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State preparation protocols ideally require as minimal operations as possible, in order to be
implemented in near-term, potentially noisy quantum devices. Motivated by long range interactions
(LRIs) intrinsic to many present-day experimental platforms (trapped ions, Rydberg atom arrays,
etc.), we investigate the efficacy of variationally simulating non-trivial quantum states using the
Variational Quantum-Classical Simulation (VQCS) protocol explored recently in [SciPost Phys. 6,
029 (2019)], in the presence of LRIs. We show that this approach leads to extremely efficient
state preparation: for example, Greene-Horne-Zeilinger (GHZ) states can be prepared with O(1)
iterations of the protocol, and a quantum critical point of the long range transverse field Ising
model (TFIM) can be prepared with > 99% fidelity on a 100 qubit system with only one iteration.
Furthermore, we show that VQCS with LRIs is a promising route for exploring generic points in the
phase diagram of the long-range TFIM. Our approach thus provides concrete, ultrafast protocols
for quantum simulators equipped with long range interactions.

I. INTRODUCTION

Rapid experimental progress in the control of synthetic
quantum systems, such as trapped ions [1–3], ultracold
atoms [4–6] and superconducting qubits [7, 8], has ush-
ered in the era of the so-called Noisy Intermediate-Scale
Quantum (NISQ) technology [9], where quantum devices
of up to 50− 100 qubits can be coherently manipulated.
This has unlocked the potential for quantum computa-
tion [8, 10], quantum sensing and metrology [11–14], and
also the simulation of quantum many-body phases of
matter [4, 15–22]. Such tasks require the ability to cre-
ate with good fidelities, quantum states containing non-
trivial entanglement, such as the Greene-Horne-Zeilinger
(GHZ) state, quantum critical states, and topologically
ordered states etc. A central challenge is therefore find-
ing efficient state preparation protocols that can be im-
plemented in these noisy, imperfect quantum platforms:
ideally, protocols should have as minimal a circuit depth
as possible to be realistically implemented, in order to
suppress the errors that accumulate during runtime.

Recently, the Variational Quantum-Classical Simula-
tion (VQCS) protocol was proposed as one such can-
didate [23]. In short, the VQCS is a hybrid quantum-
classical bang-bang protocol which specifically incorpo-
rates feedback, and is motivated by the Quantum Ap-
proximate Optimization Algorithm (QAOA) [24, 25] as
well as various variational quantum eigensolvers [26, 27].
It works as follows: after initializing in an easily prepara-
ble state, a set of angles is fed into the quantum simu-
lator, which specifies the durations for which time evo-
lution between two different Hamiltonians is alternated
between. Measurements are then performed to estimate
the energy of the resulting state with respect to a tar-
get (generally quantum) Hamiltonian. The energy cost
function is subsequently optimized on a classical com-
puter to yield a new set of angles, and the process is

iterated until the cost function is minimized. With spa-
tially local Hamiltonians and finite evolution times, the
VQCS has been shown to be able to transform trivial
product states into GHZ, quantum critical, and topolog-
ically ordered states, with perfect fidelity and iteration-
depths that scale as O(N) where N is the system’s linear
dimension [23]. Conceptually, the VQCS is an example
of a “shortcut to adiabaticity”, a direction in quantum
state control that is actively being researched [28–32],
as its operating principle is fundamentally different from
conventional adiabatic preparation schemes [33–38].

While an iteration-depth scaling as O(N) is efficient
from a theoretical standpoint – there exist fundamental
speed limitations imposed by Lieb-Robinson bounds [39–
42] constraining unitary circuits utilizing spatially local
Hamiltonians, it still presents challenges experimentally,
especially in terms of scalability to a large number of
qubits in near-term devices. This motivates the search
for alternative ultrafast protocols. A possible way to
overcome these speed limitations is to utilize long-range
interactions (LRIs) that are naturally present in various
experimental quantum simulator platforms, e.g. trapped
ion systems (Coulomb interactions), Rydberg atom ar-
rays (van der Waals interactions), etc. [2, 6, 43]. With
LRIs, entanglement and correlations can be built up be-
tween distant parts of the system in finite time [44–46],
potentially (though not obviously) allowing for a quick
preparation of desired long-range correlated states.

