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We present a gradient-based optimal-control technique for open quantum systems that utilizes
quantum trajectories to simulate the quantum dynamics during optimization. Using trajectories
allows for optimizing open systems with less computational cost than the regular density matrix
approaches in most realistic optimization problems. We introduce an improved-sampling algorithm
which minimizes the number of trajectories needed per optimization iteration. Together with em-
ploying stochastic gradient descent techniques, this reduces the complexity of optimizing many
realistic open quantum systems to the complexity encountered with closed systems. Our optimizer
harnesses automatic differentiation to provide flexibility in optimization and to suit the different con-
straints and diverse parameter regimes of real-life experiments. We utilize the optimizer in a variety
of applications to demonstrate how the use of quantum trajectories significantly reduces the compu-
tation complexity while achieving a multitude of simultaneous optimization targets. Demonstrated
targets include high state-transfer fidelities despite dissipation, faster gate times and maximization
of qubit-readout fidelity while maintaining the quantum non-demolition nature of the measurement
and allowing for subsequent fast resonator reset.

I. INTRODUCTION

Controlling the time evolution of quantum systems to
achieve certain optimization targets has been a crucial
task in a host of contexts, including quantum chemistry
[1–4], NMR spectroscopy [5–9], molecular physics [10, 11]
and quantum information theory [12]. In addition, many
applications of optimal control have been emerging in
the field of quantum computing in order to realize quan-
tum gates [13–15] of different qubit realizations includ-
ing superconducting qubits [16–19] and ion traps [20–
22]. There exist different theoretical approaches to im-
plementing optimal control in closed quantum systems,
but the main commonly used algorithms are Gradient
Ascent Pulse Engineering (GRAPE) [1], as well as Kro-
tov’s method [3, 23] and other monotonically converging
gradient algorithms [2, 24, 25].

Studying open quantum systems where dissipation and
dephasing effects are included requires the simulation of
open dynamics. Typically, this can be described by a
Markovian Lindblad master equation [26]. A key dif-
ference between open and closed dynamics is that the
open case propagates the quantum state as a density
matrix instead of a state vector. Most of the working
closed-system algorithms can be generalized to the open
case but would have to propagate density matrices of
dimension d2 instead of state vectors of dimension d.
Open algorithms include open versions of GRAPE [1]
and Krotov’s methods [23]. Density matrix centered al-
gorithms were successfully used in some applications of
small system size [27–30]. While traditional propagation
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requires consistent matrix multiplications and exponen-
tials of superoperators of dimension d2 × d2, some more
recent approaches rely on propagating the density matrix
through different integration methods [31–33]. Notwith-
standing the achieved improvements, these techniques
are still based on storing and propagating matrices of
size at least d × d. In addition, propagation is generally
achieved through complex and often computationally te-
dious integration techniques. Most of the applications
demonstrated with these techniques were limited to mod-
erate Hilbert space sizes.

A useful alternative for simulating the dynamics of
open quantum systems is to employ quantum trajec-
tories. Quantum trajectories describe the effect of the
environment on the system by a stochastic Schrödinger
equation (SSE). This SSE governs how the evolution of
the system is conditioned on the measurement processes
of the environment [26, 34]. Every trajectory carries
information about the dynamics and the average over
many trajectories reproduces the master equation solu-
tion. Trajectories offer a promising computationally ef-
ficient approach to open optimal control since generat-
ing every trajectory requires only sparse matrix-vector
propagation. Recently, the use of trajectories has been
proposed in Krotov-based optimization [35] for a spe-
cific choice of optimization target. However, there has
been little work on the use of quantum trajectories in di-
rect gradient-based optimal control, since the stochastic
nature of trajectories makes it difficult to provide ana-
lytical forms of gradients for gradient-based algorithms.
Here, we present a gradient-based trajectories optimiza-
tion technique that significantly reduces the simulation
complexity and is flexible with respect to the choice of
optimization targets. The foundation of this technique
relies on automatic differentiation.
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In our previous work [36], we invoked the similarities
between quantum optimal control and deep neural net-
works [37, 38]. Both rely on linear algebra processing
and gradient descent techniques to minimize a certain
error function. Therefore, we may utilize the automatic
differentiation concept [39–41] that is commonly used in
neural network machine learning applications to build
our trajectory-based optimizer. The main advantage is
that analytical forms of trajectory gradients for the var-
ious optimization constraints are not needed to be hard-
coded in the algorithm. An additional advantage is that
a reduced number of trajectories could be used per opti-
mization iteration, since loading the gradients of a subset
of the total data still leads to convergence. This process
is known as stochastic gradient descent (SGD), and is in-
tensively used in machine learning applications [42–45].

II. THEORY

A. Quantum Trajectories

Whenever a quantum system interacts with its envi-
ronment, it is subject to dissipation and dephasing pro-
cesses, and must be treated as an open system. In gen-
eral, the Hamiltonian of such an open system interacting
with its environment is given by

Htot = H +Henv +Hint, (1)

where H is the Hamiltonian of the system of interest,
Henv the Hamiltonian of the environment and Hint the
corresponding interaction Hamiltonian. Several generic
assumptions about the nature of the environment inter-
action lead to the Lindblad master equation [26] which
is the evolution equation for the reduced density matrix
of the system, ρ = Trenv(ρtot):

∂ρ

∂t
= −i[H, ρ]−1

2

∑
l

γl
[
c†l clρ+ρc†l cl−2clρc

†
l

]
= Lρ. (2)

Here, {cl} is a set of so-called jump operators, describ-
ing relaxation and dephasing emerging from the inter-
action with the environment, with associated rates {γl}.
L denotes the Liouville superoperator and we have set
~ = 1. In the following, we will assume that the ini-
tial state in the evolution is a pure state of the system,
ρ(0) = |ψ0〉 〈ψ0|.

Following the evolution of open quantum systems re-
quires propagation of the full d×d density matrix, where
d is the system Hilbert space dimension. Numerically,
this may be realized by expressing the density matrix as
a vector and propagating it via matrix exponentials of the
d2 × d2 superoperator. As Hilbert space size increases,
this process can require heavy computational resources
in comparison to the closed-system dynamics governed
by propagators of size d× d.

An alternative approach to simulating the dynamics of
open quantum systems consists of quantum trajectories:

a stochastic-sampling approach which simulates m inde-
pendent trajectories. Each trajectory undergoes dynam-
ics of a complexity similar to that of a closed system,
and thus only requires propagators of size d × d which
helps reduce the computational cost. There are different
equivalent unravelings of the master equation into a set
of trajectories [34]. Here, we utilize the simplest of them:
the unraveling into quantum-jump trajectories. The gen-
eration of these trajectories is summarized as follows [46]:

1. Discretize the total evolution time into small time
steps dt.

2. Propagate the initial state |ψ0〉 with the effective
non-Hermitian Hamiltonian

Heff = H − i

2

∑
l

γl c
†
l cl. (3)

The norm ‖|ψ(t)〉‖ of the resulting state will decay
over time.

