the simple availability of independent higher-dimension operators [66],
their choice is not unique as the necessity is only to provide polynomial dependence at the
correct order for cancellation. This follows the procedure of Symanzik improvement [67–69]
as discussed at the end of Sec. II in the context of lattice QCD. Such improvement procedures
are broadly applicable and have been crucial for calculating observables in lattice gauge
theories—modestly increasing the complexity of the action rather than calculating closer to
the continuum.

2. The Impact of Noise

In the previous sections, we have considered a full non-perturbative improvement of the
field conjugate-momentum operator implemented in field space through a QuFoTr, and a
perturbative improvement that systematically eliminates increasing orders in the digitization
introduced by finite-difference approximations of derivatives in field space. These correspond
to different matrices for Π̄2 acting on the basis states in field conjugate-momentum space.
The exact Π̄2 provides exponential precision in the low-lying eigenstates of the system,
but deviations from this matrix may lead to only polynomial precision—as evidenced from
the behavior of the perturbatively improved Hamiltonians and Fig. 3. Imperfect gates and
decoherence will result in an imperfect application of Π̄2—introducing errors into calculations
of observables and potentially making superfluous, at a practical level, the exponentially
small improvements in digitization errors below the threshold of quantum noise.

In the presence of noisy gates and decoherence, it remains preferable to work with the
exact Π̄2 operator, but the precision of its application is limited. For a given level of
desired precision, the digitization and extent of the field basis required to ensure that the
precision matches that of the noise can be determined. This would require an iterative
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FIG. 4: The precision of calculations of the ground state energy of the HO in Eq. (7). The left

panel shows expectations for an ideal quantum computer for different values of φ̄max as a function

of the number of states. The vertical gray-dashed lines correspond to the location of inflection

points predicted by the NS sampling theorem for the indicated values of φ̄max. A fit to the grey

points calculated at the NS saturation point indicates ε ∼ (1.8(2)×103) 2−2.234(4)ns , quantifying the

double-exponential scaling between ε and nQ. The right panel shows the expected precision from

a device with noise at the level of σ = 10−5 in the application of the field conjugate-momentum

operator (as described in the text). In both panels, the NS saturation points arise left-to-right in

the top-to-bottom order of the legend.

tuning procedure in which multiple measurements are performed, systematically increasing
φ̄max and decreasing δφ̃ until the results of calculations become stable. These may or may
not correspond to a situation that satisfies the NS sampling bound, depending upon the
magnitude of the noise. In Fig. 3, the results of calculations are shown with the use of the
unimproved, improved and exact conjugate-momentum operator through QuFoTr with the
inclusion of different levels of gate-noise. The noise is included as an offset to each diagonal
element of Π̄2 after QuFoTr from a Gaussian distribution of width σ in conjugate-momentum
space. The value of φ̄max = 5.5 is chosen to allow for a precision of ∼ 10−12 for an ideal
quantum computer for digitizations below a critical value of δφ̃. For a given gate-noise level,
there is a value of δφ̃ below which smaller digitizations do not improve the precision of the
calculation. The conclusion is that the error associated with digitization can be reduced
below errors from other sources for an arbitrary number of low-lying energy eigenstates with
only a small number of qubits.

The impact of different sampling ranges in φ̄ space upon the precision of calculations
with an ideal quantum computer (perfect gates), is shown in the left panel of Fig. 4. The
employed value of φ̄max limits the overall precision of calculations as δφ̃ → 0 (states per site

ns → ∞) due to under sampling of the field at large φ̄, which is suppressed by ∼ e−φ
2/2

for a HO wavefunction. The field truncation also limits the precision of calculations for
large values of δφ̃ due to under sampling of the field in momentum space. In between these
regimes, the NS saturation point is found—perceived as a simple discontinuity in the first
derivative—where the position-space sample rate becomes sufficient to capture the structure
of momentum-space. Tracking this saturation point with the gray band of Fig. 4 shows a
precision that increases exponentially in the number of states and thus double-exponentially
in the number of qubits (ns = 2nQ). The coefficients of this precision scaling are calculated
to be ε ∼ (1.8(2)×103) 2−2.234(4)ns , which serves as a general estimate for qubit requirements
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to capture the low-energy Hilbert space of localized scalar fields.
An interesting observation that can be drawn from Fig. 3 is that, for the parameters of the

calculations explored, reducing the amount of noise in the application of the field conjugate-
momentum operator below ∼ 10−13 will have little impact on the precision of the extracted
final result. The demonstration is made more concrete in the right panel of Fig. 4, where
the noise level is fixed and the precision of calculations are determined over a range of φ̄max.
For this noise level, there is no improvement in precision as φ̄max is increased beyond ∼ 3.5.
These are simple special cases of a general conclusion, that for a given calculation designed
with a set of digitization parameters, there is a level of noise in the quantum device(s) below
which the precision of the results will be only minimally impacted. This general conclusion
works in both directions and emphasizes the importance of matching precision in the qubit
representation to that available from the NISQ hardware. Exceeding precision in either
direction would result in a wasteful use of quantum resources—using extra qubits and gates
to represent the physical system with a precision beyond the quantum hardware’s capability
to resolve or using a noise-resilient quantum device to probe physics beyond that represented
in the qubit representation of the system.

One plausible scenario in which it may be beneficial to exceed the precision of the quantum
hardware with the qubit mapping is in the presence of post-measurement noise-mitigation
techniques as shown for implementations of variational quantum eigensolvers in [24, 26, 70].
By extrapolating in a parameter scaling with the noise of the system (in the NISQ-era,
this is conventionally a number increasing with the number of two-qubit interactions), the
precision of a calculation can be improved beyond the precision capable for any ensemble
measurement with the device at a fixed noise parameter. In this case, it is the extrapolated
precision of the quantum hardware that needs to be balanced with the theoretical precision
of the qubit mapping in order to optimize the use of quantum resources.

It can be seen from Figs. 3 and 4 that the simple 3, yet physically-motivated, noise model
implemented here does not significantly modify the results of calculations above the effec-
tive noise level. As has been shown for the use of momentum-space phases associated with
finite difference field-space Π̃2 operators in section IV A 1, there exist simple modifications
to the conjugate-momentum space phases that modify the precision convergence by intro-
ducing polynomial sources of error. Having now determined that gaussian random noise on
conjugate-momentum space phase gates does not result in such a dramatic degradation of
the calculation’s precision above the noise tolerance, we proceed with noiseless calculations—
remembering that this property must be monitored as noise models become more accurate
and relevant to specific hardware implementations.

3 While this structure of quantum noise is acknowledged to be quite primitive, it is a simple model of is-

sues expected in real quantum devices—in this case, a gaussian-distributed over- or under-rotation in the

application of phases in conjugate-momentum space—leading to substantial theoretical considerations. It

is expected that current research in error correction on small quantum devices [71–76] will allow quan-

tum noise and decoherence to be modeled in a more accurate, architecture-specific way when designing

calculations for quantum hardware.
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B. Harmonic Oscillator Basis

As we have discussed previously, any set of basis states can be used to digitize the field, φ̄, in
H̄ in Eq. (7). If the basis spans the φ̄-space and Π̄-space of the lowest-lying eigenstates, the
NS sampling theorem ensures exponential convergence to those eigenstates and associated
eigenvalues. A basis that is commonly used, beyond the eigenstates of the φ̄ operator, is
formed by a finite set of eigenstates of a HO with angular frequency ωφ that is tuned to
optimize convergence in the number of states. If ωφ is tuned to ωφ = 1, the basis states are
the eigenstates of H̄ in Eq. (7) and the evolution matrix is diagonal in the basis, and the
number of basis states required to converge to the lowest N eigenstates is obviously equal
to N . For ωφ 6= 1, the basis states are not eigenstates, and the evolution matrix is not
diagonal.

It should be emphasized that bases formed from HO eigenstates, that are explored in
this section, are different in nature to those formed from digitized HO eigenstates, that have
been considered previously [34, 36, 50]. In those works, the eigenstates of the HO were
digitized onto the eigenstates of the field operator, e.g. 〈φ̄|ψn〉 → 〈φ̄i|ψdn〉, reducing each
field-space eigenstate from a continuous function to a discrete set. It was the properties and
time-evolution of the |ψdn〉 ∼

∑
i

ψn(φi)|φi〉 using the JLP framework that were examined in

Refs. [34, 36, 50]. A HO basis was also used in the pioneering calculations of the deuteron
ground state energy using the IBM and Rigetti quantum hardware by an ORNL team [25].
The mapping of the system onto qubits was accomplished using a 2nd quantization frame-
work, where occupancy of quantum states is encoded in the orientation of the qubit. In
contrast, we consider a first quantized mapping with HO basis states mapped directly onto
states of the quantum register.

Unlike the situation found with the JLP digitization of φ̄ in terms of eigenstates of the
φ̄ operator, where it is valuable to QuFoTr into conjugate-momentum space to evaluate
the exact action of Π̄2, digitization of the field space is accomplished explicitly by the HO
basis with the coverage in field and conjugate-momentum spaces determined by the maxi-
mum number of basis states and the value of ωφ. As such, quantum circuits implementing
the action of the Hamiltonian in the HO basis can be constructed in φ̄ space only. The
Hamiltonian and ladder operators defining the basis states are,

Hbasis =
1

2
Π̄2 +

1

2
ω2
φ φ̄

2 = ωφ

(
a†ωφaωφ +

1

2

)
aωφ =

√
ωφ
2
φ̄+ i

√
1

2ωφ
Π̄ , a†ωφ =

√
ωφ
2
φ̄− i

√
1

2ωφ
Π̄ , (15)

and the Hamiltonian in Eq. (7) can be conveniently written in terms of the basis operators,

H̄ =
1

2
Π̄2 +

1

2
ω2
φφ̄

2 +
1

2

(
1− ω2

φ

)
φ̄2 = Hbasis + δHωφ . (16)

The eigenvalues and eigenstates of H̄, in Eq. (7), are determined by diagonalizing the
Hamiltonian matrix formed from matrix elements of H̄ in a truncated basis of eigenstates
of Hbasis, in Eq. (15). An explicit example of the HO basis for three qubits-per-site may be
found in the Appendix Sec. C. Figure 5 shows the precision of calculations of the ground
state energy of the HO Hamiltonian in Eq. (7) expected on an ideal quantum computer as
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FIG. 5: The expected precision of the ground state energy of the HO Hamiltonian in Eq. (7) on

an ideal quantum computer using a HO basis defined by ωφ in Eq. (15) as a function of the number

of basis states. The inset figure shows the scaling for a HO basis of 20 states, which is a slice of the

main figure indicated by a vertical gray dashed line (the calculations cross this line top-to-bottom

in the order of the legend). In the limit of ωφ = 1 the lowest-lying basis state is an eigenstate,

and ε = 0. Tuning ωφ to be in the vicinity of the optimal value ωφ = 1 outperforms field-space

digitization, shown by the gray JLP curve.

a function of the size of the HO basis for different values of ωφ. Obviously, when ωφ = 1 the
error vanishes. For ωφ tuned to be in the vicinity of ωφ = 1 the precision obtained with the
HO basis is better than that obtained with field-space digitization discussed in the previous
sections. However, poor choices of ωφ lead to inferior precision compared with field-space
digitization.