To this end, in this work we explore how efficiently the
VQCS protocol with long range interactions can prepare
non-trivial quantum states. Specifically, we consider in
mind quantum simulators (digital or analog) that realize
long-range ∼ 1/rα Ising interactions with tuneable range
α, motivated in large part by trapped ion experimen-
tal setups. We find that the VQCS protocol with LRIs
can prepare GHZ and quantum critical states with O(1)
iterations. In particular, in the limit of extremely long-
range interactions, the GHZ state can be prepared with
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only one (two) iteration(s) for odd (even) system sizes.
Furthermore, the quantum critical point of the Lipkin-
Meshkov-Glick model [47] can be prepared with high fi-
delity very quickly (e.g. fidelity > 0.99 for 100 spins after
one iteration). We also analyze how efficiently the pro-
tocol can prepare points within the phase diagram of the
long-range transverse field Ising model. Our results thus
demonstrate the utility of VQCS-protocols with LRIs for
near-term, potentially noisy quantum simulators to real-
ize nontrivial many-body states of interest.

II. VARIATIONAL QUANTUM-CLASSICAL
SIMULATION (VQCS) PROTOCOL

We quickly recapitulate the VQCS [23]. Our aim is to
prepare a target state |ψt〉 with as high fidelity as possi-
ble, given resources available in a quantum simulator (ei-
ther digital or analog) such as single qubit rotations and
interactions between qubits, which we denote schemat-
ically by H1, H2. Usually, |ψt〉 will be taken to be the
ground state of some target Hamiltonian Ht which is a
linear combination of H1, H2. Henceforth in this work,
we shall take H1 = −

∑
iXi, a global transverse field,

but this can be relaxed.
The VQCS starts off with an easily preparable initial

state, such as the unentangled ground state |+〉 of the
paramagnet H1. One then time evolves in an alternating
fashion between H1 and the “interaction Hamiltonian”
H2, for a total of p iterations:

|ψ(~γ, ~β)〉p=e−iβpH1e−iγpH2 · · · e−iβ1H1e−iγ1H2 |+〉, (1)

with evolution times given by angles (~γ, ~β) ≡
(γ1, · · · γp, β1, βp). We label this protocol as VQCSp.

As the goal is to closely approximate Ht’s ground state,

one can seek to find the evolution times (~γ, ~β) which min-

imize a given cost function Fp(~γ, ~β), usually taken to be
the energy with respect to the target Hamiltonian Ht:

Fp(~γ, ~β) = p〈ψ(~γ, ~β)|Ht|ψ(~γ, ~β)〉p. (2)

Obviously, increasing p can only improve the minimal
value F ∗p , i.e. F ∗p+1 ≤ F ∗p .

In practice, such a protocol can be implemented in a
hybrid setup involving a quantum simulator and a clas-
sical computer: one first feeds the quantum simulator an

initial seed of angles, producing a state |ψ(~γ, ~β)〉. Then,
leveraging upon single-site accesibility possible in many
present-day quantum simulators, one measures correla-
tions within the state and determines the cost function
(2), e.g. the global energy. A classical computer is then

used to obtain the next set of angles (~γ, ~β) to be fed
into the quantum simulator, by means of an optimiza-
tion algorithm such as gradient descent or a similar pro-
tocol. The entire process is then repeated until either the
global minimum F ∗p is found, or a desired energy/fidelity
threshold is attained. As a matter of principle, the VQCS

protocol is guaranteed to work in the limit of p→∞ for
any finite size system (there always exists a finite gap),
as an asymptotically slow adiabatic preparation scheme
can always be trotterized to the form (1). However, non-
trivial behavior and an improvement over adiabaticity
can arise for small p, the regime of practical interest for
experimental systems.