3. Generate a uniformly-distributed random number
r ∈ [0, 1).

4. Keep propagating with Heff until ‖|ψ(t)〉‖2 reaches
r. Once reached, randomly select one jump op-
erator from {cl}, according to probabilities ∝
〈ψ(t)| γl c†l cl |ψ(t)〉. Apply the jump operator to the
state, and normalize the result.

5. Repeat steps 3-4.

The expectation value of any Hermitian operator A can
be obtained by averaging over a sufficient number M of
trajectories,

〈A〉(t) = Tr[Aρ(t)] ≈ 1

M

∑
m

〈ψm(t)|A |ψm(t)〉 (4)

with statistical error σA ∝ 1√
M

[35].

Using quantum trajectories to simulate the dynamics
of open systems has several advantages. First, the com-
plexity of computations is O(Md3) instead of O(d6) as
would be needed to propagate the full density matrix.
[Note: matrix multiplication of matrices of size d × d is
O(d3).] In addition, we can use the sparsity of matri-
ces that typically arise in most quantum applications to
significantly lower the complexity of matrix-vector mul-
tiplication to O(d2). Therefore, for large Hilbert space
dimensions where M < d3 (with d ∝ 2n growing ex-
ponentially with n, the number of qubits), the use of
quantum trajectories can significantly improve the com-
plexity. While M must be large enough to overcome
the statistical noise in the trajectories outcomes, we will
propose schemes to reach statistical convergence with a
lower number of trajectories. In many practical cases
quantum jumps turn out to be rare. We propose a pro-
tocol that takes advantage of the rarity of jumps, and
only requires computation of a smaller set of trajectories,
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hence reducing the complexity even further. In addition,
quantum trajectories reduce the memory requirements
for calculating the forward evolution, as superoperators
are never stored in memory explicitly; only propagators
of size d× d are calculated instead. Finally, since trajec-
tories are independent of each other, this method is also
highly parallelizable. Different trajectories can be run on
different computational nodes in parallel, thus reducing
overall computation time.

To present how quantum trajectories can be used in
optimal control, we first review the relevant gradient-
based optimal-control techniques.

B. Open-system GRAPE

In standard optimal control theory, time evolution is
discretized into N time steps of duration dt. During each
time step j, the Hamiltonian consists of adjustable con-
trol parameters ukj , assumed to be constants for each
period dt. These control parameters multiply a set of
control Hamiltonians Hk which are added to the constant
system Hamiltonian (the so-called drift Hamiltonian) H0,

Hj ≡ H(j dt) = H0 +
∑
k

ukjHk. (5)

This set of discretized Hamiltonians is used to propagate
the initial state(s) at t = 0 towards the final state(s)
at t = tN . In the case of open quantum dynamics, the
standard way to perform such propagation is through Li-
ouville superoperators Lj which can be separated again
into drift (including dissipation) and control superoper-
ators as

Lj = L0 +
∑
k

ukjLk. (6)

The goal is to determine the optimal control parame-
ters ukj that minimize a certain cost function C. Gradi-
ent descent algorithms can be utilized as long as gradients
of C with respect to the control parameters ukj can be
calculated. For instance, an iterative approach may be
used in which the control parameters are updated via

ukj → ukj − ε
∂C

∂ukj
, (7)

where ε is the update step size. Several algorithms exist
to change ε adaptively at every iteration for better con-
vergence. More complex gradient descent methods such
as ADAM [47] may also be utilized.

A key cost function in open quantum optimal control
theory is the distance between the target density matrix
ρT and the propagated density matrix ρN at the finalNth
time step. The corresponding infidelity cost function can
be expressed as

C = 1− Tr[ρT ρN ]. (8)

The open-system GRAPE method [33] relies on calcu-
lating the analytical gradients ∂C

∂ukj
. For that purpose,

consider the final density matrix ρ(T ), obtained after N -
fold application of the propagation superoperators

ρN = ΛNΛN−1 . . .Λ1ρ0 (9)

where the propagator at time step j is

Λj = exp(Lj dt). (10)

The main approximation in the calculation of gradients
in the most basic open-system GRAPE implementation
comes from expressing the derivative of every Λj to the
first order in dt as

∂Λj
∂ukj

≈ dtΛjLk. (11)

which ignores higher order terms that include commuta-
tors of Λj and Lk. Higher-order expansions with better
accuracy have been considered [5].

Working to first order in dt, the analytical gradient in
this case can be calculated to be

∂C

∂ukj
≈ i dt Tr(λj [Hk, ρj ]) (12)

where ρj = ρ(j dt) = ΛjΛj−1 . . .Λ1ρ(0) is the ini-
tial density matrix propagated to time step j and

λj = Λ†j+1Λ†j+2 . . .Λ
†
NρT is the target density matrix

backward-propagated to the same time step j.
Therefore, utilizing first-order GRAPE to optimize

open quantum systems necessitates the calculation of ρj
and λj at every time step j. This could be realized by
propagating both the initial and target density matrices
using matrix exponentials of superoperators of dimension
d2 × d2. Hence, the simplest implementation of open-
system GRAPE has all the computational and memory
drawbacks discussed in section II A. Alternatively, direct
integration for propagating density matrices [31–33] has
been proposed to circumvent the need for calculating the
d2 × d2 superoperators. However, these techniques still
calculate and store matrices of size d×d. Therefore, using
quantum trajectories is a potential area of improvement
for open-system GRAPE when the Hilbert space dimen-
sion is large. However, extending gradient-based algo-
rithms to deal with quantum trajectories is not entirely
straightforward due to the randomness inherent in every
time step of each trajectory, as we shall discuss next.

C. Direct Gradients in Quantum Trajectories

Consider the problem of efficiently calculating analyti-
cal gradients for quantum trajectories by comparing with
the case of closed-system GRAPE. Each quantum trajec-
tory consists of the time evolution of a pure state which
is described by a stochastic Schrödinger equation [34]. In
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this aspect, it resembles the closed-system evolution un-
der the ordinary Schrödinger equation. In closed systems,
variations of the GRAPE algorithm [1] describe how to
obtain gradients analytically. A key strength of these al-
gorithms is that they enable the calculation of analytical
gradients in a memory-efficient way during the simulation
of the system evolution.

