
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum-assisted Gaussian process regression
Zhikuan Zhao, Jack K. Fitzsimons, and Joseph F. Fitzsimons

Phys. Rev. A 99, 052331 — Published 22 May 2019
DOI: 10.1103/PhysRevA.99.052331

http://dx.doi.org/10.1103/PhysRevA.99.052331

Quantum assisted Gaussian process regression

Zhikuan Zhao,1, 2 Jack K. Fitzsimons,3 and Joseph F. Fitzsimons1, 2, 4, ∗

1Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
2Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

3Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
4Horizon Quantum Computing, 79 Ayer Rajah Crescent, Singapore 139955

Gaussian processes (GP) are a widely used model for regression problems in supervised machine learning.
Implementation of GP regression typically requires O(n3) logic gates. We show that the quantum linear systems
algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] can be applied to Gaussian process regression
(GPR), leading to an exponential reduction in computation time in some instances. We show that even in some
cases not ideally suited to the quantum linear systems algorithm, a polynomial increase in efficiency still occurs.

I. INTRODUCTION

The enterprise of designing quantum algorithms has come
a long way since Feynman’s original vision of utilizing the
exponential Hilbert space in quantum mechanics to simulate
quantum physics [1]. Among the most celebrated results are
Shors factoring algorithm [2] and Grover’s search algorithm
[3]. More recently, machine learning has emerged as a field in
which quantum algorithms can have a dramatic impact [4–9].
Of particular interest to the field of machine learning, in 2009
Harrow et al presented a quantum algorithm which produces
a superposition state |x〉 with ε error, such that the vector |x〉
solves the linear system A|x〉 = |b〉 [10]. For an n × n s-
sparse matrix A with condition number (the ratio between its
largest and smallest eigenvalues) κ, the runtime roughly grows
as Õ(log(n)κ2s2/ε) (where Õ suppresses slower growing
contribution), while the classical counter-part, matrix inver-
sion algorithms for sparse matrices runs at O(nκs log(1/ε))
using the conjugate gradient method [11].

Gaussian processes (GP) are commonly used as powerful
models for regression problems in the field of supervised ma-
chine learning, and have been widely applied across a broad
spectrum of applications, ranging from robotics, data mining,
geophysics (where they are referred to as kriging), climate
modelling and predicting price behaviour of commodities in
financial markets. Recently, an intriguing correspondence be-
tween GP and deep neural networks has been established in
[12]. Although GP models are becoming increasingly popu-
lar in the machine learning community, they are known to be
computationally expensive, hindering their widespread adop-
tion. A practical implementation of Gaussian process regres-
sion (GPR) model with n training points typically requires
O(n3) basic operations [13]. This has lead to significant
effort aimed at reducing the computational cost of working
with such models, with investigations into low rank approx-
imations of GPs [14], variational approximations [15] and
Bayesian model combination for distributed GPs [16].

In this work we demonstrate that the Quantum linear system
algorithm (QLSA) described in [10] can be used to dramati-

∗Electronic address: joe.fitzsimons@nus.edu.sg

cally speed up computation in GPR. We start by reviewing
both the basics of classical GPR and its conventional imple-
mentation, as well as the original QLSA. We then propose a
procedure of applying QLSA to GPR modelling, and discuss
the performance of such a procedure. We will address the
practical aspects of applying our procedure to specific GPR
problems in terms of the potential caveats of QLSA sum-
marised in [17].

II. GAUSSIAN PROCESS REGRESSION

Supervised machine learning endeavours to learn the rela-
tionship between the input and output of a system based on a
set of examples, referred to as the observations of a training
set. Gaussian processes offer a number of desirable proper-
ties in doing this such as ease in expressing uncertainty, the
ability to model a wide range of behaviours under a simple
parametrisation, and admitting a natural Bayesian interpreta-
tion.