As an example, consider preparing the ground state
of the one-dimensional nearest-neighbor transverse field
Ising model (TFIM), a situation considered in [23]:

HTFIM = −
N∑
i=1

ZiZi+1 − h
N∑
i=1

Xi, (3)

where h parameterizes the field strength and N is the
number of qubits. Given this Ht, a natural choice is

H2 = −
∑N
i=1 ZiZi+1, which are interactions (approxi-

mately) naturally realizable in e.g. trapped ions or Ryd-
berg array simulators. Indeed, in a previous work, it was
shown that such a VQCSp∗ at p∗ = N/2 can target with
perfect fidelity the ground states of the model at h = 0, 1
(GHZ and quantum critical state, respectively) [23]. It
was further conjectured and supported with numerical
evidence that this result generalizes to all points h ∈ R.

III. VQCS WITH LONG-RANGE
INTERACTIONS (LRIS)

Despite impressive progress in the coherent control and
manipulation of quantum systems today, such platforms
are inherently noisy, and so it is desirable to have state
preparation protocols that require as few iterations, and
as short a runtime as possible. However, there fundamen-
tal exist speed limits (specifically, Lieb-Robinson bounds)
in systems with local interactions to create a desired
quantum state containing long-range entanglement – the
time taken is t ≥ O(N) (as illustrated explicitly in the
example above). Intuitively, this arises from the linear
light cone r ∼ vt of information propagation that limits
the speed at which spatially distant regions entangle.

Long-range interactions (LRIs) have less stringent
speed limits [46] and can potentially dramatically speed
up state preparation protocols. We now show in the
rest of the paper that the VQCS (1) with LRIs is a
viable method for efficiently targeting nontrivial quan-
tum states. We consider quantum simulators where

long-range Ising interactions H2 = −
∑N
i<j JijZiZj with

Jij = J0
|i−j|α for some power-law exponent α, can be real-

ized, such as trapped ion setups or Rydberg atom array
setups. Concretely, together with a readily applicable
transverse field H1, we study the following prototypical,
realizable effective Hamiltonians:

Ht = −
N∑
i<j

JijZiZj −Nh
N∑
i

Xi. (4)
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Figure 1. Fidelity |〈ψQCP |ψ(~γ, ~β)〉p=1|2 in preparation of
LMG critical state as a function of system size N , for VQCS
depth p = 1. Remarkably, even at N = 100, the fidelity is
very close to unity (> 99%).

In trapped ion setups, α can vary in principle between
0 and 3, with experiments having been conducted using
α ranging from 0.67 to 1.05 [3], while in Rydberg atom
array setups, α = 6. We have chosen J0 = 1 and normal-
ized (4) in a standard way [2] so that N = 1

N−1
∑
i<j Jij .

Note that α→∞ reduces to the nearest neighbor TFIM
model with open boundary conditions.

IV. ULTRAFAST STATE PREPARATION
USING VQCS WITH LONG-RANGE

INTERACTIONS

We now analyze the small α regime of the Hamiltonian
(4) and show that VQCS protocols (1) using H1, H2 as
defined above, with p = O(1), are sufficient to prepare
certain target ground states. We will restrict the VQCS
parameter space to γi ∈ [−π, π) and βi ∈ [0, π/2). The
former is motivated by experimental limitations on the
evolution time, and the latter is because e−i(π/2)HX ∝∏
iXi which is conserved throughout the evolution.

A. GHZ state preparation, α = 0

First consider the case α = 0 of (4), in which the N
qubits interact in an all-to-all fashion. Then, up to an
overall multiplicative factor and also an inconsequential
shift in energy, (4) is equivalent to the Lipkin-Meshkov-
Glick (LMG) model

HLMG = − 2

N
S2
z − 2gSx, (5)

where the total spin operators are Sz =
∑N
i Zi/2 and

Sx =
∑N
i Xi/2, and g = h/2. As is the case with the

nearest-neighbor TFIM model, its ground states are fer-
romagnetic GHZ states at g = 0, and a quantum phase
transition at g = 1 separates the ferromagnet from the
paramagnetic phase.