To illustrate this, consider the following simple state-
transfer cost function in the case of a closed system,

C = 1− |〈ψT |ψN 〉|2, (13)

where |ψN 〉 = UNUN−1 . . . U1 |ψ0〉 is the final system
state, |ψT 〉 is the corresponding target state and Uj =
exp(−iHjdt) is the unitary propagator at time step j.
Similar to the open-system GRAPE case, the closed-
system GRAPE gradients can be calculated to first order
in dt, resulting in [1]

∂C

∂ukj
= −2 dt Im

[
〈ψTj |Hk|ψj〉〈ψT |ψN 〉∗

]
(14)

where
∣∣ψTj〉 =

∏N
j′=j+1 U

†
j′ |ψT 〉 is the target state back-

propagated in time to time step j, and
∏

is understood to
produce a time-ordered product. Eq. (14) indicates that
a memory-efficient gradient calculation method which
does not need caching of intermediate states or propa-
gators can be realized as follows:

1. Complete forward evolution given the current val-
ues of the control parameters ukj to obtain |ψN 〉.

2. Back-propagate both |ψN 〉 and |ψT 〉 one time step

backwards using U†N and calculate the gradients at
this time step using Eq. (14).

3. Repeat step 2 to back propagate to all time steps

using U†N−1, U
†
N−1, . . . , U

†
1 and calculate the corre-

sponding gradients for all j.

Turning back to the case of quantum trajectories, we
note two main differences distinguishing quantum tra-
jectories from the evolution of closed quantum systems.
First, the propagation in every time step is no longer
unitary due to the non-Hermitian part of Heff, see Eq.
(3). Second, quantum trajectories involve randomness
due to the intermittent occurrence of quantum jumps.
The propagation,

|ψN 〉 =
MNMN−1 · · ·M1 |ψ(0)〉
‖MNMN−1 · · ·M1 |ψ(0)〉‖

(15)

is described using the non-unitary propagator

Mj = exp(−iHjdt− dt
2

∑
l γlc

†
l cl) (16)

in the absence of a jump, or

Mj = cl, (17)

if a jump occurs in decoherence channel l. Imitation of
the cache-free gradient calculation via back-propagation

of states will generally fail for quantum trajectories.

Back-propagation cannot be achieved by M†j anymore
due to non-unitarity. Even worse, most realistic jump
operators do not even have an inverse as they represent
irreversible dynamical changes of the system, e.g., the
decay of an excitation. This leads to the necessity of
caching intermediate information during the numerical
simulation and takes away an important advantage of
using fully analytical forms of GRAPE.

Besides the need for caching, obtaining an analytically
closed form for gradients is considerably more tedious for
quantum trajectories than in the case of closed unitary
evolution. In part, this is due to the need for explicit
normalization of propagated states, see Eq. (15). Differ-
ent from closed evolution, the final single-trajectory state
|ψN 〉 now depends on the control parameters not only
via the propagators Mj but also via the normalization
factor FN = ‖MNMN−1 · · ·M1 |ψ(0)〉‖ in the denomina-
tor of Eq. (15). As a result, gradients with respect to
the control parameters thus require both ∂Mj/∂ukj and
∂FN/∂ukj . This makes it generally much more cumber-
some to obtain analytical gradients and use them in an
efficient way. For the simple infidelity cost function in
Eq. (13), we provide a detailed discussion of the analyt-
ical gradients in Appendix B.

Therefore, one way to better handle the cumbersome
matter of gradient calculation for quantum trajectories
given any desired cost function, is to use automatic differ-
entiation instead of relying on analytical gradient forms
which, if existent, do not generally support efficient im-
plementation without caching anyways.

D. Automatic Differentiation

Automatic differentiation is a central concept in ma-
chine learning, utilized for the general optimization of
cost functions [39–41]. As we have demonstrated in pre-
vious work on closed-system optimization [36], its frame-
work can also be utilized in quantum optimal control
problems. The main idea of automatic differentiation is
to systematically apply the chain rule of differentiation
to relate a given cost function to the control parameters
and calculate the corresponding gradients automatically.
The process of expressing the optimization problem in
the automatic-differentiator language creates a compu-
tational graph that is used to track the gradients in a
backward fashion. For the reader unfamiliar with these
concepts, details and examples of the use of automatic
differentiation are provided in Appendix A. In the fol-
lowing, we discuss how automatic differentiation can be
implemented in the case of optimization based on quan-
tum trajectories.
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III. IMPLEMENTATION

A. Conditional Graphing using TensorFlow

In order to use automatic differentiation for quantum
trajectories, we must define the computational graph of
every trajectory in terms of basic matrix operations de-
fined by the differentiator. One challenge in this process
is the randomness inherent in each quantum trajectory
which prevents the computational graph from having a
fixed structure. Instead, the relationship between the in-
puts and the cost function is only determined at run time
by the choice of the random numbers entering the individ-
ual trajectory. Hence, our differentiator is equipped with
the flexibility of dynamically creating the computational
graph of each trajectory – a scenario called conditional
graphing. Fig. 1 illustrates the type of conditional graph
needed for quantum trajectories.

We implement our open quantum optimizer using the
TensorFlow library for automatic differentiation and ma-
chine learning [48]. Developed by Google’s machine intel-
ligence research group, it allows for conditional graphing
and dynamically setting the size of the computational
graph at runtime. TensorFlow is easily integrated within
Python and has a comprehensive basic set of operations
for matrix algebra with predefined gradients. It also sup-
ports the use of GPUs in a straight-forward manner and
allows one to select which computations to perform on
available CPUs vs. GPUs. This enables better use of
computational resources to balance speed and memory
usage of the simulation [36]. In addition, TensorFlow
has support for distributed learning, by running different
parts of the computational graph or multiple copies of
the same graph on different machines in parallel. This is
crucial for the implementation of quantum trajectories,
as we will discuss below.

B. Custom Cost Functions

So far, we have primarily focused our discussion on the
infidelity cost function defined in Eq. (13). However, one
key advantage of automatic differentiation is the ability
to define a broad variety of cost functions without the
need to calculate analytical gradients manually. Our im-
plementation takes advantage of that to allow the user
to specify a weighted sum of a multitude of cost func-
tions according to the needs of optimization. Cost func-
tions need not be functions of only the final evolved state
ψN . Instead, they may depend on all intermediate states
{ψj}, or could impose constraints on the control param-
eters themselves.