Given a training set T = {xi, yi}n−1i=0 , containing n d-
dimensional inputs, {xi}n−1i=0 , and corresponding outputs,
{yi}n−1i=0 , we wish to model a latent function f(x) such that

y = f(x) + εnoise, (1)

where εnoise ∼ N (0, σ2
n) is independent and identically dis-

tributed Gaussian noise. As such, given a new input (we will
call this a “test point”), x∗, we aim to have a predictive distri-
bution for f∗ = f(x∗).

The GP approach to such a regression problem models the
behaviour of latent variables {f(xi)}n−1i=0 as a joint multi-
dimensional Gaussian distribution [13]. A GPR model is fully
specified by a mean function m(x) = E[f(x)] and a covari-
ance function (also known as kernel) k(x,x′) = E[(f(x) −
m(x))(f(x′) −m(x′))], where E[z] denotes the expectation
value of z. Without loss of generality we can assume the func-
tion being modelled to have zero prior mean. Conditioning on
the training data set, we write the predictive distribution of f∗
in the form of a multi-variable Gaussian distribution [18],

p(f∗|x∗, T) ∼ N (f̄∗,V[f∗]). (2)

The central goal in GPR models is to predict the mean of this
distribution, also known as the mean predictor f̄∗, and its vari-
ance V[f∗] given the inputs {xi}, observed output vector y,

mailto:joe.fitzsimons@nus.edu.sg

2

the covariance functions k, and the noise variance σ2
n. For

simplicity, we consider only one test point, although the same
principle applies to an array of test points. Let the entries of
the vector k∗ denotes the covariance functions between the
test point x∗ and each of the n input points in the training set,
such that k∗ = E[(f(x) −m(x))(f(x∗) −m(x∗))]. We de-
note by K the n × n matrix of covariance functions between
the input points in the training set. Following the derivation
presented in [13], we obtain the moments of a zero mean GP
as

f̄∗ = kT∗ (K + σ2
nI)−1y (3)

V[f∗] = k (x∗, x∗)− kT∗ (K + σ2
nI)−1k∗. (4)

We will outline a typical implementation of GPR on a clas-
sical machine: The first step is to compute the Cholesky
decomposition of (K + σ2

nI), that is, to find the lower-
triangular matrix L, known as the Cholesky factor, such that
(K + σ2

nI) = LLT . The computation of the Cholesky factor
is known to be numerically stable, and has runtime propor-
tional to n3. Writing α = (K + σ2

nI)−1y, the mean predictor
is rewritten as f̄∗ = kT∗α. Computing α then amounts to
solving LLTα = y. Using the backslash notation L\y to de-
note the vector y′ which solves the triangular linear system
Ly′ = y, α = LT \L\y can be computed by solving two tri-
angular systems, taking time proportional to n2. Similarly,
V[f∗] = k (x∗, x∗) − (L\k∗)T (L\k∗) can be computed with
a number of basic arithmetic operations proportional to n2.
Note that the k (x∗, x∗) term is simply the covariance of the
test point with itself, and only costs a constant time to com-
pute. Therefore the total runtime of computing the mean and
variance for GPR amounts to O(n3). For problems involv-
ing thousands of input points, the exact inference in GPR be-
come intractable, which motivates the search for a quantum
approach to accelerate this computation. This is where the
QLSA, first introduced in [10], offers an advantage.

III. QUANTUM LINEAR SYSTEM ALGORITHM

We now give an outline of the original QLSA to solve the
linear system, Ax = b:

• Prepare the state |b〉 = (bTb)−1/2
n−1∑
i=0

bi|i〉 to encode

the vector b. Prepare an ancilla register in a superposi-
tion state 1√

T

∑T
τ=0 |τ〉.