We claim a p=O(1) VQCS circuit suffices to produce
the ground state of (5) at g= 0, i.e. the GHZ state. To
see this, we explicitly derive the energy cost function (2)
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Figure 2. (Left) Fidelity in preparation of GHZ state as a
function of system size N , for α= 0.2. The fidelity decreases
with increasing N ; however, this can be compensated by going
to higher ps. (Right) Fidelity in preparation of GHZ state as
a function of α, for N = 14.

for the LMG model with VQCSp=1:

Fp=1(γ, β) = −N − 1

4

(
sin(2β)2(1− cos(4γ)N−2)+ (6)

2 sin(4β) sin(2γ) cos(2γ)N−2
)
− gN cos(2γ)N−1 − 1/2

(see Appendix A for the derivation). From the above,
it is evident that for odd N , the ground state energy
of HLMG|g=0, namely E0 =−N/2, can be achieved with
angles (γ, β) = (π/4, π/4). In other words, the ferromag-
netic GHZ state, a state with macroscopic superposition
of entanglement (1/

√
2)(|0...0〉 + |1...1〉), can be created

with just two operations:

|GHZ〉 = e−i(π/4)HXe−i(π/4)HI |+〉. (7)

We note that there exist various existing prepara-
tion schemes that create macroscopic GHZ states, one
of which is the Molmer-Sorenson(MS) protocol involving
time evolution with S2

x [48, 49]. Although the VQCS pro-
tocol discussed above somewhat resembles the MS pro-
tocol, there are several differences: MS begins with the
(Ising symmetry broken) ground state |0 · · · 0〉 and for
odd system sizes, involves time evolution with S2

x and
Sx, to produce a GHZ state with a relative phase between
the cat states. A single qubit gate, or alternatively time
evolution with Sz, can remove the relative phase.

The distinction between MS and our protocol is most
manifest for even system sizes, in which we find that the
GHZ state is instead achieved with perfect fidelity with
a p= 2 VQCS protocol:

|GHZ〉 = e−i(π/4)HXe−i(π/8)HIe−i(3π/4N)HXe−i(π/4)HI |+〉.

Note that from (6), there is no range of parameters that
give perfect fidelity for p= 1 for even N . We show in
Appendix B the derivation of the above result. These re-
sults already demonstrate the utility of VQCS with LRIs:
they enable ultrafast preparation of a macroscopic GHZ
state, with perfect fidelity.
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Figure 3. Heat map depicting fidelities in the state preparation of the ground state of the long-range TFIM Eq. (3) for system
sizes N = 11, and for 12, p = 1, 2. Blue (red) regions demarcate regions of high (low) fidelity. As noted before, there is an
odd-even system size distinction near α ≈ 0, h ≈ 0 for p = 1, but this distinction vanishes at the next level, p = 2.

B. Quantum critical state preparation, α = 0

Besides the GHZ state, we find the approach can tar-
get many other interesting states. One state of partic-
ular interest is the quantum critical point of the LMG
model at g = 1, a highly correlated state |ψQCP 〉. By
numerically optimizing for the energy of (5) at g = 1,
we find that the p= 1 VQCS protocol is already suffi-
cient to achieve the critical state with extremely high

fidelity |〈ψQCP |ψ(~γ, ~β)〉p=1|2, even for very large system
sizes (> 99% at ∼100 qubits) (see Fig. 1). This is a re-
markably efficient protocol for preparing a critical state.