Important examples of relevant cost functions we im-
plement are shown in Table I. For the cost functions
C1, C2 and C3, the optimizer monitors and optimizes over
intermediate and/or final physical quantities, like the in-
termediate/final occupation of some state or the interme-
diate/final expectation value of a physical operator. By

FIG. 1. The computational graph of a quantum trajectory
evolution must be conditional and allow for all possibilities of
the forward path. Each forward path is only determined at
runtime through the choice of random numbers entering the
trajectory generation. At every timestep, the evolution either
proceeds via the non-unitary Hamiltonian Heff or through a
jump ∈ {cl} from one of the possible m jump channels. The
yellow path is an example of the many possible trajectories.

contrast, cost functions C4, C5, C6 and C7 ensure that the
resulting control pulses are smooth and experimentally
realizable. The total cost function in any optimization
instance is an appropriate linear combination of these
individual contributions, C =

∑
αiCi where the weight

coefficients αi are determined empirically depending on
the desired relative strengths of the different constraints.

C. Techniques for Handling Trajectories

Another very important consideration for the opti-
mizer is the ability to implement the number of trajecto-
ries needed for the simulation efficiently, which differs ac-
cording to the size and nature of each optimization prob-
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TABLE I. Examples of single trajectory cost functions imple-
mented in our optimizer

Cost Function Explanation
C1 = 1− |〈ψT |ψN 〉|2 Infidelity between final

state ψN and target state
ψT

C2 =
∑
j

|〈ψf |ψj〉|2 Intermediate occupation
of forbidden state ψf

C3 =
∑
j

〈ψj |O|ψj〉 Integrated expectation
value of operator O

C4 =
∑
k,j

|ukj − ukj−1|2 First derivatives of the
control parameters

C5 =
∑
k,j

|ukj+1 − 2ukj + ukj−1|2 Second derivatives of the
control parameters

C6 =
∑
k,j

|ukj |2 Control pulse power

C7 =
∑
k,j

|(1− e−
(j−N−1

2
)2

2σ2 )ukj |2 Deviation from a Gaussian
envelope

lem. Fortunately, it is not always necessary to exhaus-
tively sample the full statistics in each single iteration of
the optimization process. Instead, it may be sufficient
to generate a smaller number of trajectories which only
partially represent the statistics. In the case where only
a single trajectory is used per iteration, the procedure
is known as Stochastic Gradient Descent (SGD) [42–45].
This generally leads to non-monotonic convergence, often
requires more iterations and can produce noisy pulses. A
better way for our model is to include a moderate number
of trajectories in each iteration so that every iteration is
based on a batch of data. This procedure, where gradi-
ents applied in each iteration are generated by a batch of
trajectories, is known as mini-batch SGD [49].

Using quantum trajectories allows for flexibility in the
ways simulations could be implemented since trajecto-
ries could be constructed independently of each other.
Whether to generate trajectories in series and/or in par-
alel, and how many trajectories should be grouped to-
gether, are examples of questions that the optimizer
should address on a case by case basis, depending on
the specific optimization problem. Hence, we implement
different ways of grouping and propagating trajectories
in our optimizer to better match the nature of each op-
timization problem. In particular, the following three
techniques are used to handle trajectories generation.

1. Improved-Sampling Algorithm

We present an algorithm for generating a balanced
sample of trajectories per iteration using only a fraction
of the needed number of trajectories. This leads to im-
proving the complexity of the calculation while keeping
convergence smooth and time efficient.

Suppose mtot is the batch size, i.e., the number of
trajectories to be used in every iteration within mini-
batch SGD. SGD leads to convergence even with rela-
tively small batch sizes without significantly reducing the
convergence speed as will be shown in the applications.
Therefore, SGD allows for limiting mtot to a small num-
ber which helps further reducing the complexity.

There are two potential limitations to this approach.
First, control pulses will typically be noisy if a very small
number of trajectories is used for every gradient update.
To prevent this from happening, we utilize cost functions
C4 − C7 to ensure that stochastic noise in the pulses is
canceled. Second, there is an increase in the number
of iterations required to reach convergence. To circum-
vent this limitation, we introduce a technique which only
implements a subset of size msim of the intended mtot

trajectories. From this subset, we generate a better bal-
anced sample for every iteration that makes convergence
smooth and fast and also hugely reduces the complexity
of the problem, especially if jumps are rare.

In many practical cases, dissipation and dephasing
time scales are much longer than the time scale govern-
ing the dynamics of the system. For example, many opti-
mized gates on superconducting qubits may take no more
than 0.01 − 0.1µs, while decoherence times of the qubit
are orders of magnitude larger. In that case, dissipa-
tive terms in the Liouvillian will have a smaller impact
on the dynamics and quantum jumps are less likely to
occur. As a result, inside a statistically representative
batch of trajectories, many trajectories will be identical
to the no-jump trajectory. To eliminate the redundancy
of generating the no-jump trajectory many times, our im-
plementation allows for performing a test run that first
generates the no-jump trajectory. Then, using the fact
that the state norm of a quantum trajectory monoton-
ically decreases over time [26] in the absence of jumps,
we extract the final norm of the no-jump trajectory and
identify it with the no-jump probability for the total evo-
lution time. From then on, we only generate trajectories
which do include jumps by controlling the range of the
random numbers r. Consequently, all remaining gener-
ated trajectories in a batch are representatives of jump
trajectories and the total number of trajectories to be
generated can be reduced: if jumps are sufficiently rare,
msim is only a small percentage of mtot, with the precise
fraction given by the probability of jumps. Finally, we
perform a weighted average of the gradients of both the
no-jump trajectory and the generated jump trajectories
according to the calculated jump/no-jump probability.
This algorithm is summarized below:

1. Generate the no-jump trajectory (random number
r = 0).

2. Save the no-jump gradients gnj from this trajectory.

3. Extract the norm of the final state of this no-jump
trajectory, p = 〈ψN |ψN 〉 and assign it as the no-
jump probability.
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4. If mtot trajectories are needed, generate only

mj = d(1− p)mtote (18)

jump trajectories with r ∈ [p, 1), where dxe denotes
the integer ceiling of x. The reduced range for r
guarantees at least one jump will happen since the
norm will definitely drop below r. After the jump, r
is reset to the full range [0, 1) to simulate potential
additional jumps.

5. Calculate the averaged jump gradient gj from the
mj trajectories.

6. Calculate the net gradient of all mtot trajectories,

g = (1− p)gj + p gnj (19)

If jumps are rare, this algorithm saves significant re-
sources by only generating msim = mj +1 trajectories in-
stead of mtot. In addition, instead of just implementing
randomly chosen trajectories every iteration, the algo-
rithm will always generate a balanced sample every itera-
tion/batch that represents jumps and no jumps with cor-
rect weights. This leads to a much smoother and faster
convergence than the case where mtot is a collection of
(generally unbalanced) random events.

