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Covert and secret quantum key distribution aims at generating information-theoretically secret
bits between distant legitimate parties in a manner that remains provably undetectable by an ad-
versary. We propose a framework in which to precisely define and analyze such an operation, and
we show that covert and secret key expansion is possible. For fixed and known classical-quantum
wiretap channels, we develop and analyze protocols based on forward and reverse reconciliation. The
crux of our approach is the use of information reconciliation and privacy amplification techniques
that are able to process the sparse signals required for covert operation and whose Shannon entropy
scales as the square root of their length. In particular, our results show that the coordination re-
quired between legitimate parties to achieve covert communication can be achieved with a negligible

number of secret key bits.

I. INTRODUCTION

Securing communications has become an essential re-
quirement in modern communication systems. Secrecy,
i.e, the ability to prevent unauthorized parties from ex-
tracting the information content of a signal, is typically
enforced using conventional computationally-secure en-
cryption although Quantum Key Distribution (QKD) re-
mains to date the only approach to unconditional se-
crecy [1, 2]. Another desirable feature of secure com-
munications is covertness, i.e., the ability to hide the
presence of communication signals from an unauthorized
party and provably avoid detection [3]. While secrecy
has been largely explored for quantum communications
both theoretically and experimentally, the mechanisms
required to achieve covertness are still much less under-
stood.

Covertness, also referred to as low probability of de-
tection, is conceptually related to classical and quantum
steganography [4-7], by which legitimate parties embed
a message into a covertext then disclosed to an adver-
sary [8]. In many quantum steganography protocols, an
innocent quantum state, in the form a codeword from a
quantum error-control code, is used as the cover to embed
another quantum state. The embedding is performed to
simulate the transmission of an innocent state through
a noisy channel and relies on shared secret keys with
well characterized rates. A crucial assumption in these
quantum steganography protocols is that the true physi-
cal channel is better than what the adversary expects. In
covert communications, however, the role of the covertext
is played by the communication channel, which intro-
duces noise and imperfections that are outside the control
of and only statistically known to the transmitter. There
has been a recent surge of interest for covert communi-
cations, which has led to the discovery of a “square-root
law” similar to that in steganography [5] in both classi-
cal [9-11] and quantum settings [12-15]. The square-root
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law, according to which the number of covert bits can
only scale with the square-root of the number of channel
uses, has also been experimentally validated in an opti-
cal test-bed [12]. The authors of [12] also showed that,
for a bosonic channel, covert communication is impos-
sible without sources of imperfection in the adversary’s
observations since the detection of a single photon would
indicate with certainty the existence of the communica-
tion. The possibility of quantum covert and secret key
generation was recently explored [16-18] but has led to
the rather pessimistic conclusion that “covert QKD con-
sumes more secret bits than it can generate” [16].

Our main contribution is to offer a more nuanced and
optimistic perspective and show that covert and secret
key expansion is actually possible over quantum chan-
nels. The intuition behind our approach is the follow-
ing. In layman’s terms, the covertness constraint requires
the number of qubit transmissions to scale as O(v/T)
for T channel uses [12]. A crucial characteristic of ear-
lier works [12, 16] is that the scaling is ensured by hav-
ing the legitimate parties coordinate the sparse transmis-
sion of v/T qubits in channel uses chosen secretly and
uniformly at random out of 7. Unfortunately, the se-
cret key size required to select these secret channel uses
scales as Q(v/T'log T) and necessarily exceeds the num-
ber of covert bits that one can hope to obtain, which
scales as Q(v/T). In contrast, we introduce more sophis-
ticated coding schemes for information reconciliation and
privacy amplification that do not require such coordina-
tion and are able to directly process the sparse and dif-
fuse statistical information content of covert signals. The
protocols that we present do not yet offer the secrecy
levels of state-of-the art QKD against coherent attacks
but already achieve covert and secret key expansion over
classical-quantum (cq) wiretap channels and might pave
the way to more broadly applicable protocols.

Our results are developed in two steps as follows. We
first lay out a precise model for quantum covert and se-
cret key generation that captures a wide range of attacks
by the adversary and protocols for legitimate parties,
along with quantifiable metrics to assess the performance
of a covert and secret key generation protocol over quan-
tum channels. The main distinction with previous mod-



els [16-18] is the inclusion of the public communication
required for information reconciliation in the analysis;
specifically, since an adversary may devise a hypothesis
test for detection based on all its observations, the prob-
ability distribution of the public communication has to
be considered jointly with the quantum measurements in
evaluating covertness. We then proceed to analyze an in-
stance of quantum covert and secret key generation over
fixed and known cq wiretap channels, for which we can
define and analyze the covert and secret key capacity.
We lower-bound the covert and secret key capacity by
developing coding schemes using both forward and re-
verse reconciliation. The forward reconciliation scheme
can be constructed by a suitable modification of estab-
lished protocols for quantum covert communication [14]
to guarantee secrecy. In contrast, the reverse reconcili-
ation scheme requires a new approach because of tech-
nical challenges precluding the direct use of well-known
results on information reconciliation and privacy amplifi-
cation for the sparse distribution needed for covert com-
munication. We do not instantiate explicit codes but
recent progress in designing codes for covert communica-
tions [19] suggests that the protocols described here can
be implemented with low-complexity.