• SimulateA as a Hamiltonian at time τ applied to |b〉 us-
ing phase estimation techniques described in [19], and
expand |b〉 into the eigenbasis of A. After this evolu-
tion, we obtain the state

|φ1〉 =
1√
T

n−1∑
i=0

T−1∑
τ=0

|τ〉eiλit0τ/Tβi|µi〉, (5)

where λi are the eigenvalues and |µi〉 are the eigenvec-
tors of A . Each |µi〉 is associated with a complex am-

plitude βi. The time t0 here scales linearly with the con-
dition number κ. The time period in the second sum-
mation is chosen to be some large T as in the improved
phase-estimation procedure described in [20].

• Apply the quantum Fourier transform (QFT) [21] to the
first register in |φ1〉 and obtain

|φ2〉 =

n−1∑
i=0

βi|λi〉|µi〉. (6)

• Introduce an ancilla qubit and perform a controlled ro-
tation on it to yield the extended state

|φ3〉 =

n−1∑
i=0

βi|λi〉|µi〉

(√
1− c2

λ2i
|0〉+

c

λi
|1〉

)
. (7)

Here the constant c is used to ensure that the rotation
angle is bounded by π.

• Finally, reverse the phase estimation to uncompute |λi〉.
Measure the ancilla qubit. A result of |1〉 results in the
state vector encoding the solution of Ax = b,

|x〉 = |φfinal〉 =

n−1∑
i=0

βi
λi
|µi〉 (8)

For simplicity, we have omitted global normalisation fac-
tors in the last step of the above outline, and have assumed A
to be Hermitian throughout. However, Ref. [10] also includes
a treatment to “Hermitianize” a general A, which involves
building an anti-diagonal block matrix with the elements of
A† andA in the lower and upper half of the new matrix respec-
tively. Once |x〉 has been produced, quantum measurements
can be used to estimate expectation values corresponding to
some desired quantity of the form 〈x|M |x〉. For a quick ac-
count of the runtime, we note that the ε-error runtime in phase
estimation scales quadratically with the sparseness s of A
[19], t0 = O(κ/ε), the repetition needed to obtain the desired
measurement on the ancilla qubit scales proportionally to κ,
and hence the total runtime amounts to Õ(log(n)κ2s2/ε). We
direct interested readers to Ref. [10] and its supplementary
material for a detailed error and runtime analysis.

Soon after the original QLSA was proposed, Clader et al
extended the algorithm to include an efficient method to pre-
pare the input encoding using entangled states in O(1) query
complexity with the help of an oracle which calculates the
amplitude and phase components of the vector |b〉 [22]. In
the same paper, the authors also developed a scheme based
on the Sparse Approximate Inverse Preconditioners (SAIP)
technique [23, 24] to precondition A which incurs an over-
head of O(s3). This results in a modified linear system in
which the matrix is well conditioned. Childs et al further
modified the QLSA based on implementing operators with
Fourier or Chebyshev series representations, which further
suppressed the runtime through a logarithmic ε-precision de-
pendence [25]. The sparse-dependent efficiency of the Hamil-
tonian simulation stage in the QLSA was also subsequently

3

improved [26], leading to a new runtime which scales as
Õ(log(n)κ2s/ε). In the context of dense linear systems, a
recent result of [27] shows an alternative linear system solver
that circumvents the Hamiltonian simulation step, achieving a
runtime scaling of Õ(

√
n log(n)κ2/ε)

Despite the promising exponential speed-up QLSA can po-
tentially provide, one has to apply it with care. As noted by
Aaronson [17], there are four practical areas that need particu-
lar care in any application of the original QLSA: (1) The time
taken to prepare |b〉 encoding b needs to be taken into ac-
count; (2) the matrix A has to be robustly invertible, κ needs
to grow at most polylogarithmically in n to maintain an expo-
nential speed-up; (3) one also needs to address the sparseness
contribution to the total runtime, since the general phase esti-
mation sub-routine in QLSA costs polynomial time in s; (4)
although the output of QLSA is the state |x〉, there is no effi-
cient way to extract entries of the vector x. One needs to make
sure that the matter of practical interest does not span the full
glory of x, but is restricted only to information which is ac-
cessible with relatively few copies of |x〉. For example, one
can efficiently estimate quantities such as 〈x|M |x〉, where M
is some Hermitian matrix of interest which can be efficiently
implemented as an observable, since this simply amounts to
the expectation value of the observable M on |x〉. We now in-
troduce a procedure for applying QLSA to Gaussian process
regression, and then address each of these practicality con-
cerns.