As a concrete example, consider the case of a prob-
lem with jump probability (1 − p) = 10%, and with
a small batch size mtot = 10 to reduce computational
costs. Then, conventionally all 10 trajectories used in
a given iteration could be identical to the no-jump tra-
jectory. Since the occurrence of jumps is not uniform
from iteration to iteration, convergence would be non-
monotonic, and properly sampling the dynamics would
require a bigger number of iterations. However, using
the algorithm described above, each iteration is enforced
to contain the same balanced statistics between jumps
and no jumps, even for small sample size. Therefore, the
improved-sampling algorithm is a crucial element of our
optimizer that renders the complexity of an open-system
problem similar to that of a closed system, if jumps are
rare, as will be demonstrated in the applications.

2. Matrix-Vector Exponential and Clustering Trajectories

Another important computational bottleneck is the
evaluation of the matrix exponential required for state
propagation via the effective Hamiltonian. Our imple-
mentation eliminates the need to calculate the matrix
exponential through matrix-matrix multiplication. In-
stead, when propagating a state Vj = |ψj〉 to Vj+1 =
|ψj+1〉 through the matrix exponential eA, where A =
−i(Heff)j+1dt, we use an iterative Taylor series to reex-
press the propagation as

Vj+1 = eAVj = (1 +A+
A2

2!
+
A3

3!
+ · · · )Vj (20)

= Vj +AVj +
1

2!
A(AVj) +

1

3!
A(A(AVj)) + · · ·

The new state can thus be calculated by an iter-
ative series of matrix-vector multiplications, reducing
the complexity of propagation at every time step from
O(nTaylord

3) which is required by matrix-matrix multi-
plication to O(nTaylord

2), where nTaylor is the number of
Taylor expansion terms kept in the simulation. We note
that the convergence of this iterative approach could be
enhanced in future implementations using Newton poly-
nomials instead of Taylor expansion [50].

Using the improved-sampling algorithm, a batch of
msim initial states needs to be propagated per iteration.
Instead of sequential generation of each trajectory, stor-
ing all gradients and then averaging them in the end, the
above matrix-vector implementation allows for simulta-
neous propagation of a number of vectors. The proce-
dure described in equation (20) can be generalized from
Vj representing a d × 1 vector, to denoting a matrix of
size d × msim. Using this idea, we can cluster trajec-
tories together and process them in a faster way than
running them in series [51]. Clustering trajectories is
particularly useful if the needed number of trajectories
is much smaller than the Hilbert space dimension for
big-sized problems or if the Hilbert space dimension is
relatively small and there are a lot of unused resources
when propagating one trajectory at a time. In our im-
plementation, we treat the desired number of trajectories
to be combined in each iteration (the batch size) as an
adjustable parameter. It may be specified at runtime,
and enables dynamically selecting the size of the compu-
tational graph. It also allows for combining the effects
of several batches and then applying their averaged gra-
dients to the control parameters. Those two features to-
gether give reasonable flexibility in dividing the needed
number of trajectories into batches of combined trajecto-
ries and in matching available computational resources to
the concrete size and nature of each optimization prob-
lem.

3. Parallelization of Trajectories

While generating the needed statistics from a smaller
number of clustered trajectories saves memory and run-
time, a prime advantage of quantum trajectories is their
high degree of parallelizability. We can utilize paralleliza-
tion to further improve the efficiency and flexibility of
the optimizer. Our implementation uses TensorFlow’s
distributed learning features to run a number of differ-
ent clustered trajectories on different nodes in parallel.
We have built an interface between the SLURM man-
ager for operating clusters [52] and TensorFlow allow-
ing for the use of both synchronous and asynchronous
training. Here, synchronous training refers to the sit-
uation when all compute nodes must finish their mini-
batches together and their gradients are then averaged.
Asynchronous training, by contrast, gives every compute
node the ability to update the control parameters once
its batch gradients are ready. Therefore, asynchronous
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training is essentially equivalent to performing multiple
independent optimization iterations in parallel. Both
types of training are of practical importance, depending
on the needed statistics per iteration for stable conver-
gence. Our implementation uses “between graph replica-
tion” which means that every node builds its own iden-
tical version of the computational graph. Then, commu-
nication between graphs is coordinated through a chief
worker machine.

IV. SHOWCASE APPLICATIONS

A. Transmon Qubit State Transfer

To illustrate the improved-sampling algorithm, we con-
sider a transmon qubit with n = 4 levels, initialized in
the ground state |g〉. We wish to transfer the system to
the first excited state |e〉. For the transmon, we assume
a frequency difference between ground and excited levels
of ωge/2π = 3.9 GHz and an anharmonicity of α/2π = -
225 MHz. The control Hamiltonians {Hx, Hz} couple to
the x and z degrees of freedom of the qubit, so that the
net Hamiltonian is given by

H = ωgeb
†b+

α

2
b†b(b†b− 1) + Ωx(t)(b† + b) + Ωz(t)b

†b.

(21)
Here, b and b† are ladder operators for the transmon ex-
citation level, truncated at an appropriate level (n = 4
in our case). The qubit is coupled to a heat-bath envi-
ronment, resulting in relaxational dynamics with charac-
teristic time T1. Working at zero temperature, the cor-
responding jump operator is b. We utilize the following
cost functions: C1 to maximize the fidelity between the
final evolved state and |e〉, C4 − C7 to generate smooth
realizable control pulses and C2 to forbid the occupation
of the n-th level so that the truncation of the transmon
levels remains valid.

First, we study the effect of relaxation on the re-
sults from the state-transfer optimization. In the closed-
system case where relaxation is absent (T1 → ∞), we
readily achieve state-transfer fidelities of 99.99% within
a total evolution time of T = 10 ns, see Fig. 2. How-
ever, if the qubit is fairly lossy (taking, for example,
T1 = 100 ns), the previously determined pulse train only
achieves a state-transfer fidelity of 96.2% since occupa-
tion of the |e〉 level is inevitably subject to dissipation.
Re-running the optimization in the presence of T1 pro-
cesses, we succeed in increasing the fidelity to 98.2%, so
we gain around 2% even for this example of a rather lossy
qubit, see Fig. 2.