II. NOTATION

We briefly introduce the notation used throughout the
paper. For a finite-dimensional Hilbert space H, dim H
denotes the dimension of H, and £(H) denotes the space
of all linear operators from H to H. We denote the ad-
joint of an operator X € L(H) by X, and call X Her-
mitian if X = XT. X € £(H) is positive (non-negative)
semi-definite, if it is Hermitian and all of its eigenval-
ues are positive (non-negative). D(H) denotes the set
of all density operators on #, i.e., all non-negative op-
erators with unit trace. For XY € L(H), we write
X >Y (X »=Y),if X -Y is positive (non-negative)
semi-definite. For X € H, let omin(X) and opmax(X) de-
note the minimum and the maximum singular value of
X, respectively, and if X is Hermitian, let A\pin(X) and
Amax(X) denote the minimum and maximum eigenvalue
of X. Furthermore, we define two norms of X € L(H)
as || X||; = tr (\/XTX) and || X[z £ /tr (XTX). For a
Hermitian operator X € £(H) with eigen-decomposition
X =Y x|z)(z|, we define the projection {X = 0} =
> >0 |®)(z]. A quantum channel €4, is a completely
positive and trace preserving linear map from L£(H4) to
L(HPB). An isomorphic extension of 4,5, Ua_Bg, sat-
isfies £4,p(p4) = trE(UAHBEpAUI‘%BE) for all p? €
D(HA). A cq channel is a map from an abstract set X
to D(H), denoted by x +— py.

For p* € D(HA) we define von Neumann entropy
H(p*) = H(A), £ —tr (p*log p?). For p8 ¢ D(HA ®
HPB), we define the conditional von Neumann entropy
H(A|B), £ H(pAP) — H(pP) where o 2 tra(p??), and
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Figure 1. Model of covert and secret key expansion

the quantum mutual information I(4;B), 2 H(p?) +
H(pP) — H(p"P). Similarly, we define the conditional
quantum mutual information I(A; B|C) & H(pA¢) +
H(pP%) — H(p*P9) — H(pC) for any p*PY € D(H* ©
HE @ HY). If Py is a distribution on X and  + p, is a
cq-channel, we denote the Holevo information by

I(Px,ps) 2 H <Z PX(x)pz> — Y Px(2)H(ps). (1)
x x
For p,o € D(H), the quantum relative entropy is

if supp(p) C supp(o),

D(pHU) L tr (P (1ng—10g0))
00 otherwise,

(2)
and the xo distance is

2 —1

x2 (pllr) 2 {too (2o

) —1 if supp(p) C supp(o),
otherwise.

3)

III. FRAMEWORK FOR COVERT AND
SECRET KEY GENERATION OVER CQ
WIRETAP CHANNELS

As illustrated in Fig. 1, we consider a setting in which
two legitimate parties, Alice and Bob, desire to share
a secret key while avoiding detection from an adversary,
Eve, by exploiting a one-way quantum channel and a two-
way classical authenticated public channel of unlimited
capacity. Specifically, over T' time steps, Alice prepares a
cq state pA4, possibly depending on public communica-
tions, on a bipartite system described by a Hilbert space
HA ® HA and sends the sub-system A to Bob. We as-
sume that for X C R, {|z)*},cx is an orthonormal basis
for HA, all eigenvectors of p are always in {|z)4}.cx,
and for any = € X, the conditional state pZ is fixed. For
simplicity, we restrict our attention to a two-dimensional
HA, ie., X = {0,1}, in which 0 represents an “innocent”
symbol, corresponding to the absence of communication,
while 1 represents an ‘non-innocent” symbol. We further
assume that the “start” (¢ = 1) and “stop” (t = T) times
of the protocol are known to all parties and obtained



through other modalities, e.g., GPS signals. Eve expects

the product state (pg')®” when there is no communica-
tion and may modify the states according to a quantum
channel. We denote the entire state received by Bob and
acting on the product Hilbert space (HZ)*T by pB.

For the purpose of covert communications, we need to
distinguish protocols based on the type of Eve’s attacks.
In the most general case, Eve implements a coherent at-
tack described by a quantum channel

e £((#) ) o)), @

with 1somorph1£: extension Uz _, g, in which Bob receives

pB = &5 ,g(p™). In such situation, Bob should refrain
from transmitting information over the public channel
until the end of the transmission to avoid improving Eve’s
detection capability on the quantum channel. Note that
this has no impact on QKD since no useful information is
shared until the end of the protocol. A less powerful Eve
can only implement collective attacks described by quan-
tum channels of the form &5 5 = 5%237 i.e., Eve ap-
plies the same channel independently to each state trans-
mitted by Alice. In this case, we can assume that Bob
receives each state before Alice transmits the next state,
which allows meaningful public communication during
the transmission between Alice and Bob. Throughout the
paper, we assume that Alice and Bob have exact knowl-
edge of the attack. We can therefore define an effective
cq wiretap channel z + pB¥ with marginal cq-channels
x — pB and z — pZ from Alice to Bob and Eve, respec-
tively. Finally, Alice and Bob have access to independent
local sources of randomness, denoted by R4 € R4 and
RE ¢ REB, respectively, as well as a source of secret key
ReR.

For simplicity, we describe the protocols with only re-
verse public communication, but extension to the general
case, in which forward public communication is also al-
lowed, does not present any difficulty. A protocol for
key generation operates in " time steps as follows. Alice
and Bob draw realizations r#, 2, and r of their local
and common randomness. Subsequently, in every state
te[1,T]:

e Alice prepares a cq state pA4 as explained earlier us-
ing her local randomness 74, the common randomness

r, as well as past public messages from Bob denoted

(wy,- - ,w;_1) and sends p* to Bob through the chan-
nel controlled by Eve;

e Bob performs a quantum measurement on his available
quantum state to obtain a classical measurement y; €
Y CR;

e Bob sends a message W; € W, over the public channel
using his local randomness rp, the common random-
ness r, as well as past measurements y*~'. The choice
of alphabet W; is part of the protocol design.