IV. QUANTUM GAUSSIAN PROCESS ALGORITHM

We observe from equations 3 and 4 that the computation
of f∗ and V[f∗] involves solving linear systems of the forms
(K + σ2

nI)α = y and (K + σ2
nI)η = k∗ respectively, where

kT∗α = f̄∗ and k (x∗, x∗)−kT∗ η = V[f∗]. The common linear
structure suggests that we can apply QLSA to extract useful
information.

In order to compute these values, we will extend the quan-
tum linear systems algorithm in two ways. First, we need an
efficient method to prepare a state |v〉 from a classical repre-
sentation of a vector v of length n. To achieve this we use an
approach based on quantum random access memory (QRAM)
[28], which we modify to allow preparation of sparse (or ap-
proximately sparse) vectors. To prepare a state corresponding
to the sv-sparse vector v with entries vi, a register is prepared
in a superposition s−1/2v

∑
i:vi 6=0 |i〉 ⊗ |0〉. The QRAM acts

as an oracle that performs the mapping:

s−1/2v

∑
i:vi 6=0

|i〉 ⊗ |0〉 → s−1/2v

∑
i:vi 6=0

|i〉 ⊗ |vi〉.

Using the index stored in the first register, conditionally rotate
an ancilla register based on the ith entry of v and perform a
second QRAM query to uncompute the second register such
that the state of the system is

|ṽ〉 =
1
√
sv

∑
i:vi 6=0

|i〉 ⊗
(√

1− c2vv2i |0〉+ cvvi|1〉
)
,

where cv ≤ mini |vi|−1. Conditioned on the ancilla qubit be-
ing in state |1〉, the first register is in state |v〉 = v

||v|| . This
state preparation procedure could potentially suffers from low
probability of successfully projecting on the correct ancilla
state when the vector is vastly dominated by a handful of large
value entries. Fortunately, this is not the case in many realis-
tic applications for Gaussian processes such as the datasets
listed in Appendix C of Ref. [13]. It is also worth noting
that even if the dataset is indeed only dominated by a constant
number of large entries, under the moderate assumption that
the predictive performance of the model is robust against mi-
nor element-wise perturbations in the input dataset, the state
preparation can still succeed with a constant probability [29].

The second element necessary is a mechanism to estimate
〈u|v〉 for a given pair of real vectors u and v. While the
square of this value is accessible via a controlled-swap test,
as discussed in [30], we require information about both the
magnitude and sign of this inner product which is not acces-
sible with such a test. In order to estimate the inner product,
we instead apply a modified version of the state preparation
procedure, where an additional ancilla qubit initially prepared
in state 1√

2
(|0〉+ |1〉) is used to determine whether the target

state is |u〉 or |v〉. This results in a joint state

|Φu,v〉 =
1√
2su

∑
i:ui 6=0

|0〉|i〉
(√

1− c2uu2i |0〉+ cuui|1〉
)

+
1√
2sv

∑
i:vi 6=0

|1〉|i〉
(√

1− c2vv2i |0〉+ cvvi|1〉
)
.

Then the expectation value of the operator X ⊗ I ⊗ |1〉〈1| is
s
−1/2
u s

−1/2
v cucvu

Tv. As an alternative technique, the inner
product can also be determined with the SWITCH test [31].

These two elements can be combined with the quantum
linear systems algorithm to compute quantities of the form
uTA−1v as follows:

1. Initialise the system in state |+〉A|0〉B |0〉C |0〉D, where
|+〉 = 1√

2
(|0〉 + |1〉) and where A, B, C and D label

distinct registers.