Inspection of the results reveals that the optimizer
aims to minimize the detrimental effects of relaxation by
delaying the state-transfer operation as much as possible.
This way, the total time period over which the state |e〉 is
occupied, is reduced and there is, hence, a smaller time
window where the system is sensitive to decay. While
the closed-system case utilizes the whole time to perform

FIG. 2. Optimizing state transfer from the ground to the
first excited level in a lossy transmon qubit. Panels (a) and (c)
show the occupation of both levels monitored over the pulse
period while panels (b) and (d) show the pulse trains obtained
from optimization. (a) In the absence of relaxation, the op-
timized solution reaches a closed-system fidelity of 99.99%.
Then when this solution is applied in the presence of relax-
ation processes (T1 = 100 ns), the resulting state-transfer fi-
delity drops to 96.2%. (b) The corresponding pulse sequences.
(c) Results from trajectory-based GRAPE. The new opti-
mized solution raises the state-transfer fidelity to 98.2% (d)
The optimized pulse minimizes relaxation effects by delaying
the pulse as much as possible, then rapidly performing the
transfer using increased power.

the state transfer, the open dynamics state transfer is
much more asymmetric in time, reflecting the asymme-
try between the ground and the first excited state as far
as decoherence is concerned. Note that the optimization
cannot fully bring the fidelity back to 99.99% because
the occupation of |e〉 is limited by the relaxation e−t/T1 .
Note that this result is also useful in optimizing the fi-
nal time for the state transfer, since the obtained pulse
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FIG. 3. Maximum jump probability for the driven transmon
qubit as a function of the simulation time Tf measured in
units of the relaxation time T1. This represents the fraction
of the number of trajectories that the improved-sampling al-
gorithm will generate every iteration. In most realistic cases,
the fraction does not exceed 1 − 5%, allowing for a signifi-
cant reduction in computational costs. The right vertical axis
represents the number of trajectories msim that needs to be
simulated if mtot = 10,000.

indicates the total time required for the state transfer,
which is even relevant for the choice of the total time in
the closed-system analysis.

Next, we discuss the choices of mtot and msim needed
for the optimization. Deploying our improved-sampling
algorithm, we can perform the trajectory-based optimiza-
tion at nearly the same computational cost as in the
closed-system case. We ran simulations using different
values of T1 to obtain the probability of jumps for each
case. Note that this probability changes with the itera-
tions of the optimization since the Hamiltonian changes
according to the updated control pulses. So, focusing on
the maximum value we get for the probability of jumps,
we get the results in Fig. 3 for different values of the ratio
Tf/T1 where Tf is the final time of the state transfer.

We consider a case where the number of trajectories
mtot required for good convergence is as big as 10,000,
yet only a small number of trajectories actually needs to
be simulated. As Fig. 3 shows for Tf/T1 < 10−2, the
probability of jumps is less than 0.6%, allowing us to
obtain the desired sampling by generating merely 60 tra-
jectories. Even if the final time is increased to 0.1T1 like
in Fig. 2, the probability of jumps is around 5% which is
still a small fraction. In most of realistic applications, the
sample size mtot does not have to be as large as 10,000,
since using our algorithm allows for good convergence
even for much smaller total numbers of trajectories. We
compare the convergence for different choices of mtot us-
ing our algorithm in Fig. 4.

As shown in Fig. 4(d), we obtain good convergence
even for a small mtot = 10 and msim = 2 (i.e., only gen-

FIG. 4. Convergence of the optimization algorithm to a tar-
get fidelity of 97.5% for different values of mtot, using the
improved-sampling algorithm. The reported fidelities are cal-
culated using a sufficiently large number of trajectories.

erating two trajectories per iteration) within around 100
iterations, reaching a target fidelity of 97.5%. By com-
parison, for a significantly larger number of trajectories
mtot = 10, 000, we reach the same fidelity within 60 iter-
ations. Therefore, we only need to double the number of
iterations to simulate the system using a thousand times
fewer trajectories per iteration. In addition, every iter-
ation will be much faster since it only includes running
two trajectories.

Running the same optimization problem for mtot = 10
but without the improved-sampling algorithm leads to
convergence to the same target fidelity after 320 itera-
tions. Therefore, using the improved-sampling algorithm
needs only two trajectories per iteration for a total num-
ber of 200 trajectories to reach convergence, in compari-
son to 3,200 trajectories needed when not employing the
algorithm.
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B. Lambda System Population Transfer

1. Problem Overview

Having shown how the improved-sampling algorithm
helps reduce the problem complexity for the toy example
of a transmon state transfer, we next consider a more
realistic case of driving nearly forbidden transitions in a
three-level Λ system as shown in Fig. 5.

FIG. 5. The Λ system consists of ground state |1〉 and meta-
stable excited state |3〉, as well as an intermediate lossy state
|2〉. The frequencies ω12 and ω23 are distinct and no direct
matrix element exists between |1〉 and |3〉. Hence, state trans-
fer between them must invoke the intermediate state |2〉. The
system is driven with a pulse ζ(t) that is optimized to maxi-
mize the state-transfer fidelity.

Two levels of it, |1〉 and |3〉, are stable, i.e., the direct
transition between |1〉 and |3〉 is forbidden. The third,
intermediate level |2〉 can decay to either of the former
two states and direct matrix elements allow one to drive
the |1〉 ←→ |2〉 and |3〉 ←→ |2〉 transitions. The goal is
to transfer the system from one stable state to the other
while avoiding significant occupation of the intermediate
state which is subject to errors from spontaneous dissipa-
tion. This application arises in many realistic quantum
systems, for example in circuit quantum electrodynam-
ics (cQED). Inducing transitions in such a Λ system is
crucial for protected qubits like the heavy-fluxonium [53]
and the 0-π qubit [54].

2. Protocol 1: Raman Transitions

We will compare two existing protocols to induce the
desired transition. The first is the two-photon Raman
transition in which the system is driven by two off-
resonant pulses of amplitudes Ω1, Ω2, and detunings
δ1 = δ2 = δ. For convenience, it is assumed that each
pulse couples solely to a single transition between the in-
termediate state and one of the stable states. Adiabatic
elimination is an approximation that may be performed if
the detuning δ is considered large [55]. This approxima-
tion assumes small occupation of the intermediate level,

and hence, the system may be treated as an effective
two-level system. Under this assumption, this system is
shown to be effectively driven by a Rabi oscillation of an
effective frequency that is proportional to both Ω1 and
Ω2. In this limit, the dissipation of the intermediate level
is negligible since the level remains largely unoccupied
during the transfer.

This approximation, however, is only valid if ∆ =
δ1 + δ2 � Ω1,Ω2. If the transfer is desired to occur
over shorter time scales, then the required effective Rabi
frequency, and hence Ω1 and Ω2, must be increased. This
may invalidate the adiabatic elimination condition, since
needed larger detunings will cause the frequencies used
by the two pulses to be too far from the transitions fre-
quencies. In that case, it is not guaranteed that each
pulse drives a single transition separately as assumed by
the adiabatic elimination. Hence, this will result in the
system deviating from the simplified picture of an effec-
tive two-photon process as we will show in the results
subsection below.