At the end of time step T, when no further public com-
munication happens, Eve performs a measurement on her
state p¥, as an attempt to detect the communication and
obtain information about the secret key, while Alice and
Bob use all their available information and randomness to
compute two long binary strings sX and s, respectively,
as well as the number of bits X and ¢Y, respectively, to
use as a secret key. The length of s¥ and s¥ is public
and fixed at the beginning of the protocol. Alice finally
sets her key k%X to be the first £X bits of sX while Bob
sets his key kY to be the first £¥ bits of s .

A protocol is called an (e, 8, u)-protocol if the following
properties hold. Let W, SX, 8Y, KX KY, be the ran-
dom variables representing the total public communica-
tion, Alice’s random string, Bob’s random string, Alice’s
key, and Bob’s key, respectively. We require:

e e-reliability: P, = ]P’(K X LK Y) < €, which implicitly
includes the condition ¢X = ¢Y¥;

e J-secrecy: S = D(pEWSXHPEW®pf:if) < 6, where

pEWSX is the joint density matrix of the eavesdrop-

per’s observations, public messages and Alice’s random
tri d pS7, is a mixed state for S di
string, and py,;¢ is a mixed state for corresponding
to a uniform distribution;

e y-covertness: C = D(p®W| (pF) @ piVs) < p, where
pE is the density matrix of the eavesdropper’s observa-
tions when no communication takes place and p!¥.. is
a mixed state for W corresponding to a uniform distri-
bution on x;W;.

A protocol is efficient if it allows key expansion so that
the number of key bits created exceeds the number of
common randomness bits consumed. Our goal is to an-
alyze under what conditions efficient (e, i, d)-protocols
might exist.

A couple of remarks are in order regarding our pro-
tocol definition. Note that the choice of the key length
is a part of the protocol. However, d-secrecy requires
the string SX to be secret and not just KX. This is
merely enforced for technical reasons, so that the rela-
tive entropy is a deterministic quantity irrespective of
the length of the key. Since e-reliability only applies to
the bits of KX, Alice can always generate the remain-
ing bits of S independently and uniformly at random
using her local randomness, so that our definition does
not incur any loss of generality. By convention, we as-
sume that the public communication is not by itself a
proof of communication. Instead, p-covertness only re-
quires that the public bits look uniformly distributed and
do not reveal communication on the quantum channel.
We point out that d-secrecy and p-covertness are “one-
shot” guarantees, in the sense that they only ensure a
low probability of detection for a single execution of the
protocol. In fact, by repeating the protocol k£ consecu-
tive and independent times, a (e, d, u)-protocol gives rise
to a (ke, ko, kp)-protocol. Additional post-processing can



reduce the constant ke and kd but cannot affect the con-
stant ku. This suggests that the protocol should be de-
signed for small values of © and large values of T'. Finally,
the particular choice of the quantum state p%if in the
definition of covertness plays no role in our proofs. As
long as there exists a specific state corresponding to no
communication for the public communication, our proof
holds and leads to a covert and secret key generation
scheme.

IV. COVERT AND SECRET KEY
GENERATION OVER KNOWN CQ-CHANNEL

We address the situation in which the cq wiretap chan-
nels are fized and known ahead of time, and in which the
adversary is passive. Our analysis corresponds to “known
collective attacks.” In this special case, the length of the
key can be computed ahead of time, and there is no need
to distinguish between the random strings S¥ and SY
and the keys KX and K. Furthermore, it becomes pos-
sible to define a notion of covert and secret key capacity
as follows. A throughput © is achievable if there exists
a sequence of (er, d1, pr)-protocols generating ¢ bits of
secret key while consuming rp bits of secret key over T’
stages and such that

lim ep = lim d7 = lim pp =0, (5)
T—o0 T—o00 T—o00
by = w(logT), (6)
. Ay —rp
and Th_r)réo T~ (C] (7)

The supremum of all achievable throughputs is called the
covert and secret key capacity and denoted Cqck. Note
that the definition of the throughput already captures
the scaling of the throughput with the square root of the
number of channel uses, VT. The scaling is justified a
posteriori by our analysis that shows that Cqqx is lower
bounded by a constant that only depends on the chan-
nel parameters. The unit of Cyc is therefore in nats per
channel use. Our main results are lower-bounds on the
covert capacity obtained by showing the existence of se-
quences of covert secret key generation protocols using
reverse or forward reconciliation.

To analyze the performance of protocols with forward
reconciliation, we build upon existing results for covert
communication over cq-channels [13, 14] with appropri-
ate extensions to guarantee secrecy. The innovative prin-
ciple of our approach is best highlighted for protocols
with reverse reconciliation as follows. In a first phase,
Alice transmits a sequence of independent and identi-
cally distributed (iid) symbols X distributed according to
a Bernoulli(ar) distribution over the cq-channel, where
ar € w((%)g) N o(%). Intuitively, the choice of
{ar}r>1 must ensure that X is sparse, so that the war-
den cannot suspect the existence of information sym-
bols, but not so sparse that Alice and Bob cannot ex-
tract a long enough key from their observation. We shall

4

show that our choice of {ar}r>1 simultaneously satis-
fies both requirements. In a second phase, Bob measures
his received quantum states in some basis and, based
on the output of the measurements, generates two mes-
sages W and K, representing public information recon-
ciliation and secret key, respectively. Bob subsequently
sends W through the public channel, and Alice recovers
K using W and X. Although the second phase of the
protocol seems deceptively similar to a standard appli-
cation of information reconciliation and privacy amplifi-
cation, there exists a technical difficulty because of the
specific distributions of Alice’s and Bob’s observations,
which precludes the use of standard tools. Specifically,
consider the classical channel Wy |y and suppose that Y
is the output of the channel to the input X. The stan-
dard finite-length analysis of reconciliation requires the
second-order penalty yr to satisfy [21]