2. Controlled on register A being in state |0〉, prepare reg-
isters B and C in state |ũ〉 such that the ancilla qubit is
placed in register C with the remainder of the state in
register B, and apply X to register D.

3. Controlled on register A being in state |1〉, prepare reg-
isters B and C in state |ṽ〉 such that the ancilla qubit is
placed in register C with the remainder of the state in
register B.

4. Controlled on both registers A and C being in state |1〉,
apply the quantum linear systems algorithm to register
B using register D as the ancilla used in the QLSA.
A fifth register E is used for the phase estimation step
in the QLSA, but since it is returned to the zero state,
we do not explicitly include it in the description of the
states after each step.

4

FIG. 1: Circuit diagram for computing the form uTA−1v, where
M = X ⊗ I ⊗ |1〉〈1| ⊗ |1〉〈1|.

5. Measure the observable M = XAIB |1〉〈1|C |1〉〈1|D.

The measurement result is then a random variable with expec-
tation value cs−1/2u s

−1/2
v cucvu

TA−1v. To see this, note that
the state of the system after the fourth step is given by

1√
2su
|0〉A

∑
i:ui 6=0

|i〉B
(√

1− c2uu2i |0〉C + cuui|1〉C
)
|1〉D

+
1√
2sv
|1〉A

∑
i:vi 6=0

cvβi|µi〉B |1〉C

(√
1− c2

λ2i
|0〉D +

c

λi
|1〉D

)

+
1√
2sv
|1〉A

∑
i:vi 6=0

√
1− c2vv2i |i〉B |0〉C |0〉D

In the above |µi〉 is taken to be the eigenvector of A corre-
sponding to eigenvalue λi, and {βi} are taken to be the coor-
dinates of v in the basis {|µi〉}. Projecting this state onto |1〉
for registers C and D leads to the subnormalised state

1√
2su
|0〉A

∑
i:ui 6=0

cuγi|µi〉B +
1√
2sv
|1〉A

n∑
i:vi 6=0

c

λi
cvβi|µi〉B ,

where {γi} are taken to be the coordinates of u in the basis
given by {|µi〉}. Thus, the expectation value for the measure-
ment in the final step is

∑
i

1

4

((
cu√
su
γi +

cvc√
sv

βi
λi

)2

−
(
cu√
su
γi −

cvc√
sv

βi
λi

)2
)
.

Since this is equal to cucvc√
susv

uTA−1v, the expectation value
for the measurement in the final step, 〈M〉 must match this
value. The estimation of 〈M〉 then involves sampling m re-
peated runs of the algorithm, resulting in a sampling variance
that scales as m−1. We illustrate the circuit diagram for this
algorithm in FIG. 1.

The algorithm outlined above can be used to construct a
quantum algorithm for approximating both the mean predictor
and variance in GP regression, as follows:

• To approximate the mean predictor, kT∗ (K +
σ2
nI)−1y = yT (K + σ2

nI)−1k∗, we take u = y,
A = K + σ2

nI and v = k∗. Since K is positive

semi-definite the minimum eigenvalue of A is at least
σ2
n, and hence we take c = σ2

n in each run of the QLSA.
This yields 〈M〉 =

σ2
nck∗cy√
sk∗sy

yT (K + σ2
nI)−1k∗, and

hence

f̄∗ =

√
sk∗sy

σ2
nck∗cy

〈M〉. (9)

Here ck∗ and cy are taken to be the inverted maximum
absolute values of the entries in k∗ and y, which we
take to be constants. Hence the estimation variance
in the computation of f̄∗ will scale as sk∗sym