The time-evolution induced by Hbasis is simple, involving only single-phases, and the
quantum circuit to implement it corresponds to only phases applied to each qubit. Since
there are no interactions in this basis, all operators commute and there is no need for a
Trotter decomposition, as the total phase can be determined and applied in one application.
When detuned away from ωφ = 1, the size of the Trotter step required to time-evolve
the system will be determined by the detuning. In such a detuned scenario, the operator
structure from δHωφ involves interactions between all qubits, as evidenced from Eq. (C2).

In Table I, comparisons in the types and numbers of operations and gates required to
time-evolve the HO described by H̄ in Eq. (7) between the field-digitization basis and a
tuned/detuned HO basis are presented. The 2-qubit, CNOT gate requirements are distin-
guished separately as their presence often represents the largest source of noise on NISQ-era
quantum hardware. The numbers in Table I are accumulated for a standard implementation
of multi-Pauli gates [77] and do not represent expected reductions of the HO basis opera-
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Basis nQ 0-body 1-body 2-body 3-body 4-body 5-body 6-body QFT CNOTs

2 1 8 2 X 8

3 1 14 6 X 24

JLP 4 1 20 12 X 48

5 1 26 20 X 80

6 1 32 30 X 120

JLP nQ 1 6nQ − 4 2 ∗
(nQ

2

)
X 8

(nQ
2

)
2 1 2 0

3 1 3 0

HOω≡1 4 1 4 0

5 1 5 0

6 1 6 0

HOω≡1 nQ 1 nQ 0

2 1 3 1 2

3 1 4 4 3 20

HOω 6=1 4 1 5 5 11 7 96

5 1 6 6 16 26 15 352

6 1 7 7 22 42 57 31 1120

TABLE I: Resource requirements for one step in the Trotterized time evolution of a HO in the

field-digitization JLP basis, a tuned HO basis, and a detuned HO basis. CNOT counts are based

upon a standard multi-Pauli implementation requiring 2(k− 1) CNOTs for each k-body operator.

When a QuFoTr is required (JLP), the standard CNOT counts of 2
(nQ

2

)
for this operation (and its

inverse) are included. With the expected limitations in the number of gate operations applied in

NISQ-era devices, only systems with nQ ≤ 4 may be practical.

tions through parity calculation or cancellations that may occur for particular choices of the
operator ordering [78]. From Table I, it is clear that a tuned HO basis requires significantly
fewer operations to evolve a free HO than does the field-digitization basis. This is because
the eigenstates of the system correspond exactly to the basis states. However, a detuned
HO basis involves an exponentially-growing number of multi-qubit operations, leading to
significantly more operations than the field-digitization basis. Even when the eigenbasis is
unknown, JLP has resource requirements limited to 2-body operators. As a detuned HO
basis shares features of a self-interacting system (detailed subsequently), we conclude that,
for this very simple system, the field-digitization basis examined in detail in the works of
JLP is more robust than a generic HO basis. By this, we mean that for the evolution of
an arbitrary, apriori unknown system, the field-digitization basis will typically require fewer
quantum computational resources while possibly requiring fewer qubits, as seen from Fig. 5.

It is interesting to consider whether the tuned HO could be used as a “standard candle”
for the calibration of quantum hardware. Its eigenstates and eigenenergies are known to
infinite precision and thus could be considered not only as a calibration source but also as
a calculation to distinguish the computational precision capable on classical and quantum
hardware. Using the details above and specifically the information of Table I, it can be
seen that the tuned HO requires 0 two-qubit gates to implement. As such, it contains
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no entanglement and thus no unique signal that could not be generated with other pre-
determined rotation gates to quantify and explore noise in NISQ-era hardware.

C. λφ4 Scalar Field Theory: Comparing Bases

After the field and Hamiltonian redefinition of Eq. (7), the interacting 0+1 scalar field is
described by,

H̄ =
1

2
Π̄2 +

1

2
φ̄2 +

λ̄0

4!
φ̄4 , (17)

where φ̂ = 1√
m̂0
φ̄, Π̂ =

√
m̂0Π̄, Ĥ = m̂0H̄, and λ̂0 = m̂0λ̄0. This system has been numerically

studied previously by Somma [50]. A value of λ̄0 = 32 will be chosen as a representative
case of strong coupling, where the system is no longer a HO (nor perturbatively close) and
the basis selection for the description of the wavefunction between JLP digitization and
HO basis functions is relevant within the multi-dimensional space of precision, qubits, gate
decompositions, and tuning requirements.

When using the digitization techniques of JLP, introducing additional interactions does
not introduce new challenges. The only necessary modifications to the method are rescal-
ings of the sampling distributions (applying considerations for both field and conjugate-
momentum space coverage). In the case of λφ4 with λ = 32, introduction of the self-
interaction shrinks the domain over which the wavefunction has support as shown in the
lower left panel of Fig. 6. As a result, smaller values of φ̄max may be used for precise calcula-
tions. This can be seen in a comparison between Fig. 4 and the upper panel of Fig. 6. For a
φ̄max of 2.5, the highest precision attainable with λ = 0 and λ = 32 differs by ∼ 5 orders of
magnitude. The precision with φ̄max of 2.5 saturates with 18 states for λ = 32, but saturates
with only 6 states for λ = 0, indicating that the value of Π̄max has also increased with the
introduction of the self-interaction, requiring a smaller value of δφ̃ in order to accurately
represent the enlarged Fourier space. This trade-off can be seen in the lower-right panel of
Fig. 6. To capture the Gaussian structure of the free HO requires only the inclusion of a
small region of Π̄ around zero. For 6 states, the maximum value of the momentum can be
determined by Eq. (10) to be ±2.62. This value is indicated by the vertical, gray dashed
lines in Fig. 6. Outside of this region, the exponential behavior turns power-law and inclu-
sion of this portion of the wavefunction no-longer informs the sampling about the physical
momentum space, only about artifacts of the truncation. By fitting a continuous Gaussian
of infinite spatial extent to the wavefunction at left and plotting its Fourier transform on
the right (small-dashed curves), 6 states are found to lead to a δφ̃, and thus a maximum kφ̃,
that captures the Gaussian central region of the wave function. For λ = 32, this maximum
value in momentum space is no longer sufficient to saturate the NS sampling limit. There
is a significantly larger domain in momentum space before the wavefunction transitions to
power-law behavior, not appearing until Π̄ values of ∼ ±10. Again, with Eq. (10), 18 states
per site are seen to be required for this truncation in momentum space, a value in agreement
with the location of the NS saturation point seen in the upper panel of Fig. 6.

By comparing the gray band in Fig. 4, the scaling of the NS saturation for the free 1-site
HO, with the highest precisions attained in the upper panel of Fig. 6, it can be seen that
the number of states (or qubits) required to achieve a particular precision is relatively stable
for this self-interaction. The values of φ̄max along this band are skewed from those in the
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FIG. 6: The panel in the upper row shows the expected precision of calculations of the ground-

state energy of a 1-site λφ4 scalar field theory performed with an ideal quantum computer for

different values of φ̄max as a function of the number of states (the NS saturation points arise left-

to-right in the top-to-bottom order of the legend). The lower row shows the field and conjugate-

momentum space wavefunctions (left and right, respectively) for the free(green or lightly-shaded)

and interacting(blue or darkly-shaded), 1-site λφ4 shown at constant φ̄max = 2.5. The introduction

of non-zero λ reduces the spatial support of the wavefunction while increasing its support in

momentum space. The small-dashed green(lightly-shaded) and blue(darkly-shaded) lines in the

right panel are Fourier transforms of Gaussian fits to the wavefunctions in the left panel. The

vertical, gray dashed lines in the right panel show the truncations in Π̄ for 6 and 18 states—the

location of NS saturation for φ̄max = 2.5 as seen in Figs. 4 and the first row here.

free theory, but the maximum precision attained through distribution of a fixed number of
wavefunction sample points is not. As this self-interaction causes a smooth deformation of
the wavefunction, trading extent in field space for that in conjugate-momentum space, it
is not surprising that the interacting ground state wavefunction achieves similar precision
given similar quantum resources.

When using a basis of HO wavefunctions, the main consideration is, again, assuring that
the chosen representation of the wavefunction sufficiently spans both field and conjugate-
momentum space. With JLP, φ̄max is used to control the domain of support in field space
while δφ̃ (or equivalently the number of states per site) is used to control the domain of
support in momentum space. With the HO basis functions, the parameters to be tuned
are ωφ and the number of states. Unlike the lattice-parameters of JLP, these parameters
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FIG. 7: Exploration of sensitivity in JLP field digitization (dashed lines) and the HO basis (solid

lines) to tuning of digitization parameters determining the low-energy states in momentum space.

For JLP, the relevant parameter is φ̄max, while for the HO basis it is a combination of the frequency

defining the basis, ωφ and the number of states, ∼
√

2nQ/ωφ. The horizontal axes of the HO curves

have been rescaled to 1.4
√

2nQ/ωφ to align them with the JLP curves. These tuning curve pairs

are minimized with smaller values of ε in the top-to-bottom order of the legend.

give correlated modifications to field and conjugate-momentum space. Increasing ωφ creates
basis functions that are more localized in field space while exploring higher momentum-space
truncations. Increasing the number of states also increases the momentum-space truncation,
but expands the field-space region of support. Because of these correlations, it is meaningful
to compare JLP’s dependence of φ̄max with a combination of nQ and ωφ dictating the extent

of the HO wavefunction basis,
√

2
nQ

ωφ
, reflecting the fact that

√
〈φ2〉 ∼

√
2nQ and ∼ 1/

√
ωφ.