T
1
~ - X)) =~r | =0.
Tlgr;@]?(?_; <10g LVY|X()/;1‘X7?) H(Y;Xz)> =z '7T> 0
(8)

By the Central Limit Theorem, this also requires that
V2 = w(ziTzl Va1<m)> For our specific
choice of ar, one can check that Var(W
Q(1) so that the second-order penalty satisfies vy =
w(\/T) A similar reasoning holds for privacy amplifi-
cation, which prevents us from establishing the desired
first-order scaling of o(v/T). We circumvent this difficulty
by resorting to a technique called likelihood encoder [20],
in which the encoders used to generate W and K are
derived from different principles. In particular, the anal-
ysis of the likelihood encoder only requires the use of
quantities depending on mutual information (instead of
conditional entropy), which has the same scaling as the
number of bits generated by a covert protocol. As we
shall see later, instead of (8), the finite-length analysis
of the likelihood encoder only requires the second-order
penalty v to satisfy

T
lim P 1
Ao (Z (o

i=1

Wy x (Yi|X5) , )
TR —H(quyi)) > /T> =

9)
By the Central Limit Theorem, this now requires that
V2 = w (Z?zl Var(log %)) By our specific

choice of ap, one can check that Var (log %) =

O(ar), which leads to yr = w(v/Tar). The second-order
penalty is now conveniently dominated by the first-order
term Zz‘T:1 I(X;;Y;) which is of the order of Q(Tar).

The analysis of protocols with forward and reverse rec-
onciliation leads to Theorem 1 below, whose proof is
given in Appendix A.

Theorem 1. Let {|y)P} be any
mal  basis  for HP, and  define

orthonor-
~BE A
pz -
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Figure 2. Simplified model of a lossy bosonic channel.

>y (W) WIP & IF) 2% (ly)(y|? @ IF). Assume that 1P

and H¥ have finite dimension and 0 < x2 (p¥||p¥) < oc.
We have

Coute > 2 7 (DEPIFR) ~BEEIFE)) . (10)

X2 (5‘19”%3
and if p§¥ = p§ @ pi;, then

2

2 (GEI70) (D "llps ") = DA 156 )

~D(pr et @ A7), (A1)

chk =

which simplifies when pPF = pP @ p¥ as

2 .
Cack > )D(pfllpc’?) (12)

xz2 (p71198

In addition, the lower bound in (10) is achieved without
public communication using covert communication codes
for cq-channels [14] combined with wiretap coding tech-
niques [11] while the lower bound in (11) is achieved with
reverse reconciliation on the public channel.

While this result does not hold for the most gen-
eral quantum setting, note that the covert secret key
throughputs predicted hold with a precise definition of
covertness that explicitly includes the public communica-
tion and demonstrate the existence of efficient protocols
that allow key expansion. Perhaps more importantly,
as apparent in the proof of the result, such protocols
do not rely on a secret key to determine the instances
in which Alice transmits non-zero states; in contrast,
our proof shows the existence of reconciliation and key-
extraction algorithms capable of extracting the diffuse
secret correlations created by Alice’s sparse transmission
of non-innocent states. We finally point out that for
pPE = pB @ pF secrecy comes almost for free as the in-
formation leakage to Eve is asymptotically dominated by
the information shared between Alice and Bob in reverse
reconciliation.

As an illustration, we consider the situation depicted in
Fig. 2 in which the input port of a balanced beam-splitter
is in control of Alice while Bob and Eve are each con-
nected to one of the output ports through optical fibers
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Figure 4. Covert and secret key generation throughput for a
lossy bosonic channel.

of length dap and d g, respectively, and loss v dB/km.
We further assume that the second input port is in the
vacuum state, and that Alice uses the vacuum state |0)
and a coherent state |a) as the innocent and the infor-
mation symbol, respectively. Bob and Eve measure their
output ports with photodetectors to count the number of
photons at each channel use. The photodetectors suffer
from dark count that is beneficial for covert communi-
cation since detection of photons at Eve does not neces-
sarily imply the existence communication. Let np and
ne be Bob and Eve’s photodetector efficiency, respec-
tively, and Ap and Ag be Bob and Eve’s photodetector
dark count rate, respectively. The achievable covert and
secret key throughputs can be obtained by substituting



the quantities

~ A
B =

dAp™

e 2 npl0”

Optlel?ip)?

o (FE7E) = ¢ R el (15

D(p7 11p5) = (Ap + |ol*7p) log (As + |a|*1B) — |al*is
(16)
D7 la5) = (A + |af*TE) log (Ae + |aliE) — |a*TE
(17)

n (10) and (12) for forward and reverse reconciliation,
respectively. Note that the output states of this channel
belong to infinite-dimensional spaces and, strictly speak-
ing, one cannot directly apply Theorem 1. Nevertheless,
since for the number states {|n)}n>0, (n|p|n) decays ex-
ponentially for all output states p, one can construct a se-
quence of channels with finite-dimensional output states
for which the quantities used in (10) and (12), as well as
the performance of any covert and secret key generation
protocol, tend to those of the original channel.

We illustrate in Fig. 3 the achievable covert and se-
cret key throughput as a function of Eve’s photodetector
dark count rate Ag for v = 0.2 dB/km, ng = ng = 0.97,
A = 0.001, and dap = dagp = 3 km. In Fig. 4, we also
illustrate the achievable covert and secret key through-
put as a function of the distance of Bob to Alice dap
for |a|*> = 0.001, v = 0.2 dB/km, ng = ng = 0.97,
A = Ag = 0.001, and dag = 3 km. As expected, the se-
cret and covert key throughputs are orders of magnitude
lower than their counterparts without covertness con-
straint. This is an unfortunate but unavoidable byprod-
uct of the covertness constraint, which severely limits
how many useful bits can be embedded in transmitted
signals.