−1. In
the case of an s-sparse K, we have sk∗ ≤ s since
k∗ reflects the same dependencies as K. While y
will not in general be sparse, we can instead replace
it in the estimation procedure with a sparse vector y′

and still obtain a good approximation to f̄∗, when-
ever the spectral norm of K + σ2

nI is bounded, which
will essentially always be the case for GP regression
as the eigenvalues of the covariance matrix do not typ-
ically scale up with the data size. This is because
(K + σ2

nI)−1 =
∑
d(−1)d(K + (σ2

n − 1)I)d, where
we have used the Taylor series, (I − S)d =

∑
d S

d,
taking S = −K + (1− σ2

n)I . The convergence of this
series is guaranteed as long as the spectral norm of K
is bounded and hence S can be normalised such that
‖S‖∗ ≤ 1. As such (K + σ2

nI)−1 can be approximated
by a polynomial in (K + (σ2

n − 1)I) of some fixed de-
gree, which amounts to a matrix of constant sparsity.
Hence (K+σ2

nI)−1k∗ will be an approximately sparse
vector, and its inner product with y can be well approx-
imated by the inner product with a vector y′ where the
only non-zero entries correspond to the location of non-
negligible entries of (K+σ2

nI)−1k∗. Hence only a con-
stant number of repetition of the algorithm is needed in
order to achieve a fixed variance of estimation.

• To approximate the variance V[f∗] the same procedure
is followed as for the mean predictor, except that u
is taken to be k∗ instead of y. This yields 〈M〉 =
σ2
nc

2
k∗

sk∗
kT∗ (K + σ2

nI)−1k∗, and hence

V[f∗] = k(x∗, x∗)−
sk∗

σ2
nc

2
k∗

〈M〉. (10)

As with the mean predictor, 〈M〉 is measured on con-
stant multiple independent runs of the algorithm to yield
the fixed desired variance on the estimate.

The above shows how QLSA can be applied to computing
two central objective quantities in Gaussian process regression
problems. When (K + σ2

nI) is sparse and well-conditioned,
this procedure achieves an exponential speed-up over classical
Gaussian process regression.

V. DISCUSSION AND CONCLUSION

Gaussian Processes with sparse covariance matrices are of
significant interests in many real world applications, particu-

5

larly when the problem involves inference from large datasets
[32]. For example, these sparsely constructed Gaussian pro-
cesses are used to make a unified framework for robotic map-
ping [33]. In the field of pattern recognition, sparsely con-
structed Gaussian processes have been used to solve realistic
action recognition problems [34]. A widely used technique to
construct a sparse covariance matrix is setting the covariance
function to zero beyond a certain distance between any two
data points with a compactly supported function. Since each
column or row of resultant matrix records the covariance func-
tion between a single data point and all data points, they only
have a constant number of non-zero entries. By definition, this
gives corresponds a sparse covariance matrix. This technique
is known as covariance tapering, and has been proven to ap-
proximate the Matérn family of covariance functions with a
small squared error [35]. An explicit example in geostatistics
kriging where the dataset gives rise to a highly sparse covari-
ance matrix is presented in [36]. In the above cases where
the GPR computation only involves sparse covariance matri-
ces, our proposed algorithm circumvents the major potential
caveats of QLSA and an exponential advantage over its clas-
sical counter-part is attainable. For other applications where
s scales linearly with n, our algorithm provides a polyno-
mial speed-up over the best-known classical GPR algorithm,
even though an exponential speed-up is not always guaran-
teed. Specifically, by applying a variant version of the QLSA,
one can achieve a Õ(

√
n) runtime [37].

In order to implement quantum GPR efficiently, the ma-
trix (K + σ2

nI) needs to be well-conditioned. The ratio of
largest and smallest eigenvalue κ needs to stay low as n in-
creases in order for the matrix to be robustly invertible. In
classical GPR, conditioning is already a well-recognised is-
sue. A general strategy to cope with the problem is to in-
crease the noise variance σ2

nI manually by a certain amount
to dilute the ratio κ without severely affecting the statistical
properties of the model. This increase in σ2