In Fig. 7, the expected precision of the ground-state energy is shown as a function of φ̄max

and
√

2
nQ

ωφ
for JLP (dashed) and HO (solid) bases, respectively. Values on the left of the

minimum of each curve have reduced precision due to insufficient sampling in field space,
while to the right of the minimum, the precision is reduced due to insufficient sampling in
momentum space. Only at the minimum is the sampling in both spaces optimal. It can
be concluded that for these parameters, values of φ̄max or ωφ can be selected (for nQ ≥ 3)
such that the errors introduced by digitization are significantly smaller than those expected
from computations on NISQ-era hardware. As such, the digitization of the scalar field is not
expected to limit the accuracy of NISQ-era computations. For nQ < 3, the field digitization
is expected to provide a limit to the accuracy of NISQ-era computations. Comparing the
basis choices given a fixed number of qubits, there is a value of the HO basis parameters
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Basis nQ 0-body 1-body 2-body 3-body 4-body 5-body 6-body QFT CNOTuncompiled CNOTcompiled

2 1 8 2 X 8 8

3 1 14 6 X 24 24

JLP 4 1 20 12 1 X 54 52

5 1 26 20 5 X 110 96

6 1 32 30 15 X 210 164

JLP nQ 1 4nQ − 6 2 ∗
(
nQ

2

) (
nQ

4

)
X 8

(
nQ

2

)
+ 6
(
nQ

4

)
2 1 3 2 4

3 1 5 9 4 34

HO 4 1 6 16 18 10 164

5 1 7 22 32 44 22 612

6 1 8 29 44 84 98 46 1982

TABLE II: Resource requirements for one first-order-Trotterized step of time evolution for 1-site

λφ4 scalar field theory in the field-digitization JLP basis and HO basis. CNOT counts are based

upon a standard multi-Pauli implementation requiring 2(k− 1) CNOTs for each k-body operator.

When the QFT is required (JLP), the standard CNOT counts of 2
(nQ

2

)
for this operation (and its

inverse) are included in the second-to-last column. The last column contains the required CNOT

gates after manual compilation (see Appendix B). With the expected limitations in the number of

gate operations applied in NISQ-era devices, only systems with nQ ≤ 4 may be practical.

that produce a higher-precision result in this system than a φ̄max-tuned JLP wavefunction
digitization. For a desired precision, the HO basis offers a larger acceptable window in the
basis tuning parameters than does the JLP field digitization basis. This translates, through
the circuit descriptions of Figs. 12 and 14, to reduced sensitivity on the exact angles applied
in the Z-axis rotation gates. This sensitivity will be relevant in the NISQ era with imperfect
gate fidelities, and will continue to be relevant once fault-tolerant quantum computing is
available (where the precision determines the number of T gates 4 needed to decompose any
Z-axis rotation with expected scaling of

∣∣ log2 |εθ|
∣∣ [79–81]. )

While Fig. 7 shows desirable qualities when using HO basis functions to digitally de-
scribe the wavefunction, quantum simulations of quantum systems have many resource re-
quirements to consider beyond qubit number and necessary precision of rotation angles.
Specifically, a large consideration in the feasibility of successfully implementing a quantum
calculation in the NISQ era is the number and type of gates required to implement a single
Trotter step of the time-evolution operator. These gate counts are detailed in Table II.
For JLP, the 1-body operators from the QFT and

(
n
2

)
2-body operators from the terms

quadratic in the field and its conjugate momentum are still present. The λφ4 interaction
term introduces only

(
n
4

)
4-body operators and additional contributions to the identity and

2-body operators. The latter can be consolidated with the operators previously identified
and thus does not contribute to the gate cost (it does, however necessitate separate operator

4 The T gate,

(
1 0

0 eiπ/8

)
, is the gate commonly added to the Clifford group to create universal quantum

computation. Its proliferation is considered a meaningful cost model for many plausible implementations

considered for future fault-tolerant quantum computing.
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coefficient structures in field and conjugate-momentum space, e.g., O0 from Eq.(A3) can be
written as OΠ̃ and Oφ̃ which contain the same operators but with different relative coeffi-
cients). The fact that operators are limited to interacting between a number of qubits equal
to the highest power of field interaction included in the Hamiltonian is a feature of JLP not
shared by the HO basis. Here, the additional 2-qubit CNOT gates required to implement
the QuFoTr for JLP field digitization are quickly outnumbered by the CNOT gates required
to implement the k-body operators for k limited by the number of qubits in the site-register.

The fact that the scaling of CNOTs in the JLP basis is limited to n4
Q is advantageous when

considering the noise landscape of NISQ-era hardware dominated by 2-qubit interactions.
In Table I and Table II, the CNOT gate counts generally do not include cancellations that
may occur for particular operator orderings in the Trotterization [78]. In the JLP basis,
we have performed a manual circuit compilation of the λφ4 scalar field theory, eliminating
pairs of adjacent CNOT gates, resulting in the CNOT gate counts shown in the right-most
column of Table II. While the φ̄2 operator set by itself does not permit a reduction of the
number of gates, in combination with the φ̄4 operator set, and also among the φ̄4 operators,
redundant CNOT operations in the leading Trotter expansion can be removed. While a
similar reduction can be applied to the circuits of the HO basis, many changes of Pauli
bases between operations make systematic cancellation difficult. As was the case with the
JLP basis, it is not expected that carrying out this elimination in the HO basis will change
the scaling of the CNOT-operator accumulation. A discussion of this manual compilation
is given in Appendix B.

1. Delocalized Wavefunctions: m2 < 0

As mentioned in the introduction, λφ4 scalar field theory in 3 + 1 dimensions is a corner-
stone of the standard model of electroweak interactions [82–84], where φ is an electroweak
doublet of complex real scalar fields. At low energies, its potential is such that the vev of
〈φ〉 6= 0, breaking the electroweak gauge group SU(2)L ⊗ U(1)Y → U(1)Q down to that of
quantum electrodynamics. This minimal symmetry-breaking mechanism, the Higgs mech-
anism, generates masses for the weak gauge bosons and the fermions, and gives rise to a
single physical scalar particle, the Higgs boson [85–88]. In a 0+1 dimensional theory, the
parameter regime −µ2 = m2 < 0 produces a potential that contains two minima located at

φ = ±
√

3!µ√
λ

. For any physical value of µ, the ground state wavefunction of the Hamiltonian

is symmetric under φ → −φ and non-degenerate and, as such, respects the discrete global
Z2 symmetry of the Hamiltonian, with a vev of 〈φ〉 = 0. However, it is delocalized with
maxima near the two minima of the potential. The wavefunction of the 1st-excited-state of
the system is similar to that of the ground state, but it is antisymmetric under φ→ −φ. As
µ becomes large, and the components of both wavefunctions become increasingly localized
around the minima of the potential, the energy difference between the ground state and
the 1st-excited-state becomes exponentially small, determined by the barrier-penetration
amplitude for transitioning from +φ to −φ.

It is again relevant to consider alternate digitizations for representing the distributions in
field and conjugate-momentum space. For large µ2 > 0, (where the quantity µ√

λ
is large with

respect to the wavefunction’s natural spatial extent), the field space wavefunction expands
toward two localized and distinct regions of support. This is the case for the parameter values
of µ = 2, 5 and λ = 1 chosen in Fig. 8 and in Fig. 9. This enlarged field-space coverage
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FIG. 8: Exploration of the sensitivity in JLP field digitization (dashed lines) and the HO basis

(solid lines) to tuning of digitization parameters determining the low-energy states for a 0+1-

dimensional scalar field theory with m2 < 0, with µ = 2 (left panel) and µ = 5 (right panel),

resulting in delocalized wavefunctions. For JLP, a relevant parameter is φ̄max, while for the HO

basis it is a combination of the frequency defining the HO basis, ωφ, and the number of states per

site. The horizontal axes of the HO curves have been rescaled to 2.9
√

2nQ/ωφ in the left panel and

1.8
√

2nQ/ωφ in the right panel to align them with the JLP curves. The black-dashed horizontal

line in the left panel corresponds to the precision required to distinguish between the ground state

and 1st excited state for µ = 2. The corresponding line for µ = 5 in the right panel lies many

orders of magnitude beyond the range of the figure. In both panels, the tuning curve pairs are

minimized with smaller values of ε in the top-to-bottom order of the legend.

FIG. 9: The potentials (left panel) and wavefunctions (center and right panels) of the ground

states (solid curves) and 1st excited states (dashed curves) for systems with m2 < 0. The center

panel shows the spatial wavefunctions for λ = 1 and µ = 1, 2, while the right panel shows the

corresponding momentum-space wavefunctions. These wavefunctions result from using the JLP

basis with φmax = 9 and nQ = 7 qubits. (The vertical dashed-grey lines in the right panel indicate

the number of states at which the NS bound is saturated and thus an increase in φ̄max would be

profitable over an increase in quantum states).

demands similarly-large values of φ̄max when working in the JLP digitization, or smaller
values of ωφ in defining the HO basis. Achieving these requirements can be accomplished
in either basis when they are tuned, as shown in Fig. 8. An additional consideration in
considering the configuration of quantum simulations is that the 1st-excited-state is becoming
very close in energy with the ground state, a feature that is not present in the previously
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considered situations. A low-precision calculation, resulting from the use of a small number
of qubits, will be unable to resolve the ground state from the 1st-excited-state, and the
wavefunctions emerging from such calculations will likely be arbitrary combinations of the
two. Higher-precision calculations, requiring a larger number of qubits, will be required
to resolve the low-lying states in such systems. For such delocalized states, in contrast to
the results obtained from a potential with m2 > 0 in Fig. 7, the JLP basis can be tuned
to produce higher precision in the ground-state energy than the HO basis with the same
number of qubits. This outcome is not surprising—if the wavefunction is deformed into a
distribution that is far from Gaussian, as seen in Fig. 9, a set of HO basis functions is no
longer expected to offer superior coverage in the digital sampling. An interesting result of
this demonstration is the degree to which the formulation of JLP, in which the basis is a
periodic collection of delta functions agnostic to the structure of the wavefunction, is capable
of exceeding the precision of a basis specialized for an alternate symmetry of the low-lying
wavefunctions. The ability of JLP to perform with precision when applied to a range of
systems, and thus require little knowledge of the structure of the low-lying states, will be
a desirable feature of quantum simulations of more sophisticated, strongly-interacting field
theories.

In these types of systems, and others, with near-degenerate low-lying states, the impact
of noise in the quantum device upon correctly identifying the ground state wavefunction is
expected to be significant. As discussed in Appendix H, the noise levels (from either the
propagator approximation of step (2) or the intrinsic gate implementation noise of step (3) in
Fig. 1) present in calculations with multiple degenerate extrema in the potential producing
delocalized low-lying states will limit the systems that can be reliably explored as energy
splittings are buried below the software (2) and hardware (3) noise levels.

V. 1+1 DIMENSIONAL λφ4 SCALAR FIELD THEORY

The detailed analysis of 0 + 1 scalar field theory presented in the previous sections provides
a solid foundation with which to consider scalar field theory in higher spatial dimensions
with NISQ-era quantum computers. In section II, the Hamiltonian for scalar field theory
in d + 1 dimensions was presented, along with its näıve layout on a spatial lattice. The
operator structure for multiple spatial sites is the same as for one spatial site except for
the presence of the φ∇2φ operator, which includes contributions from particle motion into
the Hamiltonian. The näıve representation of this operator as φ∇2

aφ introduces terms that
couples the fields at two adjacent spatial sites. In general, smearing the fields to tame
high-energy quantum fluctuations, while preserving low-energy observables, will introduce
couplings beyond adjacent spatial sites, but these can be implemented with operations on
two sites also.