V. DISCUSSION AND FUTURE WORK

We have introduced a comprehensive framework in
which to analyze the possibility of covert quantum key
generation. In the special case of cq wiretap channels,
for which the adversary’s attack is known, we have estab-
lished two lower-bounds on the optimal covert through-
put of key generation based on forward and reverse rec-
onciliation. While our results suggest that covert key
expansion is possible over quantum channels, several lin-
gering questions remain to be explored before envision-
ing an actual practical demonstration of covert quantum
key distribution. This includes, in particular, extend-
ing our results to more general attacks with fewer as-
sumptions regarding Eve’s abilities, extending the analy-
sis to infinite-dimensional systems that are closer to cur-
rent technological implementations, and designing effi-
cient coding schemes with provable finite length perfor-
mance. With respect to the latter, an explicit construc-
tion of covert communication codes over classical chan-

nels has been recently developed [19], which provides a
promising lead to design codes for the framework pro-
posed in the present paper.
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Appendix A: Proof of Theorem 1

We prove Theorem 1 by generalizing the proof of [22,
Theorem 1] to the quantum setting. The most challeng-
ing part of this generalization is to establish a channel
resolvability result for cq-channels for distributions suit-
able for covert communications. We first introduce some
preliminary concepts regarding covert communications
mostly borrowed from [11]. We also note that the use
of standard proof techniques for secret key generation
such as source coding with side information and privacy
amplification is challenging for covert communication as
discussed in Section IV. We therefore resort to the like-
lihood encoder technique [20] in which we first define an
auxiliary problem that can be analyzed using channel
coding approaches, for which designing a code for the
main problem is reduced to the design of code for the
auxiliary problem.

1. Preliminaries

We define here required quantities used for our achiev-
ability proof. Suppose Alice sends iid symbols through
her cq-channel z — pBE with each symbol distributed
according to Qx ~ Bernoulli(ar) for ar € (0,1). Upon
receiving each state, Bob makes a measurement in a fixed
orthonormal basis {|y)®} for HP to obtain a classical
symbol y. In the following, we define equivalent cq-
channels from Bob to Alice and Eve that result in the
same joint state for the three parties.

Definition 1. Let ap € [0,1]. We define

Qvix(lz) = (P pZ1y)"

(

PP AN () (wl® @ 17) p27 (ly)(y|® @ T7)
' (
(

A2)
piBE & ZQX V) (z|A @ pBE, A3)
oo s trm (9 9 17) 2" (i9)yl” o 17))

Qvix(yl)
(Ad)
@;‘E 2 ZQX\y(xlyﬂx) (z]* ® ",ﬁf,y, (A5)



Note that the state pABF is the joint state of all parties
after Bob’s measurement, which is classical for both Alice

~BE ~AE ~F :
and Bob, and p;~, p,~, and py, are the corresponding
conditional quantum states.

The following lemma establishes useful properties of
pBE under the assumption p&¥ = pf ® p¥.

Lemma 1. If pg% = pf @ ply then, for all y, it holds
that ﬁOEU = p¥. Furthermore, we have

I(Qy,py) = ar (D(pY155) + D (A7 l15) —

DT PN5 ") + (AP NIpT @ 7)) + O(af).  (A6)

Proof. By the spectral decomposition theorem, there ex-
ist orthonormal bases {|y)?} and {|2)F} for HP and HE,
respectively, such that

5= M)y (A7)
Py = Z)\Z|Z><Z|E (A8)
oo = Z Ayyr=2 )Y 1° @ |2)('|7. (A9)

v,y ,z,2’

Our assumption that pff = pf @ pf implies that
Az = MAM{y =y, 2z = 2'}. Furthermore, for any
y, we have by definition

o s ((9W" @ 17) of? (ly)(wl® ® 17))

Poy = Qv (]0) (o)
- QYle(yo)trB () (w]® @ 17)
| AT @ 1)
x (|:>%;|B ©1")) (ALl)
_trp (XL Aygzglyﬁgll;@ ENC (A12)
- Qy|x Qyx(y0) Z)‘ i (A13)
_ m@%ﬁg (A14)

We also know that tr (/753) = tr (ﬁgy) = 1, which to-
gether with (A14) yields p’ = pg,-
To prove (A6), notice that

I(QY7ﬁf)
— I(B; E),
=1(A; B); + I(A; E); — I(A; BE); + I(B; E|A) 5.
(A15)

~ A o~ ~ .
Moreover, for p§ = (1 — ar)p§ + arpt, we can write

I(4; B),
= H(py,) —
= —t1(Pay log (Pay) —

(A16)

(1—ar)H(py) —arH(py)  (AL7)

(1 —ar)pg log(py)
—arpy log(py)) (A18)
= —tr(pay (log () —log (p5) +log (75))
— (1 —ar)pg log(py) — arpt log(py)) — (A19)
= —tx(ph, (log pey —logpp)
—arpy (log L —
D(pe 175

) + O(aT)a

log 75 ) (A20)
— arD(FZ|78) - (A21)

(a

= arD ( || (A22)

where (a) follows from [14, Equation (19)]. Similarly, we
obtain

I(4; B); = arD(57 [175) + O(of),
I(A; BE); = arD(p7 " |55 ") + Oa).

(A23)
(A24)

Since X is classical, [23, Equation (11.92)] yields that

I(B; E|A), = (1 — ar)I(B; E),, +arl(B;E);  (A25)
@ arI(B; E), (A26)
= arD(pP " |p7 @ p1), (A27)

where (a) follows from our assumption that p§¥ = pf ®

pY. This completes the proof of (A6). O

2. One-shot results

We recall here one-shot results for classical channel
coding and classical channel resolvability (Lemma 2) and
quantum channel resolvability (Lemma 3) that play a
central role on our analysis. Given a classical chan-
nel (X, Wy x,Y), a message W uniformly distributed
over [1,M], and an encoder f : [1,M] — X, let
Pwxy (w,2,y) 2 L1{f(w) = 2} Wy x(ylz) be the in-
duced Probability Mass Function (PMF) of W, X, and
Y, and w2 arg max, e, m] Wy |x (Y] f(w)) be the max-
imum likelihood decoder at the output.