Note that the gap at the critical point of the LMG
model scales as ∆ ∝ N−1/3 [47], and thus the adiabatic
algorithm requires O(N1/3) time to prepare the GHZ and
critical states. However, in order to make a meaningful
comparison of the VQCS with the adiabatic algorithm,
we would need to scale down the exchange interaction in
(5) (i.e. J0) by N , and thus the total preparation time
for the VQCS protocol in this convention would go as N .
Our intention is not to make this theoretical comparison,
but instead to make contact with existing experiments.
In the trapped ion setups of [2], the nearest-neighbor ex-
change interaction J0 does not necessarily decrease with
system size; for example, it is (0.82, 0.56, 0.38, 0.65)kHz
for N = (8 , 12 , 16 , 53) respectively. Hence, the interac-
tions in (5) are reasonable in near-term trapped ion ex-
periments and lead to O(1) preparation time for the GHZ
and critical states. The simplicity and discreteness of the
protocols we have presented may offer advantages over
the adiabatic algorithm with or without counter-diabatic
terms [32, 50–52].

C. GHZ preparation with finite α

In practice, there may be challenges in realizing strictly
all-to-all (α= 0) Ising interactions, and therefore we an-
alyze how well a finite α VQCS protocol can prepare the
GHZ state.

In the left panel of Fig. 2, we fix α= 0.2 and show the
fidelity with GHZ state achieved for VQCSp=1,2,3 for even
system sizes. As expected, VQCSp=2 no longer prepares
the state with perfect fidelity unlike the α = 0 case, but
this can be addressed with further iterations of VQCS.

In particular, note the high fidelities achieved by p= 3
for system sizes up to N = 16. As LRIs establish corre-
lations between spins separated by a distance r in time
O(rα), which surpasses the light cone bound for local in-
teractions [44–46], we expect that the depth required to
prepare the state with some fixed error in fidelity scales
as O(Nα′), α′ < 1. Also plotted is the optimal fidelity for
different values of α and for fixed system size N = 14; the
results indicate that longer-range interactions (smaller α)
tend to be more effective in targeting the desired state,
and that errors can be effectively reduced using further
VQCS iterations [53].

D. Phase diagram of the long-range TFIM

Finally, we explore how well the VQCS protocol
with LRIs can prepare the ground states at generic
points in the phase diagram of the long-range TFIM
model (4). It is known that the long-range TFIM sup-
ports a ferromagnetic-paramagnetic ground state quan-
tum phase transition for any value of α, upon tuning h.
In the limit α→ 0, the critical field hc = 2, while in the
limit α→∞, the critical field hc = 1. For intermediate
values of α, previous works have attempted to map out
how hc varies (see e.g. [54, 55] and [56, 57] for the anti-
ferromagnetic model).

Plotted in Fig. 3 are the fidelities obtained from VQCS
as a function of transverse field h and interaction range
α, for N = 11, 12 and for p = 1, 2. As expected, at
the system sizes considered, the VQCS with LRIs is able
to target ground states within the paramagnetic phase
(large h) relatively easily, while for the ferromagnetic
phase (small h) it becomes more difficult to prepare, es-
pecially as the interactions become more short-ranged
(larger α). Note that for large α, the region where state
preparation is difficult (red region) is separated from the
region where state preparation is easy (blue region) by
h ≈ 1, which agrees with the critical point hc of the
nearest-neighbor TFIM, which is realized in the asymp-
totic limit α→∞.

As the small α regime of this model is somewhat chal-
lenging for numerical studies [54], it serves as a venue
in which the quantum-classical hybrid implementation of
VQCS could provide valuable input. Moreover, the small
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α window is precisely the regime in which the VQCS ap-
proach requires only a few iterations.

V. DISCUSSION AND CONCLUSION

We have shown that VQCS-type protocols with long-
range interactions allow for ultra-fast state preparation.
In particular, the Ising-symmetric GHZ state can be pre-
pared exactly at finite depth p = 1(2) for odd (even) sys-
tem sizes. We have also demonstrated that other states
of interest, for example the quantum critical point of the
Lipkin-Meshkov-Glick model, can also be prepared very
efficiently. More broadly, since the VQCS protocol is
very general and not only restricted to the states consid-
ered (see Eq. (1)), our results suggest that VQCS with
LRIs is a promising and viable state preparation protocol
that can be utilized to target other nontrivial states of
interest, potentially also allowing for their efficient prepa-
ration.