In the situation with d > 0, the text-book way to construct field theory calculations is
to work with HO’s for each spatial-momentum mode, i.e. define fields in terms of quanta
with well-defined spatial momentum. In perturbative calculations that can be performed
by hand, this method is extremely efficient. In numerical computations of non-perturbative
field theories, such as LQCD, the system is typically defined with regard to fields in posi-
tion space, while components of calculations involve determining eigenvectors of the Dirac
operator in the presence of a particular configuration of gauge fields. In the study of sys-
tems with few sites in each spatial direction, it is likely the case that calculating with the
momentum-space modes is efficient [42]. First implementation of this quantization proce-
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FIG. 10: The ground and first-excited state wavefunctions for 2-site λφ4 scalar field theory with

λ = 0 and λ = 32 (top and bottom, respectively). The first excited state shows positive correlation

between the oscillations at the two spatial sites
(
φ̄0, φ̄1

)
.

dure on quantum devices has been completed by an ORNL team [89]. However, as argued by
JLP [6–9], as the interactions that are local in position space, such as λφ4, become non-local5

in momentum space (distant momentum oscillators are capable of producing momentum-
conserving contributions to the Hamiltonian), time evolving the system to a given state
defined in momentum-space will become increasingly inefficient with increasing system size
relative to a state defined in position space [6–9, 93]. For the remaining discussion, we will
limit ourselves to states and operations defined in position space.

Application of the d + 1-dimensional λφ4-Hamiltonian time evolution operator to a
position-space state can be accomplished site-by-site, and involve at most d neighboring
two-site interactions at each site. Therefore, for a system with (L/a)d spatial lattice sites,

this will require (L/a)d such applications. This being the case, study of the 2-site 1+1 dimen-
sional λφ4 theory provides a complete inventory of the operations and gate counts required
to perform a d+ 1-dimensional λφ4 calculation, and we have performed such estimates and
numerical calculations in this 2-site theory. Given this 2-site locality and quantum hardware

5 For discussions of the implementation of non-local quantum interactions dominating the cost of quantum

chemistry systems, see Refs. [90–95] where alternate choices of qubit mappings or quantum simulation

methods are explored to increase the locality of quantum operations.
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FIG. 11: The precision of the calculated ground-state energy for the 2-site lattice λφ4 scalar field

theory with λ = 32 performed with an ideal quantum computer for different numbers of qubits as a

function of support in field space. For JLP, the relevant parameter is φ̄max, while for the HO basis

it is a combination of the frequency defining the HO basis, ωφ, and the number of states per site.

The shown precision does not include deviations of this 2-site 1 + 1 dimensional theory from the

continuum limit of the 1 + 1 dimensional theory for which the number of spatial sites approaches

infinity for a fixed spatial extent. The horizontal axes of the HO curves have been rescaled to

1.4
√

2nQ/ωφ to align them with the JLP curves. These tuning curve pairs are minimized with

smaller values of ε in the top-to-bottom order of the legend.

capable of parallelizing the implementation of gates acting in separate tensor product spaces,
application of the Hamiltonian to a position-space state can be accomplished with a circuit
of constant depth with increasing lattice size [1]. The field-space wavefunctions associated
with the ground state and first-excited state of the 2-site 1+1 dimensional theory are shown
in Fig. 10, with the wavefunction at site-0 denoted by φ̄0 and at site-1 by φ̄1. A large value
of the self-interaction coupling, λ, focuses this correlation in

(
φ̄0, φ̄1

)
.

As seen in Fig. 11, the 2-site λφ4 theory experiences double-exponential convergence in
nQ to the un-digitized value. However, just as the use of a finite-difference operator in the
field-space implementation of Π̄2 introduced polynomial deviations in δφ̄ (see results from
local and improved operators in Fig. 3), the finite-difference implementation of φ∇2

aφ in
position space introduces analogous polynomial deviations in a from the continuum limit.
These lattice-spacing errors are not shown in Fig. 11. Thus, this method converges to the
continuum value with lattice-spacing errors that scale as ε ∼ 2NQ . Of course, with a large
quantum computer, it could become possible to remove these polynomial lattice-spacing
artifacts through use of the QuFoTr and subsequent implementation of the exact lattice
phases in Fourier space to create a smeared, non-local gradient operator (exactly as was
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Basis nQ 2-body 3-body 4-body 5-body 6-body 7-body 8-body 9-body 10-body 11-body 12-body CNOT

2 4 8

3 9 18

JLP 4 16 32

5 25 50

6 36 72

nQ n2Q 2n2Q

2 1 6 9 80

3 1 8 30 56 49 1,152

HO 4 1 10 47 140 271 330 225 11,264

5 1 12 68 244 630 1204 1668 1612 961 89,600

6 1 14 93 392 1186 2772 5154 7560 8541 7182 3969 626,688

TABLE III: Operators associated with the additional φ̄(x)φ̄(x + 1) operator resulting from the

finite-difference spatial gradient operator φ∇2
aφ for time evolution of 2-site lattice λφ4 scalar field

theory in the JLP and HO field-digitization bases. CNOT counts are based upon a standard

multi-Pauli implementation requiring 2(k − 1) CNOTs for each k-body operator.

done in field space). Rather than requiring a QuFoTr to be applied on each of the modest-
sized qubit registers associated with individual lattice sites, this proposal would require a
QuFoTr across the entire lattice—an entangling operation amongst all NQ qubits. At least
in the NISQ era, it is expected that such global operations will be prohibitive both in gate
fidelity as well as coherence time. For this reason, the finite-difference form of the gradient
operator, demanding only local interactions between the qubit registers at neighboring sites,
appears to be optimal [6–9].

When implementing the gradient operator as a finite difference, there is only one set of
operators φ̄(x)φ̄(x+1) acting between the spatial sites that need be additionally considered.
Table III shows the nature and number of pauli terms associated with this additional oper-
ator in the 1 + 1-dimensional Hamiltonian6. In this 1+1-dimensional system, the coefficient
of the mass term in field space is modified by two of the terms in the φ∇2

aφ operator, but
the operator structure is unaltered. As mentioned above, the quantum resources calculated
in this paper may be easily combined to determine the requirements for larger lattices in
d-dimensions, for example

CNOTlattice(nQ, d, L/a) = Lda−d CNOT1-site(nQ) + dLda−d CNOTφ̄(x)φ̄(x+1)(nQ) (18)

expresses the total number of CNOT gates required to evolve the field across a lattice
with CNOT1-site(nQ) extracted from Tables I or II for the free or self-interacting fields,
respectively, CNOTφ̄(x)φ̄(x+1)(nQ) extracted from Table III, nQ the number of qubits used
to digitize the field at each site, d the dimensionality of space, L the spatial extent in each
dimension, and a the lattice spacing in each dimension. The nearest-neighbor interactions
between sites in the JLP digitization requires all n2

Q 2-body operators that can be created
between the two site registers. This is contrasted by the HO basis where operators between

6 These gate counts are in addition to those resulting from action on the individual sites that have been

determined in previous sections of this paper.
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the two site registers are not limited to 2-body qubit interactions, but require tensor product
Pauli operators acting on up to all 2nQ qubits. Because of this dramatic difference in the
structure of necessary operators, even for the smallest number of qubits per spatial site,
the JLP basis requires fewer resources to implement the φ∇2

aφ operator—emphasizing the
importance of an application’s physical representation onto qubit degrees of freedom in
quantification of its required quantum resources.

VI. SUMMARY AND OUTLOOK

Quantum computing and quantum information science is anticipated to provide disruptive
changes to scientific computing and to the ways that we think about addressing scientific
challenges. The prospect of being able to explore quantities in quantum many-body sys-
tems, including quantum gauge field theories such as quantum chromodynamics, that require
exponentially-large classical computing resources, such as for dense matter or in the time-
evolution of non-equilibrium systems, is truly exciting. In this work, we have built upon
foundational works by Jordan, Lee and Preskill [6–9] on how to formulate scalar field the-
ory on quantum computers to determine properties of the scalar particle and interactions,
both elastic and inelastic, between particles. In an attempt to understand the magnitude
of resources required for even modest quantum computations in a simple field theory, our
work has focused on the digitization of scalar field theories with only a small number of
qubits per spatial lattice site. The recent work by Macridin, Spentzouris, Amundson and
Harnik [34, 36], which, building upon the work of Somma [50], emphasized the utility of
the Nyquist-Shannon (NS) sampling theorem, is a theme for our work as it provides an im-
portant guide for tuning digitization parameters in quantum field theories for the accurate
representation of field and conjugate-momentum spaces on quantum devices (and may also
have implications for classical calculations).

In addition to an in-depth exploration of the requirements for a basis of eigenstates
of the field operator, as introduced by JLP, we have introduced and explored the resources
required for, and the utility of, a basis of harmonic oscillator eigenstates. We have performed
operator decompositions of the Hamiltonians for a small number of qubits in 0 + 1 and 1 + 1
dimensional systems. As tunings are required in both bases for an optimal computation on
an ideal quantum device, we find that both bases are effective, but that the JLP basis appears
to be more robust for systems that are delocalized in field space or not smooth in either field
or conjugate-momentum space. We considered the impact of noise on calculations in such
systems and found that parameters defining the field theory should be tuned given the limits
in precision imposed by the quantum device in order to optimize the scientific productivity
of the calculation. In either basis, when tuned, a quantum device with nQ = 3 or nQ = 4
qubits used to define the field at each spatial lattice site is found to be able to provide a
precision of better than ∼ 10−6 for a given lattice spacing for a potential with m2 > 0.
Separating the spatial lattice-spacing systematic error from the digitization systematic error
in field space, the digitization error in the space of low-lying energy eigenstates, εdig, is found
to scale as | log | log |εdig||| ∼ nQ for nQ qubits per site, while the lattice spacing error, εlatt,
scales as | log |εlatt|| ∼ NQ where NQ is the total number of qubits in the simulation.

The lessons learned from studying the digitization of a scalar field onto qubit degrees of
freedom have been numerous. The following is an itemized summarization of those lessons
appearing in 0+1 dimensional field theory—before the additional complications of a lattice
spacing and spatial momentum are introduced in section V.
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1. The scalar field digitization techniques of Jordan-Preskill-Lee [6–9, 34, 36, 50], a
momentum-space mode expansion [42] and a harmonic oscillator basis are relevant
for NISQ-era hardware implementations. The number of qubits per site needed to
reduce the digitization and discretization systematic errors below near-term hardware
noise levels are nQ ∼ 4 for potentials with m2 > 0 and nQ>∼ 6 for potentials with
m2 < 0. These qubit requirements are consistent with those of Refs. [34, 36, 50] and
extend these modest requirements to delocalized field-space wavefunctions.