Lemma 2 (One-shot Bounds). If F' is a random encoder

such that {F(w)}weq,mq are iid according to a distribu-
tion Px over X, then for any v € R, we have

5o (e #)
Wy x (Y]X) < ) M

<P X Y|X lo = o~ 0
Prox W < EWyxoPr)(Y) S ) T2
(A28)




and

Ep (V(ﬁy; Wy x o PX))

<P 1 > i
Px XWY\X < Og (WY|X ° PX)(Y) + M
(A29)

where (Wy|x o Px)(y) £ 32, Px (2)Wy|x (y|z).
Proof. See [21] for (A28) and [24] for (A29). O
Let y — p, denote a cg-channel and Py be a PMF

over Y. If p £ >, Py (y)py, our objective is to find an
encoder f : [1,M] — Y such that |[p — p|l1 be small,

~ M
where 72 4 S )

Lemma 3. If F : [1, M] — Y is a random encoder whose
codewords are iid according to Py, then for all s <0 and

v, we have
27v
2vs+¢(s
A\ = i

where ¢(s) £ log (Zy Py (y)t (p}/ 3,05)) and v is the
number of distinct eigenvalues of p.

Proof. See [25, Lemma 9.2]. O

Er([7— pll1) <2 (A30)

3. An auxiliary problem

To show the existence of good codes for our main prob-
lem, we use the likelihood encoder technique [20], and
in particular, define an auxiliary problem for which we
can exploit channel coding instead of source coding. We
then show how these two problems are related in Sec-
tion A4. Consider a cg-channel y — ﬁ;‘E from Bob to
Alice and Eve as in Definition 1. Bob encodes three uni-
formly distributed messages W1 € [1, M;], Wa € [1, Ms],
and W3 € [1, M3] into a codeword Y using an encoder
£, M) x [1,M3] x [1,M3] — YT, transmits the
codeword Y over the cg-channel, and sends Wy pub-
licly. Alice subsequently performs a measurement on
her received state py in a fixed basis {|z)} to obtain

X, and uses X and W5 to decode Wj as /Wl. If Py

denotes the induced PMF of Y, and paABEW1W2W3W1
is the joint state in the auxiliary problem, our objec-

tive is to ensure that ]P’(Wl #* Wl)7 V(P{‘,;Q?}T), and
e

Lemma 4. If for some { >0

— pB @ p"iW2 ||| are small.

(A31)

log My + log M> +log M3 = [(1 + () H(Qy)T'], (A32)
log My +log M3 = [(1 — O)I(Qy, Qxy)T],

(A33)

then there exists a sequence of codes and a positive con-
stant £ such that

(Wl # Wl) < 2 CorT, (A34)

V(Py; Q) <27, (A35)

||pEW1W2 _ pE ® pW1W2H g 2—w(10gT) (A36)
Proof. Let F : [1,M:1] x [1,Ms] x [1,M3] be a ran-

dom encoder whose codewords are drawn independently
according to Q5. By construction, Alice can assume
that each symbol X; is received as the output of a DMC
(¥, Qx)y,X) with input Y;, and, therefore, Lemma 2 im-
plies that

Er (P (Wl # W1))
_ AZ%:]EF(]P<W\1 £ WAWs = ws))

(a) L Qxy(XdY2) M,y M
@Q?'”Q&Y%Zbg Ty 7))

t=1

T
QY\X }/t‘Xt) M1M3
=Por. (Zl vy STt

(A37)
where (a) follows from applying Lemma 2 to the sub-

codebook {F(wy,ws,w3) : w1 € [1, My],ws € [1, M3]}
for a particular wsy. By choosing

OI(Qx,Qyx)T]
(1 - C) I(Qx,Qyx)T,

log My +log M3 = |(1 — (A38)

(A39)

and using Bernstein’s inequality [26], we obtain

T
Qyx (Yi|X:) M, M,
Pos E log —————~ <
O (t_l * Qv (Y1) T 27

—3CI(Qy,Qxy)*T

<exp | —
Var(log ngcf(yi((};‘)x)) + 3C5¢I(X;Y)
g StxaT
< 2msert,
(A40)

for some £ > 0. Next, by using Lemma 2 for the chan-

nel (Y, Qyy,Y) with Qyy (¥'|y) = 1{y’ = y} and the
distribution @y, we obtain

Er(V(Py:QY))
2
Ak 7) Vg, MY

T
1
< Pps E log ———
o <t—1 > Qv (Y;



By choosing
log My + log My +log M3 = [(1 4+ Q)H(Y) T']

v = (1 + g) H(Y)T (A43)

(A42)

L

and using Hoeffding’s inequality [27],
ming.q, (>0 Qv (y), we obtain

T
Pyer log —~
Qv (; % Qv (V)

Y
< exp <—

<27¢,

with py

> 727
V) TN ML,

<2H(Y)2T> + 2——H(Y)T

21og?(py) (A44)

for £ > 0 small enough.
Since Wy and Wy are classical, we can write

WiW2E _ 1

YA > lwiwa) (wiwa| @ piy, ., (Ad5)

w1, W2

p

To upper-bound Ep (||pEW1 W2

ply Lemma 3 and obtain
Ep (o7 —p" @ (7)1 )