VQCS with long range interactions thus provides
an opportunity for near-term simulators to prepare
non-trivial states with very high fidelity, and to shed

light on areas of phase diagrams that are challenging for
numerics. The simplicity and efficiency of the protocols
make them particularly well-suited for near-term quan-
tum devices endowed with long-range interactions, such
as trapped ion or Rydberg atom arrays.

Note added: While completing this manuscript, we
became aware of related, variational state preparation
works [58] and [59].
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Appendix A: LMG Cost Function for p = 1

We evaluate

〈+|eiγHIeiβHXHLMGe
−iβHXe−iγHI |+〉, (A1)

where

HLMG = − 2

N
S2
z − 2gSx (A2)

The second piece gives

−g〈+|eiγHI
∑
i

Xie
−iγHI |+〉 (A3)

= −g〈+|
∏
j 6=i

(cos(γ)− i sin(γ)ZiZj)
∑
i

Xi

∏
j 6=i

(cos(γ) + i sin(γ)ZiZj)|+〉 (A4)

Because any operator aside from identity and X has zero expectation value in |+〉, we get contributions only from
cos2(γ)− sin2(γ) for each j. In total, this piece is (−gN)(cos(2γ))N−1.

The first piece is

−N − 1

2
〈+|eiγHIeiβHXZiZje−iβHXe−iγHI |+〉 −

1

2
(A5)

= −N − 1

2
〈+|eiγHI (cos(2β)Zi − sin(2β)Yi)(cos(2β)Zj − sin(2β)Yj)e

−iγHI |+〉 − 1

2
(A6)

Again, we need only consider when the identity and X operators arise. One contribution to the matrix element
comes from the evolution of YiZj + ZiYj , which gives

− sin(4β)〈+|
∏
k 6=j,i

(cos(γ)− i sin(γ)ZiZk)(cos(γ)− i sin(γ)ZiZj) (A7)

(YiZj)(cos(γ) + i sin(γ)ZiZj)
∏
k 6=j,i

(cos(γ) + i sin(γ)ZiZk)|+〉 (A8)

= sin(4β) sin(2γ) cos(2γ)N−2 (A9)

Another contribution comes from

sin(2β)2〈+|
∏
k 6=i,j

(cos(γ)− i sin(γ)ZiZk)
∏
l 6=i,j

(cos(γ)− i sin(γ)ZjZl)YiYj (A10)

∏
k 6=i,j

(cos(γ) + i sin(γ)ZiZk)
∏
l 6=i,j

(cos(γ) + i sin(γ)ZjZl)|+〉 (A11)
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The transformation into two X operators requires an odd number of applications of ZiZk and ZjZk; each application
comes with a factor of sin(2γ)2. The terms which do not alter the operator come with factors of cos(2γ)2. Hence, to
single out the odd powers, we take the combination

(1/2)((cos(2γ)2 + sin(2γ)2)N−2 − (cos(2γ)2 − sin(2γ)2)N−2) (A12)

= (1/2)(1− cos(4γ)N−2). (A13)

In total, the cost function is thus

−N − 1

4
(sin(2β)2(1− cos(4γ)N−2) + 2 sin(4β) sin(2γ) cos(2γ)N−2)− gN(cos(2γ))N−1 − 1/2 (A14)

Appendix B: GHZ Preparation for Even N

We show below that for an even number N of qubits,

|GHZ〉 = exp(
iπ

4

∑
i

Xi) exp(
iπ

8

∑
ij

ZiZj) exp(
3iπ

4N

∑
i

Xi) exp(
iπ

4

∑
ij

ZiZj)|+ ...+〉. (B1)

It is sufficient to establish

〈↑ ... ↑ | exp(
iπ

4

∑
i

Xi) exp(
iπ

8

∑
ij

ZiZj) exp(
3iπ

4N

∑
i

Xi) exp(
iπ

4

∑
ij

ZiZj)|+ ...+〉 =
1√
2
, (B2)

up to a phase. (The Ising symmetry operator is conserved as
∏
X = 1, so the matrix element for 〈↓ ... ↓ | will also

be 1√
2
. The state | ↑〉 is such that Zi| ↑〉i = +| ↑〉i and so | ↑ · · · ↑〉 =

∏
i | ↑〉i.)