2. When the Nyquist-Shannon sampling bound, introduced in this context by Macridin,
Spentzouris, Amundson and Harnik [34, 36], building on work by Somma [50], is
saturated, field and conjugate-momentum space are described to comparable accuracy
and the ground-state energy can be reproduced with a precision scaling with the
number of qubits in the site register as | log | log |ε||| ∼ nQ. For a free theory in 0+1
dimensions, the coefficients of this relationship are calculated to be ε(%) = (1.8(2) ×
103) 2−2.234(4)ns . This rapid convergence is responsible for item 1.

3. In order to enjoy the double-exponential convergence of item 2, the conjugate-
momentum operator must be constructed with exact phases in momentum space,
leading to a highly-non-local operator in field space. This is possible through use of
the quantum Fourier transform as an efficient entangling operation among all qubits
in the register [34, 36, 50]. Note that for spatial dimensions greater than zero, the size
of the qubit register that undergoes QuFoTr grows with precision of the scalar field
digitization, and not the size of the spatial lattice. Given the qubit estimates of item 1,
global entanglement within this register is a reasonable goal for NISQ-era hardware.

4. The implementation of exact phases required in item 3 does not supersede the effects
of noise. Under a generic noise model on phases in conjugate-momentum space, the
double-exponential convergence stated in item 2 is only seen up to a precision barrier
set by the magnitude of the noise. In spite of this physical limitation, the use of exact
phases is still recommended as it minimizes the number of states needed in the quantum
system and is no more costly than implementation of conjugate-momentum operators
local in field space. As an additional feature, using exact phases in momentum space
yields symmetry between the gates required in field and conjugate-momentum space.
This analysis, shown in Figs. 3 and 4, informs a balancing between the noise level of
the quantum system and the precision with which the quantum field theory is mapped
onto qubits. It is naturally expected that there will be advantages in “matching” the
precision of a calculation to the noise level in a given quantum device or vice-versa.

5. While the relative precision attainable with the JLP and HO bases depends on the
structure of the low-energy wavefunctions, the comparatively-burdensome operator
structure of the HO basis may be a deciding factor in the NISQ era. While JLP
Pauli operators are limited to 1-, 2-, and m-body qubit interactions for λφm, the
HO basis includes all k-body operators up to k = nQ. These operators necessitate
larger numbers of CNOT gates, the two-qubit entangling gates dominating the error
contribution for many instances of near-term hardware.

6. Gate decompositions can be sensitive to symmetries that may be broken through
classically-inconsequential truncation artifacts. When truncating spaces to contain
states that have interactions beyond the truncated space (e.g., in the HO basis), it is
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preferable to truncate after construction of the Hamiltonian in an enlarged space to
remove edge-effects in the interactions. When deciding upon boundary conditions (e.g.,
in the JLP basis), it is beneficial to consider alternatives (such as twisted boundary
conditions) that symmetrize the distribution of wavefunction samples in Fourier space.

7. For the near-term, including and beyond the NISQ-era, digitization and discretization
of the field onto qubits need not limit the accuracy obtained in simulations of scalar
field theory. Rather, the software approximation of the propagator (e.g., through
Trotterization) and hardware gate-error rates (currently above 10−4 in the simple
model of Appendix H) are expected to be the dominant limitations to simulations of
the scalar field.

The content of this paper has provided information to make a hardware-specific, informed
decision on the parameters chosen to implement a scalar field on quantum devices. For exam-
ple, imagine a future in which the application of CNOT gates become relatively inexpensive
7, rotation gates contain small but non-negligible errors in their rotation angle, and a hypo-
thetical goal is to simulate a 0+1-dimensional scalar field with quartic self-interaction to at
least 10−11% precision. Both the JLP and HO bases are capable of achieving this goal, as
seen in Fig. 7. However, given the wider range of tuning parameters allowable in the HO
basis, making the precision more robust to noise in the rotation gates’ angles, an informed
choice might be to work with a HO basis. Imagine, as a modification to this scenario, that
gates are expensive (either due to short coherence times or to their imperfect fidelity) but
qubits are cheap. In this case, the contents of Table II raise concerns over the 612 entangling
gates required to implement the Trotterized circuit in the HO basis. Instead, it may be logi-
cal to use JLP digitization, add one qubit to increase the range of the tuning parameter φ̄max

capable of satisfying the above precision requirement, and as a result require only one third
of the previous number of CNOT gates for each Trotter step, a number also more amenable
to the NISQ era. It is further found that small calculations of λφ4 scalar field theories can
be performed with a modest number of qubits. For example, an ideal ∼ 60-qubit device
could be used to describe such a system with up to ∼ 20 spatial lattice sites (with three
qubits per site defining the field digitization), arranged in a number of dimensions, at the
10−6 level. Observing that this error is below that expected for digital gate implementa-
tion on NISQ-era devices of this size indicates that properties of a scalar field independent
of digitization artifacts will be accessible to quantum devices with fewer than 100 qubits.
Beyond the digitization errors (step (1) of Fig. 1) that have here been demonstrated to be
controllable with qubit requirements appropriate for the NISQ era, the quantum simula-
tion errors arising from necessary approximation of the time evolution operator (step (2) of
Fig. 1) and imperfect implementation on noisy hardware (step (3) of Fig. 1) now remain as
the dominant sources of uncontrolled error in calculations of the scalar field implemented
on quantum hardware.

Analyses such as we have presented in this work, are expected to play a role in optimizing
the output of quantum devices in any scientific application domain. Their use in tuning
digitization parameters to “match” the precision of calculations to specific hardware will
become increasingly important to make the best use of available hardware at any given
time, as is the case in classical high-performance computing. With rapid development of

7 This is the case for many models of fault-tolerant quantum computing
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quantum hardware in the NISQ era, it is likely that the optimal layout of a quantum system
onto qubit degrees of freedom will have significant variability, both with choice of quantum
architecture and with time. Having a detailed map of the resource landscape is thus critical
for creating informed decisions for implementing calculations across a range of quantum
architectures.

Appendix A: Jordan-Lee-Preskill Basis Example: Three Qubits

In order to provide explicit examples to reinforce the generalities described in the main
text, quantum computations of the HO in Eq. (7) performed with 3 qubits, nQ = 3 (with
ns = 8 quantum states), are considered in detail. With 8 states, φ̄ is sampled at the field
and conjugate-momentum values

φ̃i = {±1,±5

7
,±3

7
,±1

7
} φ̄max , kφ̃ = {±7

8
,±5

8
,±3

8
,±1

8
} π

δφ̃
, δφ̃ =

2φ̄max

7
,(A1)

where we have dropped the “∆” superscript on k∆
φ̃

in Eq. (11).

The operator decomposition of the Hamiltonian for this system is straightforward. It
is useful to extend the basis of Pauli operators to include the identity matrix, σ̄ =
(σx, σy, σz, I2), and to define the general tensor product of nQ operators T ijk = σ̄i⊗ σ̄j ⊗ σ̄k

T ijk = σ̄i ⊗ σ̄j ⊗ σ̄k , Tr
[
T ijk T i

′j′k′
]

= 8 δii
′
δjj
′
δkk

′
, (A2)

where the orthogonality of the T ijk is helpful in decomposing the Hamiltonian into qubit
operators. Projecting against the T ijk, it is straightforward to show that

φ̃2 =
4

49
φ̄2

max O
(nQ=3)
0 , Π̃2 =

49π2

64 φ̄2
max

O(nQ=3)
0 ,

O(nQ=3)
0 = 4 σz ⊗ σz ⊗ I2 + 2 σz ⊗ I2 ⊗ σz + I2 ⊗ σz ⊗ σz +

21

4
I ,

= O(nQ=3)
03 +

21

4
I , (A3)

where I2 is the identity operator acting on a single qubit, and where the operator has been
split into an overall identity and non-identity terms. As expected from the JLP explicit con-
struction, the decomposition of the digitized HO Hamiltonian into Pauli operators acting
on individual qubits is quite simple, and easily extended to larger numbers of qubits 8. The
structure of the operators, and their extensions to larger systems, is interesting. The only
nontrivial operators that appear involve operations on 2 qubits only, without the appearance

8 The analogous decomposition for a 4-qubit system is

φ̃2nQ=4 =
4

225
φ̄2max O

(nQ=4)
0 , Π̃2

nQ=4 =
225π2

256 φ̄2max

O(nQ=4)
0 ,

O(nQ=4)
0 = 16 σz ⊗ σz ⊗ I2 ⊗ I2 + 8 σz ⊗ I2 ⊗ σz ⊗ I2 + 4 σz ⊗ I2 ⊗ I2 ⊗ σz + 4 I2 ⊗ σz ⊗ σz ⊗ I2

+ 2 I2 ⊗ σz ⊗ I2 ⊗ σz + I2 ⊗ I2 ⊗ σz ⊗ σz +
85

4
I , (A4)

32



of higher-qubit operators, such as those involving 3-, 4- or 5-qubits. This simple operator
structure extends to larger systems. If instead of applying the exact conjugate-momentum
operator, the finite-difference conjugate-momentum operator is applied, the resulting oper-
ator structure is more complicated, involving higher-qubit operators beyond 2-qubits. For
instance, in the case of nQ = 4 there is a contribution to Π̃2 of the form σz ⊗ σz ⊗ σz ⊗ σz
from the operator in Eq. (8), which is absent in the operator decomposition of kφ̃ in Eq. (11).
For the nQ = 6 qubit system, there are all combinations of operators involving two σz’s, four
σz’s, and one six-qubit operator of the form ⊗6σz. As the resource costs of applying circuits
to implement higher-qubit operators are significantly more than those for two-qubit opera-
tors, significantly more resources are required to simulate the finite-difference Hamiltonian
(with power-law deviations from exact results) than it is to simulate the exact Hamiltonian
(that provides results that are exponentially close to the exact result on an ideal quan-
tum computer). It is amusing to note that most of the resources required to simulate the
finite-difference Hamiltonian would be expended to determine polynomial deviations from
the exact result.