> Ee(l0E 0, — (%) 1)

w1, w2

— P @ p""2 1), we ap-

~ MM,
(A46)
2v

b

3

< V2rs+Té(s)

where v is the number of distinct eigenvalues of (ﬁE )®T,
and

¢(s) = log <Z Qv (y)tr ((ﬁf)l_s (ﬁE)s)> . (A47)

Upon choosing

log M3 = | I(Qy, py )T + CarT], (A48)
= HQv P+ SorT,  (Ad9)
we obtain
2vs+Té(s) 2 v
3
s (Qy Py) C )
< \/2. (ITT<7+ T) n /2*%DATTV
@ \/QSaTT<I(Q§T’55>+ +§"§ST>
= (A50)

+ \/2*%OCTT(T + 1)dimHE

\/ T(I -
sar e —— 5
<V2 3

QT) + %2*5"‘TT,

where (a) follows from [25, Lemma 3.7]. We now intro-
duce the following technical lemma to simplify the above
expression.

Lemma 5. Suppose s < 0; there exists a constant B > 0
such that for T large enough and |s| small enough, we
have

o(s) > —1(Qy, ﬁf)s — Blars® — s°). (A51)
Proof. See Appendix B. O
Applying Lemma 5 to (A50), we obtain
@ .
\/2saTT(Y D ¢y ﬁiT))
. \/26CK T(I(Q(?T,ﬁ{;;)_‘rg_’_7I(Qy=5{”;)‘:;:(aq~52*53)>
(A52)

Ba s—s2

By choosing s = o(\/ar) ﬁw(lOgT)[QS], the above expres-
sion goes to zero faster than any polynomial. Therefore,
for a random encoder, we have

Er (IP (Wl " ﬁ/])) <2-¢arT  (A53)
Er(V(PE;Q37)) <2757 (A54)

Wi WoE ~g\oT W W, os T
]EF(H? 1Wa ( )® 1 2H1>g2 (log )7

if
log Ms = [(1+¢)I(Qy,py)T ],
(A56)
log My +log My +log M3 = [(1 4+ ()H(Qy)T], (A57)

log My +log M3 = (1 — O)I(Qy, Qx|y)T.

(A58)
Upon defining the events
£ 2 (P (W1 £ Wl) <4 x g-6arTy, (A59)
E 2 {V(Pg; Q7)) <4 x27¢T}, (A60)

Y T —w/(10,
& 2 {[lp™M = (77) " @ p" Iy < 4 x 27 elor D,

(A61)
and using Markov inequality, we have
Pr(&1NENE;)
> 1-Pp(&7) —Pr(&3) — Pr(&5)
L, EEMMAT)) snrgor)
- 2—¢tarT 4 x 2-¢T
(A62)

~p\®T
Ep(lo""2" - (57)"" @ o2 )
o 4 x 9—w(logT)

WV
|



Therefore, there exists a realization f of F with

}P’(Wl ”] ﬁ/\l) <4x27rT (A63)

V(Pg; Q7)) <4x 27T, (A64)

"W — (GE) T @ pWi | < 4 x 27098 T) - (AGD)
O

4. Proof of Theorem 1

Using the likelihood encoder technique, we first prove
the lower bound in (11). Consider a specific code for the

auxiliary problem in Section A3 and let pABEW: A

be the corresponding induced joint quantum state. Be-
cause all random variables W7, Wy, X, and Y are clas-
sical, we can define their induced joint PMF denoted by

PW1 WoXY - We then use the conditional PMF's PW1W2|Y
and PW X as the encoder and decoder, respectively,
in the main problem, which results in the induced joint

FABEWLW2 W By our construction, we
SABEW; W2 Wi ¢

quantum state p
can decompose p

ﬁABEW1 WaWp Z JSY(Y)

w1, w2,W1,y,X
x PW1W2|Y(w17w2|Y)Q§(1[Y(x|Y) W1 XWa (w1 |x,w2)

X |yxwi welh ) (yXxwiwa @i | ® px7y7 (A66)

and pABEW1 Wa W1 as

~AB w 5
PR STy
wi,wa,W1,Y,X

X PW1W2|Y(7U1,w2|Y)Q§(T|y(X|Y) W1 | XWa (wl\& wy)

X |yxwi we i ) (yxwiwo @i | ® vay. (A67)

Since they differ only in the distribution of Y, we have

||’p’ABEW1 W2W1 _ ﬁABEWI Wle Hl

~ (a)
< QV(P@; @YT) < 27T (A6S)

where (a) follows from (A54). Thus, we upper-bound the
probability of error in the main problem as

Ps(Wy # Wa)
Ps(Wy # Wa)

+ ”ﬁABEWlWQWl . ﬁABEWleW1 I

(A69)
< 9—¢CarT 4 Q*CT,

10

and upper-bound the sum of secrecy and covertness as

S + C D(AW1W2E||pun1f ﬁWZE
+D(p" "ol @ pi")  (ATO)

= D(P" Pl ©5) + D(E®llr5")

unif

(AT1)
< D (P e @ °)

1
+ 500X (p1 5T + O(07T) (AT2)

(b)

< 7R il @ 5

Punif
My M, (dim HE) "

x log — — T
T Amin (PE)T |pWrW2E — pin 2 @ pE ||y

1
+ 50rx2(p1 1) T + O(a7T) (AT3)

Pt 2 @ P
x (O(T) = Tog [[p™ ="

HAW1W2E

— ot @ 8

1
+ S0ba(pF )T + O(ahT) (ATA)

(c)
< (27T + 27T O(T)

1
+500x2(07 )T + O(a7T), (AT5)

2

where (a) follows from [14, Lemma 7], (b) follows from
Lemma 6 in Appendix C, and (c¢) follows from

~ WL W
||pW1W2E puluf : ®p H

) Y O e e !
<2 CarT 2 CT'