3. Protocol 2: STIRAP

The second commonly used protocol is the stimulated-
Raman-adiabatic-passage (STIRAP) method. This in-
volves the application of two partially overlapping pulses
which adiabatically keep the Λ system in a superposition
of the two stable states without occupying the interme-
diate level [56]. First, a Stokes pulse [with amplitude
ΩS(t)] is used to couple the two unoccupied states |2〉
and |3〉. Then, a pump pulse [with amplitude ΩP (t)] cou-
ples states |1〉 and |2〉 in such a way that makes direct
transition from |1〉 to |3〉 possible. STIRAP assumes that
the rotating wave approximation (RWA) is valid which
causes the system to have three-time dependent eigen-
states, one of them has no projection in the |2〉 state at
all times [57]. This eigenstate is labeled the dark state
|ψd〉 (t). If the pulses are changed adiabatically such that
ΩS(t) is smoothly turned off while ΩP (t) peaks and then
turns off, the system will remain in |ψd(t)〉 and reaches
the desired state at the end without occupying the inter-
mediate state at all as ensured by remaining in the dark
state.

The required adiabaticity of the transfer, however, ne-
cessitates strong limits on the time needed for STIRAP
transfer. In particular, the minimum time where pulses
overlap is inversely proportional to the peak pulse am-
plitude used (in frequency units) [58]. The constant of
proportionality is estimated from experimental data, and
for around 95% STIRAP efficiency, it is estimated to be
10 [57]. The total time needed for a complete STIRAP
transfer is usually around twice of the overlap time. This
ensures that the delay between the two pulses gives max-
imum efficiency [58]. This poses a restriction on how
fast the transfer can be accomplished. While the peak
pulse amplitude could be increased to achieve shorter
times, high pulse powers would eventually violate the
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RWA and result again in population of the intermedi-
ate level. Therefore, to achieve fast transfer between the
two stable states in a Λ system, existing techniques will
inevitably involve partial population of the intermediate
state which endangers the transfer fidelity because of its
dissipative nature.

Recently, enhanced protocols which use shortcuts to
adiabaticity [59] were presented to improve the speed of
STIRAP while maintaining high transfer fidelities. Our
optimal control results are comparable to those tech-
niques in terms of speed and transfer efficiency.

4. Simulation Details

Different from the Raman and STIRAP protocols de-
scribed above, we do not restrict the pulses to a single
frequency component. Instead, we work with a single
pulse of general form that can couple to both transitions.
The Hamiltonian then takes the form

H =

3∑
i=1

ωi |i〉 〈i|+ ζ(t)(H12 + αH23) (22)

with the definition

Hij = |i〉 〈j|+ |j〉 〈i| . (23)

Here, α is a factor that relates the matrix elements of the
two transitions. For our simulations, we used the sample
values ω1/2π = 0 GHz, ω2/2π = 5 GHz, ω3/2π = 1.8
GHz and α = 1. We associate state |2〉 with a relatively
short relaxation time T1 = 20 ns due to decay into either
of the two stable states, and we set the target transfer
time to 10 ns, while limiting the amplitude of ζ(t) to an
experimentally reasonable maximum value of 3/2πGHz.

Note that with these parameters, STIRAP requires a
minimum of 42 ns for the full time of the protocol. Hence,
the optimizer will search for a solution that is at least
four times faster than STIRAP, but still maintains low
occupation of |2〉 and high transfer fidelity.

5. Results

With a maximum jump probability of around 10% (as
calculated during simulation), the improved-sampling al-
gorithm allows for a 90% reduction of the number of tra-
jectories generated. Around 10 trajectories were used
per iteration, thus accounting for an effective number
of simulated trajectories of 100 per iteration. Conver-
gence was reached with an optimized fidelity of 98.0%.
To compare the solution against the two-photon Raman
transition using the same total transfer time and pulse
amplitude, trials with different values for the two pulse
detunings and amplitudes were performed. The best so-
lution yields only a fidelity of 84.1% and shows signif-
icant occupation of the intermediate level. The results

FIG. 6. Results of driving the Lambda system with the
optimized pulses vs. the usual two-photon Raman pulses. (a)
The optimized pulse achieves a transfer fidelity of 98.0% by
using several tones to properly limit the occupation of the
lossy |2〉 state. (b) The two-photon Raman transition fails to
limit the occupation of |2〉, and hence can only reach a fidelity
of 84.1% within the parameter regime of our simulation.

are summarized in Fig. 6. In summary, our optimizer
succeeds in high-fidelity population transfer in a Λ sys-
tem with a comparatively short transfer time for which
standard protocols are significantly less efficient.

C. Quantum Non Demolition (QND) Readout of a
Transmon Qubit Allowing Fast Resonator Reset

The previous two applications showed how our opti-
mizer works in scenarios where jumps are rare. In the
following application, we will deal with a situation where
jumps are less rare, though rare enough to limit jump
number per time step to one. We focus on the capa-
bilities of the optimizer in a relatively big Hilbert space
where a density-matrix–based approach would be diffi-
cult to implement.

1. Problem Overview

In cQED, a common technique to measure the state of
a transmon qubit is to couple it to a readout resonator.
This is described by the generalized Jaynes-Cummings
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model Hamiltonian

H = ωra
†a+ωqb

†b+
1

2
αb†b(b†b−1)+g(a†b+ab†)+Hζ(t),

(24)
where ωr and ωq are the bare resonator and qubit fre-
quencies, respectively, and a is the lowering operator for
photons inside the resonator. b and b† are the ladder op-
erators for the transmon excitation number, truncated at
an appropriate level. There are two jump operators for
the total system, a for photon loss with a rate of κ and
b qubit decay with rate γ = 1

T1
. Hζ(t) is the resonator

drive term responsible for generating the readout, and
takes the form

Hζ(t) = ζ(t)(aeiωdt + a†e−iωdt) (25)

where ωd is the drive frequency.
For the purpose of qubit readout, the circuit parame-

ters are chosen such that the system is in the dispersive
regime (∆ = |ωq − ωr| � g) [60, 61]. In that case, the
effective frequency of the resonator is AC-Stark shifted
by a value that is dependent on the qubit state. Hence,
by driving the resonator at either of the two shifted fre-
quencies, the amplitude-response of the readout tone can
distinguish between the 0 and 1 states of the qubit. Al-
ternatively, by driving at the bare resonator frequency,
the qubit state can extracted from information carried in
the phase of the readout [61].

2. 1st Optimization Target: High Readout Fidelity

An appropriate metric for successful readout is the
single-shot readout fidelity F [62]

F = 1− p(0|1) + p(1|0)

2
(26)

where p(a|b) is the probability of measuring the qubit
in state a given it was prepared in state b. There are
two main factors that limit the readout fidelity F : noise
in the measurement and qubit-decay processes that can
make an excited-state trajectory look very similar to a
ground-state one. While noisy readout could be miti-
gated by increasing the measurement time and hence en-
hancing the ability to average out the noise, this worsens
the probability for spurious qubit decay during the mea-
surement, leading to a decrease of the readout fidelity.