Quantum circuits to implement the action of the operator(s) in Eq. (A3), in particular

for the action of the evolution operator, e−iH̃t, for an arbitrary number of qubits have been
presented by MSAH [34, 36] in terms of controlled-rotation gates. In terms of CNOT gates
and single qubit phase rotations, the quantum circuit implementing the exponentiated action

of the non-identity operators in Eq. (A3), O(nQ=3)
03 ,

Φ3(θ) = e−iθO
(nQ=3)

03 , (A6)

is given in the upper panel in Fig. 12. Because the three operators contributing to O(nQ=3)
03

commute, the operations can be performed in any order. One application of Φ3(θ) to the

while for the nQ = 5 system,

φ̃2nQ=5 =
4

961
φ̄2max O

(nQ=5)
0 , Π̃2

nQ=5 =
961π2

1024 φ̄2max

O(nQ=5)
0 ,

O(nQ=5)
0 = 64 σz ⊗ σz ⊗ I2 ⊗ I2 ⊗ I2 + 32 σz ⊗ I2 ⊗ σz ⊗ I2 ⊗ I2 + 16 σz ⊗ I2 ⊗ I2 ⊗ σz ⊗ I2

+ 8 σz ⊗ I2 ⊗ I2 ⊗ I2 ⊗ σz + 16 I2 ⊗ σz ⊗ σz ⊗ I2 ⊗ I2 + 8 I2 ⊗ σz ⊗ I2 ⊗ σz ⊗ I2
+ 4 I2 ⊗ σz ⊗ I2 ⊗ I2 ⊗ σz + 4 I2 ⊗ I2 ⊗ σz ⊗ σz ⊗ I2 + 2 I2 ⊗ I2 ⊗ σz ⊗ I2 ⊗ σz

+ I2 ⊗ I2 ⊗ I2 ⊗ σz ⊗ σz +
341

4
I . (A5)
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FIG. 12: A quantum circuit required to perform Trotterized time evolution of the HO Hamiltonian

in Eq. (7), digitized with nQ = 3 qubits in JLP digitization, denoted by H̃3. The upper circuit

implements the operator Φ3(θ) defined in Eq. (A6), with an arbitrary angle, θ, while the lower

circuit implements that circuit in both φ̃ and Π̃ space, making use of a symmetric QuFoTr and its

inverse, to achieve Trotterized Hamiltonian evolution of the system defined by H̃3. These circuits

are equivalent to controlled-rotation gate circuits appearing in MSAH [34, 36].

nQ = 3 qubit system requires 6 CNOT gates and 3 single-qubit phase operations. One appli-

cation of the (simplest-) Trotterized time-evolution operator associated with H̃ in Eq. (7),
over a time-step ∆t = t

M
, is accomplished by acting with Φ3(θ) with θ = 2

49
φ̄2

max∆t to

evolve with e−iφ̃
2/2, followed by a symmetric QuFoTr, followed by acting with Φ3(θ′) with

θ′ = 49 π2

128 φ̄2
max

∆t to evolve with e−iΠ̃
2/2, followed by the inverse symmetric QuFoTr. This se-

quence is shown in the lower panel of Fig. 12. Appendix D provides circuits and associated
discussions for a symmetric QuFoTr (which is similar to the permuted QuFoTr introduced
by Somma [50] for the same purpose on a different conjugate-momentum-space basis). The
total gate-counts for one application of the (unimproved-) Trotterized evolution-operator as-
sociated with H̃ in Eq. (7) on nQ = 3 qubits, including those from the symmetric QuFoTr(s),
are 24 CNOT gates, 6 Hadamard gates and 24 single-qubit phase rotations.

Appendix B: Jordan-Lee-Preskill Circuit Compilation

Constructing optimal quantum circuits for implementing desired quantum operations is
an optimization problem often inhibited by large dimensionality [78–81, 96, 97]. Similar to
the work of Ref. [78], it is possible to eliminate neighboring CNOT operators from the näıve,
uncompiled estimates in the tables in the main text. Because all operators implemented
between QuFoTr operations are diagonal in the JLP basis, this cancellation may be accom-
plished systematically. Without the λφ̄4 operators, the mass term is introduced with all
possible two-body operators, which contain identical CNOTs only separated by single-qubit
rotations. Thus, there is no cancellation of CNOT operators before the field self-interaction
term is introduced. Note that a similar argument indicates an absence of CNOT cancella-
tions for implementation of the finite-difference gradient operator as φ̄(x)φ̄(x+1) introduces
only two-body operators, extended between qubit registers for neighboring sites of the lat-
tice. Thus, for the JLP basis, the only regime in which CNOT cancellation is expected to
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FIG. 13: Partial circuit for one first-order-Trotterized step of time evolution for a single site of the

interacting scalar field φ̄2 and φ̄4 terms with nQ = 6 in the JLP basis. Boxes indicate CNOT pairs

that can be eliminated, resulting in the reduced circuit in second expression.

occur is in the position-space implementation of an interacting field.
Determining the possible eliminations of CNOT pairs requires understanding the combi-

natorics of available operators and ordering them to maximize the number of qubits shared by
neighboring operators in leading-order Trotterization. Upon implementation, a convenient
way to organize these orderings is through connected “strings”—maximal sets of operators
that may be connected through CNOT cancellation. An example of such a string may be
seen in Fig. 13 where the leading-order Trotterization of the first six four-body operators
is implemented. The string begins with a two-body operator that, due to cancellation, is
implemented without increase in the CNOT cost. Dashed boxes around pairs of CNOT
gates indicate where cancellations occur and are removed in the reduced circuit of the third
line. This string implements all six four-body operators that contain both the first and
second qubits. As a result, the entanglement between these two qubits needs only to be
established once at the beginning and finally removed at the end. A similar argument is
made for the second pair of qubits in the operators, matching with the second and third
qubits for the first three operators and the second and fourth qubits for the next two oper-
ators. To complete the 15 four-body operators for nQ = 6, it can be shown that two other
strings are necessary—beginning with a two-body operator either between qubits (3,4) or
(4,5) containing 5 and 4 operators, respectively.

The resulting gate counts after elimination of redundant CNOTs may be found in the
last column of Table II in the main text. It is important to note that the cancellation
demonstrated here does not reduce the näıve scaling of CNOT gate cost as was found
in Ref. [78], where the CNOT cost for implementing four-orbital operators in quantum
chemistry is reduced by one polynomial power in the number of orbitals used to describe a
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molecule. The scaling improvement of Ref. [78] was found by reducing the cost of a Jordan-
Wigner (JW) string (the collections of sequential CNOT gates used to enforce fermionic
statistics on a register of qubits) from linear in the number of orbitals to constant. Because
the scalar field is bosonic, there are no JW strings and it remains expected that gate costs
will scale with the fourth power (for the four-qubit operators of λφ̄4) of the number of qubits
per lattice site. While the gate compilation of the HO basis is significantly more cumbersome
due to abundant changes in bases truncating the possible operator strings, a similar lack of
modified scaling is expected.

Appendix C: Harmonic Oscillator Basis Example: Three Qubits

The gate decomposition for a basis of 8 states distributed on nQ = 3, of the matrices, 9

Hbasis = 1
2
ωφ diag (1, 3, 5, 7, 9, 11, 13, 15) and

δHωφ =
1− ω2
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is

Hbasis = ωφ

(
4 I − 2 σz ⊗ I2 ⊗ I2 − I2 ⊗ σz ⊗ I2 −

1

2
I2 ⊗ I2 ⊗ σz

)
,

δHωφ =
1− ω2

φ
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9 There is one subtly in forming the operator decomposition that is to do with defining the truncated

operator matrices. If the operator basis is restricted to 2nQ from the outset, prior to performing all matrix

multiplies, operations that move the states out of and then back into the truncated space are absent. In

contrast, such operations are included if they are performed in a larger space with the truncation imposed

as the final step. Initial truncations produce matrix structures with reduced symmetry compared to those

where the truncation is performed last, and as a result give rise to more complex operator structures than

those given in, for example, Eq. (C2).
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FIG. 14: Quantum circuits required to perform time evolution of the HO Hamiltonian in Eq. (7)

using a HO basis with nQ = 3. The upper circuit is applied when the HO basis can be precisely

tuned to the HO being simulated. When detuned, the lower circuit is necessary with coefficients,

cijk, attained from the corresponding operators in Eq. (C2).
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)
. (C2)

For Hbasis, there are only 3 nontrivial commuting single-qubit operators and an identity
operator. However, for δHφ, there are 3 three-qubit operators, 4 two-qubit operators, and
4 single-qubit operators. Circuit-representations of the propagators for both the tuned and
detuned HO can be seen in Fig. 14.

As an example, in a situation considered by MSAH, electron-phonon interactions can be
described via a linear coupling to the field-space coordinate of a HO. For such a system,
mapped onto 3 qubits, the operator decomposition of the φ̄ operator contains 7 3-qubit

37



operators, 4 2-qubit operators, and 1 single-qubit operator.
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Notice that the 3-body operators present in this interaction term are not repeated versions of
the 3-body operators already present and thus increase gate requirements. Decompositions
of the φ̄ interactions in Eq. (C3) for larger nQ look similar, in terms of the quantum resources
of Table I, to those of the detuned HO with only a single one-qubit operator and double the
number of nQ-qubit operators. Therefore, while the free HO evolution is computationally
inexpensive when using a basis of tuned HO eigenstates, an interaction requires many multi-
qubit interactions.

Appendix D: Symmetric Quantum Fourier Transform

Small modifications to the symmetry properties of operators can impact the gate decom-
position necessary for implementation on quantum hardware. As discussed by Somma [50]
who presented a circuit for the permuted QuFoTr, a different choice of conjugate-momentum
eigenstates requires a different circuit to accomplish a QuFoTr. In this Appendix, a circuit
is provided for the symmetric QuFoTr that is used in the time-evolution of the systems
considered in this work. By acting with a set of single-qubit phase gates before the stan-
dard QuFoTr, the states in momentum space may be distributed symmetrically between
±π, avoiding both edges of the first Brillouin zone. Because this structure now resembles
that of field space, distributed around zero between ±φ̄max, the gate decompositions within
these two conjugate spaces are identical (differing only in rotation angles) for a free theory.

For a position-space register written in binary,

|x〉 = |xn−1xn−2 · · ·x0〉 =
∣∣∣ n−1∑
i=0

xi2
i
〉

, (D1)

the symmetric QuFoTr implements the following transformation

|x〉 =
1√
2n

2n−1
2∑

k=− 2n−1
2

e
2πix·k

2n |k〉 . (D2)
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This differs from the standard QuFoTr only in the introduction of an additional k-
independent phase,

exp

[
2πi

1

2n+1

(
−

n−1∑
j=0

2j

)(
n−1∑
i=0

xi2
i

)]
, (D3)

determined only by the value of the x register. This dependence suggests that it should be
applied prior to the transformation to Fourier space. Indeed, this phase can be implemented

with a single layer of single-qubit phase gates. With the usual definition of R(θ) =

(
1 0

0 eiπθ

)
and defining M =

n−1∑
j=0

2j, the symmetric QuFoTr may be written as:

QFT symij =
1
√
ns
ei

2πxikj
ns x = {0, ..., ns − 1} k =

{
−ns − 1

2
, ...,

ns − 1

2

}
(D4)

QFT symnq=3 =

R
(
−M

2

)
H R

(
1
2

)
R
(

1
4

)
R
(
−M

4

)
• H R

(
1
2

)
R
(
−M

8

)
• • H

(D5)

QFT sym =

R
(
−M

2

)
QFT

R
(
−M

4

)
...