nI can be seen
as a small amount of noise (jitter) in the input signal. This
technique is not new to the quantum GPR, and may be seen
throughout the classical GP literature and mainstream imple-
mentations [18]. Therefore, for almost all practical purposes,
we can assume the matrix is well-conditioned before applying
the quantum algorithm. Moreover, when we apply our algo-
rithm on a sparse kernel, we can employ the preconditioning
method constructed in [22] to further suppress the growth of
κ. In fact when K is sparse, under the realistic assumption
that the magnitude of the entries in K does not scale with the
dimensionality, the maximum eigenvalue of (K + σ2

nI) will
also be upper bounded by a constant. This is a consequence

of the Gershgorin circle theorem [38] which can be expressed
as

|λ−Aii| ≤
∑
j 6=i

|Aij |, (11)

where we set A = (K + σ2
nI). Note that the minimum eigen-

value of A is lower bounded by σ2
n. Likewise, we have the

diagonal elements bounded by Aii ≥ σ2
n and the off-diagonal

sum
∑
j 6=i |Aij | upper bounded by the sparsity of A scaled

by the magnitude of its maximum entry. Hence Eq. 11 im-
plies the condition number of A is bounded by a constant in-
dependent of n. As a result, under the sparse and bounded
element kernel matrix assumption, conditioning does not pro-
vide a barrier to our proposed quantum GPR algorithm.

We have presented a novel procedure to apply the quantum
algorithm for solving linear systems to Gaussian process re-
gression modelling problems in supervised machine learning.
By repeated sampling of the results of specific quantum mea-
surements on the output states of QLSA, the mean predictor
and the associated variance can be estimated with bounded er-
ror with potentially exponential speed-up over classical algo-
rithms. Finally, we return to the discussion about the expected
performance of our algorithm in terms of the four potential
caveats raised by Ref. [17]. Providing access to a QRAM that
stores input vectors, we have shown a technique to efficiently
construct input states for the quantum algorithm. Regarding
solution readout, we have constructed a procedure to estimate
an inner product form that allows for efficient computation
of the mean and variance predictor of GPR. Furthermore, we
note that a large class of widely applied kernels in GPR give
rise to sparse covariance matrices, and in such cases an expo-
nential quantum speed-up is achievable. We have also argued
that the Gershgorin circle theorem implies well-conditioning
for sparse covariance matrices with bounded elements. Even
in cases where the covariance matrix is necessarily dense,
classical preconditioning techniques can still be applied and
the quantum algorithm can still provide a polynomial advan-
tage. Hence having addressed all the major potential caveats
of QLSA [17], we have shown the quantum GPR algorithm to
be a robust application with practical significance.

Acknowledgements— We thank Stephen Roberts for use-
ful comments on the manuscript. JFF acknowledges sup-
port from the Air Force Office of Scientific Research under
grant FA2386-15-1-4082 and Ministry of Education Singa-
pore. This material is based on research supported by the
Singapore National Research Foundation under NRF Award
No. NRF-NRFF2013-01.

[1] R. P. Feynman, International journal of theoretical physics 21,
467 (1982).

[2] P. W. Shor, SIAM journal on computing 26, 1484 (1997).
[3] L. K. Grover, in Proceedings of the twenty-eighth annual ACM

symposium on Theory of computing (ACM, 1996), pp. 212–219.
[4] E. Aı̈meur, G. Brassard, and S. Gambs, in Advances in Artificial

Intelligence (Springer, 2006), pp. 431–442.

[5] K. L. Pudenz and D. A. Lidar, Quantum information processing
12, 2027 (2013).

[6] M. Schuld, I. Sinayskiy, and F. Petruccione, Contemporary
Physics 56, 172 (2015).

[7] M. Schuld, I. Sinayskiy, and F. Petruccione, in PRICAI 2014:
Trends in Artificial Intelligence (Springer, 2014), pp. 208–220.