(A76)

The throughput of the coding scheme is lower-bounded
by (A79) shown below.



log M,

11

VIC ™\ 7 (26T 4 2-1) O(T) + bada(of [ B)T + O(a3hT))
OI(4; B),T)

2 [(1—

xz2(pfllef)

2 . ~
= m (D(P{BE”P(]?E) -

We finally turn to the proof of the lower bound in (10).
Note that if D(p? ||p5) < D(p¥]p8 ) the result is trivial.
Therefore, we can assume that D(pF[|p8) > D(p¥[|p)-
Let M; and M be such that

log My + log My = | (1 — C)I(QX75yB)J7
log My = [(1+ C)[(vaﬁfﬂ-

The protocol is then as follows. Alice chooses a random
binary string of length log M7 +log M5 and transmits this
string through a covert code introduced in [14]. Alice
and Bob subsequently extract the first log M; bits of the
string as the key. The reliability and covertness proof
follows exactly from [14]. For secrecy, note that

(A80)
(A81)

S¥ sX
D (pEM ||pEM ® Punif

X X
£ D(pES 10 @ i)

MZ

w11

(A82)
(e, 110®)

Similar to the proof of (A55), one can show that the
above expression is upper-bounded by 2-«1°eT) provided
that log My = [(1+¢)I(Qx,p5)]. Lower-bounding the
throughput as in (A79) using (A80) and (A81) concludes
the proof. Note that unlike the proof of (11), the pro-
tocol used here does not use the public communication
channel.

Appendix B: Error exponent calculations

Proof of Lemma 5. For a fix T, applying Taylor’s theo-
rem on ¢ defined in (A47), we have

02 SO,

0. To compute derivatives of ¢, let us

¢(s) = ¢(0) + ¢'(0)s +

(B1)

for some s < n <
define

log M, (AT7)
[1(B; E),;T + ¢arT]|

Tar(l+o(1)) (AT8)

Dy llpy) — D (AT CllpY @ p1)) + o(1). (A79)

(

One can check that ¢(s) = logg(s). Hence, we obtain

o) = 2. (B4)
N RN

¥ =" (g<s>> ’ (B5)
e ") g8 L (d)Y
=0 A ”<g<s>) - (BY)

Moreover, since A/ (s) = —In (p}') Ay(s)+ Ay (s) In (57),
we have

ZQY

—In (pY) Ay(s) + Ay(s)In (57)),

(B7)

ZQY

—21n(py)A (s)In (p

(ln py))sz(s)
P)+Ay(s) (n (57))°) . (BY)

and

/// Z QY

+3(n (57))" Ay () n (%)

=31 (5%) A,(s) (In (57))° + 4, (s) (1n (7)) -

Using A, (0) = p} combined with the above expres-
sions, we obtain

ZQY
ZQY

~1(Qy. py),

ZQY

—2ln(ﬁy) Pl (57) + 7 (in (57))°) . (B12)

Jor (= (1n (7))" Ay (s)

)tr ( py =1, (B9)

= (py) py + py In (7)) (B10)

(B11)

yor (m (55))" 77



Hence, we have

6(0) = In(g(0)) = 0, (B13)
) i

510) = L8 — ~1Qv.75), (B14)
v g0 (g0

O ="y~ (gm)) ’ (B15)

=3 Qv(y)tr (I (55))* 57

~2In (72) 52 (57) + 7% (10 (57))°)

—I(Qy,py)%. (B16)

Note that ¢'(0) implicitly depends on ar the proba-
bility that the input is one. Let us define

he) 2 3 Qv (i (32))° 7

~2In (7)) 5§ n (5%) + 7 (in (57))")  (BL7)

when the input distribution is Bernoulli(e). One can
check that Qy (y), py, In(py), and In(p¥) are continu-
ously differentiable with respect to «, and so is h. More-
over, we have

12

p0) = 3 Quix(wloyer (i (35,)) 75,

—2m (5F,) 75, 10 (57) + o, (In (57))°)
(B18)

DS Qv o ((n (57))* 5"

21 (7%) 77 (7%) + 77 (1 (7)) ") = 0,
(B19)

where (a) follows from Lemma 1. By the mean value
theorem, we know that |h(a) — h(0)| = |h(a)| = W (B)«
for some 0 < 8 < «. Since k' is continuous for a small
neighborhood around zero, it is bounded and therefore,
we have |h(ar)| = O(ar). Furthermore, Lemma 1 im-
plies that I(Qy, ply)? = O(a7). Thus, there exists B > 0
such that |¢”(0)| < Bar for T large enough. Notice next
that g, ¢’, ¢”, and ¢’"" are jointly continuous functions of
both variables s and ar in a neighborhood around (0,
0). Additionally, since g(0) = 1 when a = 0, we con-
clude that ¢ is also continuous in both s and az in
a neighborhood around (0, 0). Therefore, for B large
enough, |s| small enough and T large enough, we have
6"(s)] < B. Combing ¢(0) = 0, #'(0) = —1(Qy. ).
|¢”(0)] < Bar, and |¢"'(n)] < B with (B1), we obtain
the desired result. O
Appendix C: Technical Lemma

Lemma 6. Suppose p and o are two density matrices
on a Hilbert space H with dim H = d such that suppp C
suppo and ||p — o1 < e < e L. Then,

D(pllo) < elog (C1)

Amin(0)€’

Proof. Since supp(p) C supp(c), we have

D(pllo) = tx (p(log p — log 7)) (C2)
— —H(p)+ H(o) —tr((p— o) logo)  (C3)

(@) d
< elog— —tr ((p—o)logo) (C4)
€
d 1
< elog — + elog ——,
elog — +elog o () (C5)
where (a) follows from Fannes inequality. O
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