R
(
− M

2ns

)
(D6)

Note that the swap network conventionally required to reverse the qubit orderings in Fourier
space is neglected as written here. This reversal (and the one appearing in the inverse
symmetric QuFoTr returning the calculation to position space) will be implemented instead
by simply reading the qubits backwards when applying the Π̄2 operator in momentum space.
This reading inversion is notated by crossing qubit lines so that e.g., the first qubit is
associated with the last input to the momentum phase gate as shown in Fig. 12. In this
way, two depth-nQ swap networks (per lattice site and per Trotter step) each containing

bnQ
2
cdnQ

2
e + bnQ−1

2
cbnQ

2
c swap gates can be removed from the quantum circuit with an

addition of negligible classical preprocessing.
In application to scalar field theory, where the φ̃ and Π̃ operators (in position and

conjugate-momentum space, respectively) can be written as tensor products of single-qubit
operators leading to only 2-qubit operators in the free Hamiltonian, the advantage of the
symmetric QuFoTr is dominantly aesthetic (and potentially experimentally-convenient) as
the operator structure applied in position and momentum space is identical, as shown in
Sec. IV A 2 for a free HO. Had the standard QuFoTr been used, single-qubit diagonal gates
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would also be present in the Fourier-space implementation of Π̃2, a factor of 2 fewer single-
qubit rotations than needed to symmetrize the QuFoTr and its inverse. However, when all
k-body operators with k ≤ n are required to implement phases in Fourier space (as is the
case when a finite-difference or polynomially-corrected operator is chosen for Π̃), use of the
symmetric QuFoTr results in removal of all operators with odd values of k, or roughly a
factor of 2 reduction in the exponential (in nQ) number of operators required for a Pauli
decomposition of the necessary phases.

Appendix E: Field Conjugate-Momentum Operators

In this Appendix, we show explicitly the finite-difference, δ2
φ̄
-corrected, and the exact

conjugate-momentum operators in position space, and show that the structure of the finite-
difference operator is increasingly smeared to form the exact lattice Π̄2 operator. Having the
capability of implementing these operators directly as diagonal operators in Fourier space is
an advantage of working in a qubit formulation.

In the case of PBCs imposed on the field space spanned by nQ = 3 qubits, with momentum
eigenvalues k = π

δφ̄

(
−3

4
,−1

2
,−1

4
, 0, 1

4
, 1

2
, 3

4
, 1
)
, the finite-difference, δ2

φ̄
-corrected, and the exact

conjugate-momentum operators in position space are

Π̃2
finite−difference =

1

δ2
φ̄



2 −1 0 0 0 0 0 −1

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

−1 0 0 0 0 0 −1 2


, (E1)

Π̃2
δ2
φ̄
−improved =

1

δ2
φ̄



2.5 −1.3 0.083 0 0 0 0.083 −1.3

−1.3 2.5 −1.3 0.083 0 0 0 0.083

0.083 −1.3 2.5 −1.3 0.083 0 0 0

0 0.083 −1.3 2.5 −1.3 0.083 0 0

0 0 0.083 −1.3 2.5 −1.3 0.083 0

0 0 0 0.083 −1.3 2.5 −1.3 0.083

0.083 0 0 0 0.083 −1.3 2.5 −1.3

−1.3 0.083 0 0 0 0.083 −1.3 2.5


, (E2)
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FIG. 15: Visual representations of Eqs. (E1)-(E3). From left to right, the finite-difference, δ2
φ̄
-

improved, and exact field conjugate-momentum operators obtained from PBCs show increasing

non-locality in field space.

Π̄2
exact =

1

δ2
φ̄



3.39 −2.11 0.617 −0.361 0.308 −0.361 0.617 −2.11

−2.11 3.39 −2.11 0.617 −0.361 0.308 −0.361 0.617

0.617 −2.11 3.39 −2.11 0.617 −0.361 0.308 −0.361

−0.361 0.617 −2.11 3.39 −2.11 0.617 −0.361 0.308

0.308 −0.361 0.617 −2.11 3.39 −2.11 0.617 −0.361

−0.361 0.308 −0.361 0.617 −2.11 3.39 −2.11 0.617

0.617 −0.361 0.308 −0.361 0.617 −2.11 3.39 −2.11

−2.11 0.617 −0.361 0.308 −0.361 0.617 −2.11 3.39


. (E3)

“Heat maps” of the entries in each of the previous operators are shown in Fig. 15.
Twisted BCs are used for the calculations performed in this work, For the nQ = 3 system,

as defined in Eq. (11). with momentum eigenvalues k = π
δφ̄

(
−7

8
,−5

8
,−3

8
,−1

8
, 1

8
, 3

8
, 5

8
, 7

8

)
, the

finite-difference, δ2
φ̄
-corrected, and the exact conjugate-momentum operators in field space

are

Π̃2
finite−difference =

1

δ2
φ̄



2 −1 0 0 0 0 0 1

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

1 0 0 0 0 0 −1 2


, (E4)
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FIG. 16: Visual representations of Eqs. (E4)-(E6). From left to right, the finite-difference,

δ2
φ̄
-improved, and exact field conjugate-momentum operators obtained from twisted boundary con-

ditions show increasing non-locality in field space.

Π̃2
δ2
φ̄
−improved =

1

δ2
φ̄



2.5 −1.3 0.083 0 0 0 −0.083 1.3

−1.3 2.5 −1.3 0.083 0 0 0 −0.083

0.083 −1.3 2.5 −1.3 0.083 0 0 0

0 0.083 −1.3 2.5 −1.3 0.083 0 0

0 0 0.083 −1.3 2.5 −1.3 0.083 0

0 0 0 0.083 −1.3 2.5 −1.3 0.083

−0.083 0 0 0 0.083 −1.3 2.5 −1.3

1.3 −0.083 0 0 0 0.083 −1.3 2.5


, (E5)

Π̄2
exact =

1

δ2
φ̄



3.24 −1.95 0.436 −0.138 0 0.138 −0.436 1.95

−1.95 3.24 −1.95 0.436 −0.138 0 0.138 −0.436

0.436 −1.95 3.24 −1.95 0.436 −0.138 0 0.138

−0.138 0.436 −1.95 3.24 −1.95 0.436 −0.138 0

0 −0.138 0.436 −1.95 3.24 −1.95 0.436 −0.138

0.138 0 −0.138 0.436 −1.95 3.24 −1.95 0.436

−0.436 0.138 0 −0.138 0.436 −1.95 3.24 −1.95

1.95 −0.436 0.138 0 −0.138 0.436 −1.95 3.24


. (E6)

The corresponding “heat maps” of the entries in each of the twisted operators are shown in
Fig. 16.

Appendix F: Basic Circuit Construction

In the art and science of quantum circuit development, improvements to generic circuits
can often be found when considering the structure of the problem of interest. The techniques
presented in this Appendix are well known and exist in standard literature e.g., Ref. [77].
Because the intended audience of this paper is diverse and a number of considerations for
the digitization of the scalar field are made with the following circuit construction in mind,
it will be useful to explicitly describe the basic methods for applying unitary operators of the
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form eiθσ
j⊗σk⊗··· on NISQ-era quantum hardware capable of implementing z-axis rotations

eiθσ
z
. For the Trotterized time evolution of a Pauli-decomposed Hamiltonian, there are two

degrees of freedom needed to modify this operation: increasing the number of qubits in
the exponentiated tensor product of Paulis and changing the z-axis rotation to x- or y-
axis rotations. In order to increase the number of qubits in the tensor product, a string of
CNOT operators on either side of a single-qubit rotation may be applied. This computes
(and subsequently un-computes) the parity of the of the qubit register down into the last
qubit.

eiθ σ
z⊗σz⊗σz⊗σz =

• •
• •
• •

eiθσ
z

(F1)

To change the axis of rotation for any qubit, the following unitary transformations may be
used:

X = H Z H Y = S† H Z H S (F2)

Because applying these transformations in the exponential is equivalent to applying them
to the unitary operator itself, these basis-change operations can be implemented as multi-
plicative unitaries.

eiθσ
x

= H eiθσ
z

H eiθσ
y

= S† H eiθσ
z

H S (F3)

Combining these two degrees of freedom, the exponent of any tensor product of Pauli opera-
tors can be created from the single-qubit z-axis rotation through use of a CNOT-distributed
parity calculation and a change of Pauli bases at the beginning and end of the circuit.

eiθ σ
x⊗σy⊗σx⊗σz⊗σy =

H • • H

S† H • • H S

H • • H

• •

S† H eiθσ
z

H S

(F4)

Before considering cancellations that usually occur when sequentially implementing oper-
ators for Trotterization in this way [78], these basic circuits lead to a CNOT contribution
of 2(k − 1) for the implementation of each unitary with a k-body Pauli operator in the
exponent. This is the counting used for the resource estimates shown in Tables I, II, and III.

Appendix G: Lowest-Lying Energy Eigenvalues

The ground state and 1st excited state energies of the systems studied in this work are
given in Table IV.
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System GS 1st

0 + 1 λ = 0 m = 1 1
2

3
2

0 + 1 λ = 32 m = 1 0.859 742 690 445 509 019 355 96 2.949 363 767 009 968 902 29

0 + 1 λ = 1 µ = 2 -22.596 382 373 935 095 119 775 874 -22.596 382 373 935 095 118 634 895

0 + 1 λ = 1 µ = 5 -933.966 134 532 634 985 047 797 739 -933.966 134 532 634 985 047 797 739

1 + 1 λ = 32 m = 1 2.124 233 123 438 790 185 081 206 39 4.141 788 964 874 434 527 967 370 80

TABLE IV: Values of the ground-state and 1st-excited-state energies for the 1-site and 2-site

systems studied in this work. The eigenvalues of the 1-site theory with λ = 0 and m = 1 (HO) are

known exactly. All other ground state values are displayed with a number of digits sufficient to

produce the tuning and precision plots that appear in the main text.

Appendix H: Noisy Simulations

In this Appendix, we show that in a simple model of quantum noise (step (3) of Fig. 1) rep-
resentative of near-term quantum hardware, and using first-order Trotterized time evolution
(step (2) of Fig. 1), simulation errors exceed the theoretical systematic errors of digitization
(step (1) of Fig. 1). This identifies the simulation errors (steps 2,3) as the dominant source of
uncertainty. This focuses future improvements on bolstering the system against simulation
errors to have the greatest impact on the exploration of scalar fields on near-term quantum
devices.