We break the matrix element in half and first the evaluate the left hand side. First,

exp(
−iπ

4

∑
i

Xi)| ↑ ... ↑〉 =
1√
2N

(∏
i

(1− iXi)
)
| ↑ ... ↑〉 (B3)

=
1√
2N

∑
s

(−i)(N−
∑
i zi)/2|z〉, (B4)

where z = {z1, ...zN} labels a spin configuration.
Applying exp(−iπ8

∑
ij ZiZj) and neglecting overall phase then gives

1√
2N

∑
z

exp(−iπ/8
∑
ij

zizj)i
∑
i zi/2|z〉 (B5)

=
1√
2N

∑
z

exp(
iπ

16
(−z2t + 4zt))|z〉, (B6)

where we have defined zt ≡
∑
i zi.

The right hand side is:

exp(
3iπ

4N

∑
i

Xi) exp(
iπ

4

∑
ij

ZiZj)|+ ...+〉 (B7)

=
1√
2N

exp(
3iπ

4N

∑
i

Xi)
∑
z

exp(
iπ

4

∑
ij

zizj)|z〉 (B8)

=
1√
2N

∏
i

(c+ isXi)
∑
z

exp(
iπ

4

∑
ij

zizj)|z〉 (B9)

where c ≡ cos(3π/4N), s ≡ sin(3π/4N).
Consider the contributions to the coefficient of a given spin configuration |z〉. Each contribution involves partitioning

the N spins into two sets A and B of sizes a and N − a respectively, and flipping the spins in set A. The resulting
coefficient from this given flip is

cN−a(is)a exp(
iπ

4

∑
ij

zizj) exp(
iπ

4

∑
i∈A,j∈B

(z̄i − zi)zj), (B10)
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where z̄i ≡ −zi.
We now show that this factor only depends on the parity of a (and the particular configuration z) and once this is

fixed, the factor is independent of the partition. The final phase factor above can be written as

exp(
−iπ

2
zA(zt − zA)), (B11)

where zA ≡
∑
i∈A zi. Because N is even, zt is even. If a is even, the za is even and thus the phase factor is 1.

Moreover, it is straightforward to check that either changing the partition (keeping partition size fixed) or changing
the partition size by 2 does not change the above phase. Hence, the case of a odd can be reduced to choosing A to
be the first spin. The wavefunction becomes

1√
2N

∑
z

exp(
iπ

4

∑
ij

zizj)
( ∑

even a

(
N

a

)
cN−a(is)a +

∑
odd a

(
N

a

)
cN−a(is)a exp(

−iπ
2
z1(zt − z1))

)
|z〉

=
1√
2N

∑
z

exp(
iπ

4

∑
ij

zizj)
(

cos(3π/4) + i sin(3π/4) exp(
−iπ

2
z1(zt − z1))

)
|z〉

Dropping overall phases, we get

1√
2N+1

∑
z

exp(
iπ

8
z2t )
(

1− i exp(
−iπ

2
z1(zt − z1))

)
|z〉 (B12)

The matrix element between left and right hand sides is thus

1

2N
√

2

∑
z

exp(
iπ

16
(3z2t − 4zt))(1− i exp(

−iπ
2
z1(zt − z1)) (B13)

Due to the last piece, any configuration with zt ≡ 2(mod 4) does not contribute and the matrix element reduces to

1

2N
√

2

∑
z|zt≡0(mod 4)

2 exp(
iπ

16
(3z2t − 4zt)) =

1√
2
. (B14)
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