[8] S. Lloyd, M. Mohseni, and P. Rebentrost, arXiv preprint

6

arXiv:1307.0411 (2013).
[9] P. Rebentrost, M. Mohseni, and S. Lloyd, Physical Review Let-

ters 113, 130503 (2014).
[10] A. W. Harrow, A. Hassidim, and S. Lloyd, Physical Review

Letters 103, 150502 (2009).
[11] J. R. Shewchuk, Tech. Rep. CMU-CS-94-125, Department of

Computer Science, Carnegie-Mellon University (1994).
[12] J. Lee, Y. Bahri, R. Novak, S. Schoenholz, J. Pennington, and

J. Sohl-Dickstein, arXiv preprint arXiv:1711.00165v1 (2017).
[13] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for

Machine Learning (Adaptive Computation and Machine Learn-
ing series) (The MIT Press, 2005), ISBN 026218253X.

[14] J. Quiñonero-Candela and C. E. Rasmussen, The Journal of Ma-
chine Learning Research 6, 1939 (2005).

[15] J. Hensman, N. Fusi, and N. D. Lawrence, in Uncertainty in
Artificial Intelligence (2013).

[16] M. P. Deisenroth and J. W. Ng, arXiv preprint
arXiv:1502.02843 (2015).

[17] S. Aaronson, Nature Physics 11, 291 (2015).
[18] J. Bernardo, J. Berger, A. Dawid, A. Smith, et al., Bayesian

statistics 6, 475 (1998).
[19] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, Commu-

nications in Mathematical Physics 270, 359 (2007).
[20] V. Bužek, R. Derka, and S. Massar, Physical Review Letters 82,

2207 (1999).
[21] M. A. Nielsen and I. L. Chuang, Quantum computation and

quantum information (Cambridge university press, 2010).
[22] B. D. Clader, B. C. Jacobs, and C. R. Sprouse, Physical Review

Letters 110, 250504 (2013).
[23] M. J. Grote and T. Huckle, SIAM Journal on Scientific Com-

puting 18, 838 (1997).

[24] E. Chow, SIAM Journal on Scientific Computing 21, 1804
(2000).

[25] A. M. Childs, R. Kothari, and R. D. Somma, arXiv preprint
arXiv:1511.02306 (2015).

[26] D. W. Berry, A. M. Childs, and R. Kothari, arXiv preprint
arXiv:1501.01715 (2015).

[27] L. Wossnig, Z. Zhao, and A. Prakash, Phys. Rev. Lett. 120,
050502 (2018).

[28] V. Giovannetti, S. Lloyd, and L. Maccone, Physical Review
Letters 100, 160501 (2008).

[29] Z. Zhao, V. Dunjko, J. K. Fitzsimons, P. Rebentrost, and J. F.
Fitzsimons, arXiv preprint arXiv:1804.00281 (2018).

[30] L. Zhao, C. A. Pérez-Delgado, and J. F. Fitzsimons, arXiv
preprint arXiv:1510.03742 (2015).

[31] P. Chamorro-Posada and J. C. Garcia-Escartin, arXiv preprint
arXiv:1706.06564 (2017).

[32] A. Melkumyan and F. Ramos, in IJCAI (2009), vol. 9, pp.
1936–1942.

[33] S. Kim and J. Kim, in Field and Service Robotics (Springer,
2015), pp. 319–332.

[34] L. Liu, L. Shao, F. Zheng, and X. Li, Pattern Recognition 47,
3819 (2014).

[35] R. Furrer, M. G. Genton, and D. Nychka, Journal of Computa-
tional and Graphical Statistics 15, 502 (2006).

[36] R. P. Barry and R. Kelley Pace, Communications in Statistics-
Simulation and Computation 26, 619 (1997).

[37] L. Wossnig, Z. Zhao, and A. Prakash (2017), 1704.06174.
[38] R. S. Varga, Geršgorin and his circles, vol. 36 (Springer Sci-

ence & Business Media, 2010).

	Introduction
	Gaussian Process Regression
	Quantum Linear System Algorithm
	Quantum Gaussian Process algorithm
	Discussion and Conclusion
	References