The first quantity to examine in assessing the error landscape specific to the scalar field
is the Schatten 1-norm of the time evolution operator evolved to final time Tf = 1 as shown
in Fig. 17. The system studied in this and the following figures is the one-site, free scalar
field digitized onto three qubits (the minimum number identified in the main text necessary
to achieve ∼ 1% errors on the low-energy eigenvalues). Referencing Fig. 2, the tuning of
the JLP basis that places the calculation at the NS saturation point and thus optimizes the
balance between field-space and momentum-space representations of the wavefunction may
be chosen leading to a field-space truncation of φ̄max = 3.0. In Fig. 17, Utrue is the exact,
eight-dimensional, digitized propagator described in the qubit system after step (1) in Fig. 1.
The Schatten 1-norm of this propagator with the Trotterized propagator Utrot (after step
(2) in Fig. 1) scales linearly with the Trotter step size, δt, and is degenerate in this figure
with the minimum-error data defined by σCNOT = 10−8. The noisy, Trotterized propagator
Ũtrot (after step (3) in Fig. 1) deviates from this linear scaling at low values of δt where
the errors of Tf/δt noisy Trotter steps have accumulated, effectively smearing the evolution.
This type of accumulation of fluctuations in gate implementations may be easily visualized
in the single qubit case where the uncertainty in the final quantum state eventually wraps
a significant portion of the Bloch sphere’s surface. For long evolution, the accumulation of
these errors leads to a constant, O(1) operator norm (as can be seen at δt ∼ 3× 10−3 with
σCNOT = 10−3). As the noise model implemented here is unitary, containing no effects of
decoherence or amplitude damping modeling quantum decoherence of the qubit hardware,
this saturation indicates that the system has surpassed a software coherence time, a limit
encountered due to imperfect gates (even if implemented on ideal qubits isolated from their
environment). Of course, when the gate error rate is reduced, the software coherence time
is increased and a longer circuit (smaller δt for a fixed Tf = 1) may be implemented before
saturation of the propagator’s Schatten 1-norm with the ideal Trotterized propagator. It
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FIG. 17: Distance measure (Schatten 1-norm) between the noisily-Trotterized and exactly-digitized

time evolution operator (after step (3) and (1) of Fig. 1, respectively) as a function of the Trotter

step size, δt, for an integrated evolution time of Tf = 1. The noisy, first-order Trotterized propa-

gator, Ũtrot is implemented with sampled error rates on 1- and 2- qubit gates set by σθ and σCNOT,

respectively. The digitization scheme is defined by nQ = 3 and φ̄max = 3.0. From right-to-left, the

calculations deviate from the from the ideal result in the top-to-bottom order of the legend with

the last calculation at σCNOT = 10−8 maintaining visual agreement for the entire plotted domain.

is a hardware-specific question for future investigation whether NISQ-era digital quantum
simulations will be limited by hardware or software coherence times.

The noise model simulated in this Appendix is that of local, unitary errors correlated with
the presence of computational operations. For each m-qubit gate, an SU(2)⊗m operator is
applied before and after its application with Euler angles sampled from a normal distribution
centered at zero with a standard deviation of σθ and σCNOT for m = 1 and m = 2, respec-
tively. All operators with m > 2 are decomposed into 1- and 2-qubit gates as demonstrated
in the main text before implementing this noise model. While this procedure neglects the
possible non-unitary, non-Markovian, non-local quantum fluctuations that may plague the
calculations implemented on NISQ-era hardware, examining its effects proves enlightening
to the limitations imposed by even this simple form of quantum noise. Note that this for-
mulation includes, and is more general than, the noise model used in the creation of Fig. 3
where Gaussian noise was implemented only on the phases applied in conjugate-momentum
space. For the simulations of this Appendix, σCNOT is chosen to be one order of magnitude
larger than σθ to express the dominance of 2-qubit errors anticipated in the NISQ-era. The
error shown in Fig. 17 represent the standard deviation of the Schatten 1-norm propagated
through sampling of the noisy, Trotterized time evolution operator.

While the Schatten 1-norm is a succinct distance measure to quantify the effects of Trot-
terization and successive noisy implementation of the time evolution operator, it remains
unclear, beyond perhaps placing loose bounds, how these errors propagate to physical ob-
servables likely to be extracted from the quantum calculation. To address quantities of direct

45



FIG. 18: Ground state persistence of a 1-site, free scalar field propagated to time Tf = 10 that

has been digitized with nQ = 3 with φ̄max = 3.0 as a function of Trotter step size, δt, for two error

rates. The star-shaped points are calculated from a first-order Trotterized propagator without

quantum noise and becomes exact in the limit δt→ 0. Points joined by colored lines are sampled

with the noise model described in the text at error rates of σCNOT = 10−3, 10−2 and σθ one order

of magnitude smaller in each case. Eigenvector indices, n, are indicated at the right of each panel.

relevance to the calculation results, two additional properties are examined: the ground state
persistence and the evolution of the expectation value of the field 〈φ〉(t). Figure 18 shows
the decomposition of the time evolved ground state across the t = 0 eigenbasis after a total
evolution time of Tf = 10 as a function of the Trotter step size, δt. The star-shaped points
are noiseless Trotterizations of the digitized propagator (after step (2) in Fig. 1) and show
that the ground state persists for sufficiently small δt as Utrot becomes exact. When δt is
sufficiently large, the ground-state persistence diminishes due to errors that are polynomial
in δt affecting both the energies and eigenvalues of the Trotterized propagator. Moving
through step (3) of Fig. 1, the joined points indicate that the ground state persistence falls
also at small δt where, as was the case with the Schatten 1-norm, noise in the propagator
has accumulated. The left panel in Fig. 18 is calculated with σCNOT = 10−3 while the right
panel is calculated with larger fluctuations in the gate errors, σCNOT = 10−2. The notable
difference in the ground-state persistence between these error rates (both being relevant to
NISQ-era hardware) is that the former is capable, for specific but existing choice of δt, of
retaining the ground state content at the 1% level while the latter is not capable of achieving
this for any choice of δt. Note that matrix elements to eigenstates 1, 3, 5, and 6 are not
excited in the Trotterization and remain of negligible excitation in the noisy Trotterization.
This feature dramatically limits the Hilbert-space mixing available to the noisy evolution
by effectively decoupling half of the Hilbert space. Even with this structural advantage,
the persistence of low-energy eigenstates is seen to be a significant obstacle at noise levels
expected in the NISQ-era.

For studying the time dependence of the expectation value of the field, 〈φ〉(t), we choose
to initialize the system in a state |ψi〉 that is the ground state of the system rotated by one
site in φ-space. In this state, the expectation value of the field is 〈φ〉 = 0.8567, a value

dictated dominantly by the φ-space lattice spacing δφ = 2φ̄max

2
nQ−1

= 6
7
, with deviations due to

the effects of the periodic boundary conditions. This state is in the low-energy sector of the
Hilbert space, with the projections |〈ψn|ψi〉|2 into the lowest three eigenstates, n = 0, 1, 2,
of 69%, 25%, and 5%. Consequently, this evolution is particularly sensitive to the mixing
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FIG. 19: The time evolution of the expectation value of the field operator for a state initialized to

the ground state rotated by a single site in φ-space. The evolution in the upper left (gold curve) is

the noiseless first-order Trotterization (after step (2) in Fig. 1) with δt = 0.3. The gate-error rate

σCNOT increases to the right with σθ an order of magnitude smaller in each case. The deviation

shown in the second row is with respect to the noiseless Trotterization and represents only the

errors arising from step (3) of Fig. 1.

of low-energy eigenstates. The inaccuracies in the time evolution of 〈φ〉 for the highest
error rate of σCNOT = 10−2 are substantial, as can be seen in the right-hand column of
Fig. 19. To isolate the noise in this observable (step (3) of Fig. 1), the deviation (light blue
curves) between the full noisy expectation value (dark red curves) and that calculated from
the noiseless Trotterized propagator (upper left panel, gold curve) is shown in the second
row, with gate errors increasing to the right. Figure 19 indicates that the errors stemming
from step (3) alone result in O(1) deviations for this observable with σCNOT = 10−3. It
is only when the error rate is decreased to σCNOT = 10−4 and σθ = 10−5 that 〈φ〉 can be
determined with ∼ 10−2 precision with respect to the ideal Trotterization, as emphasized
by the black dashed reference line in the second row of Fig. 19. This level of precision is
presently unavailable on NISQ-era hardware, indicating that non-negligible error mitigation
is required for extracting observables in even small space-time volumes on quantum devices.
This situation is expected to persist for an extended period.

We conclude that the digitization errors depicted in step (1) of Fig. 1 can be made a sub-
dominant error source for NISQ-era applications through the tuning procedures described
in the main text. The remaining simulation errors of the noisy implementation of a Trotter-
ized time-evolution operator depicted in steps (2, 3) of Fig. 1 are found, under reasonable
assumptions, to be significant barriers to implementing even the smallest representation of
scalar field theory. While higher-order Trotterizations that would reduce the error in step
(2) are known, the implementation of these improved temporal digitizations can require a
significantly increased number of quantum gates, necessarily increasing the error in step (3)
of Fig. 1. The results of this Appendix emphasize that further study is needed in the direc-
tions of algorithmic improvements and error mitigation strategies before the errors of steps
(2,3) can be systematically controlled in the same way as in the main text of this paper for
the digitization step (1).
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It is important to remember that desired precision of a calculation need not be achieved
with a single set of simulation parameters (δt, σθ,CNOT, etc.). While properties of a single
parameter set were analysed here, it is also possible (and likely essential in the NISQ-era)
to implement a collection of biased or lower-precision calculations and extrapolate to the
unbiased or “zero-error” limit. Such an extrapolation in the regime of two-qubit gate errors
has been shown to be vital to digitally calculate e.g., the deuteron binding energy [25] and
the dynamics of pair production in the Schwinger model [26]. In this way, it is possible to
achieve precision in an observable beyond the noise levels of available quantum hardware. A
thorough investigation for designing collections of quantum simulations ranging in compu-
tational expense allowing extrapolations of the effects of noise in NISQ-era devices is now,
in the context of controllable digitization errors, a leading avenue for future algorithmic
progress towards implementation of scalar fields on NISQ-era quantum devices. Of course,
such a program of planning the distributions of resources is not unique to quantum com-
putation, and has been essential in optimizing scientific productivity in high-performance
(classical) computing projects, such as the lattice QCD production campaigns in high-energy
and nuclear physics.
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