Existing readout protocols involve multiplying the
readout signal by a filter function, and integrating it over
the measurement time. The integration result is then
compared against a set threshold in order to identify it
with one of the underlying qubit states 0 or 1. Several
filters exist to maximize F including the optimal linear
filter [63] which we will utilize here.

One key area of improvement that we pursue here is
the choice of the pulse ζ(t) that maximizes the fidelity.
In most experiments, ζ(t) is taken to have a square-pulse
envelope, rendering the time-dependent drive sinusoidal

with a constant amplitude that is varied in order to max-
imize F . Using our optimizer, we open up the possibil-
ity of a wider variety of pulse trains including multiple
frequency components which may yield higher fidelities
while maintaining readout speed. (Further details of the
implementation of trajectories and calculation of the fi-
delity are explained in appendix C).

3. 2nd Optimization Target: Overcoming Dressed
Dephasing and Obtaining Fast Resonator Reset

Increasing the readout-pulse power can yield higher fi-
delities as it counteracts experimental noise. However,
excessively high powers lead to increased photon occu-
pations throughout the measurement which has several
drawbacks.

One drawback pertains to the ability to perform the
measurement in a manner that facilitates a fast cavity-
reset process afterwards, allowing for new measurements
to be started with minimum downtime. There are several
protocols for both passive and active reset of the cavity
[64, 65]. The time it takes to reset the cavity depends
on how many photons are left in the cavity by the end of
measurement. Ref. [33] shows that there is a power law
relating the speed limit of resonator reset and the num-
ber of leftover resonator photons. For example, doubling
the number of photons in the resonator requires an in-
crease in the active resonator-reset time of at least 57%.
Therefore, not limiting the cavity occupation number can
significantly slow down subsequent resonator reset.

In addition, high photon numbers cause another sig-
nificant problem, namely dressed dephasing [66] which
results from higher-order corrections to the dispersive ap-
proximation, usually ignored in the regime of small pho-
ton numbers. As the number of photons increases, the
quantum non-demolition (QND) nature of the readout is
jeopardized by these extra dephasing channels.

In line with these insights, we utilize the flexibility of
setting targets in our optimizer to search for a readout
pulse that maintains high levels of fidelity whilst keeping
the resonator occupation as low as possible.

4. 3rd Optimization Target: QND Measurement

One crucial element of the readout that needs to be
maintained is its quantum non-demolition (QND) behav-
ior. Typical readout measurements within the dispersive
regime are expected to keep the qubit state unchanged
for sufficiently low photon occupation of the resonator
[67], and hence qualify as QND measurements. The
scale where the QND behavior of the readout breaks
down is quantified by the critical number of photons
ncrit = ∆2/4g2. (As ncrit is approached, higher-order
terms in the perturbative dispersive approximation be-
come important.)
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Since the optimizer is based on the Hamiltonian (24),
the simulation is not necessarily limited to the disper-
sive regime. In principle, this allows the optimization
to employ high readout power without concerns about
the validity of the dispersive approximation. However,
large power endangers the QND nature as the dispersive
regime breaks down [67]. The previous optimization tar-
get should help in that regard as it minimizes the number
of photons in the cavity. To further ensure the QND na-
ture of the readout, we add a QND-dedicated optimiza-
tion target.

5. Cost Functions

We include three cost functions for achieving the
three optimization targets mentioned above simultane-
ously. Starting with the readout-fidelity cost function,
we first inspect the process of post-measurement deci-
sion making. For every trajectory, the output signal
s(t) =

〈
(a+ a†)

〉
(t) is convoluted according to

S =

∫ Tf

0

s(t)K(t)dt (27)

with a filter kernel K(t) that is used to enhance the dis-
tinguishability of the readout signals [63]. Tf is the final
measurement time. In order to determine the appropri-
ate threshold value of S distinguishing between readout
of the qubit 0 and the 1 states, many trajectories are sim-
ulated and their corresponding values of S are recorded.
The histograms generated by the values of S for both
qubit states are fitted to Gaussians and the boundary is
chosen to minimize the overlap between the two Gaus-
sians. Histograms take on Gaussian form because of both
the existence of noise in the measurement and the differ-
ent evolution of each trajectory resulting in a distribution
of integrated trajectory signals. Fig. 7 shows an example
of integrated readout signals.

As Fig. 7 suggests, one possible way to enhance read-
out fidelity is to increase the difference between the
means of the two Gaussians to limit their overlap which
is the main source of wrong decision making. Therefore,
we implement the following fidelity cost function:

Cf = −
(

1

Tf

∫ Tf

0

[s̄0(t)− s̄1(t)] dt

)2

. (28)

Here, the bar denotes a trajectory average so that s̄i(t) is
the transmitted signal at time t averaged over trajectories
that all start in the initial state |i〉 with i ∈ {0, 1}.

For the second optimization target, the average res-
onator occupation number at the end of the measure-
ment needs to be minimized to enable fast resonator re-
set. In addition, penalizing the average photon number
during the entire measurement phase will make sure that
dressed dephasing is suppressed. This also allows for po-
tential termination of the measurement protocol at times

FIG. 7. (a) Example of integrated readout signals for a qubit
starting in the ground or excited state. The overlap between
the two Gaussians contributes to the readout infidelity. One
way to minimize the overlap between the distributions is by
increasing the difference between the two Gaussian means.
(b) The corresponding cumulative probabilities of both dis-
tributions. The decision threshold that maximizes the fidelity
is at the integrated signal value that maximizes the difference
between the two cumulative probabilities.

smaller than the preset Tf without accumulating large
photon occupation. Hence, the second cost function was
implemented in the form

Cr =
1

Tf

∑
i=0,1

∫ Tf

0

〈(a†a)〉i(t)dt. (29)

where i ∈ {0, 1} again refers to the initial state of the
qubit.

Finally, for the QND optimization target, we add a cost
function which rewards overlap between the final trajec-
tory states and the corresponding initial states so that
the qubit starting in the ground/excited state remains in
the ground/excited state at the end of measurement. As
we always start the measurement with the resonator in
the ground state, this cost function further helps reduce
the cost Cr as it ensures that the cavity returns back to
the ground state. This QND cost function is taken to
have the form

Cq = 1− |〈ψf |ψi〉|2, (30)

where |ψf 〉 and |ψi〉 are the final and initial states of each
trajectory, respectively. These three cost function are
combined with other pulse-shaping constraints, and are
assigned different weight factors which are set empirically
by trial and error to improve convergence.
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FIG. 8. Optimized readout pulse within the amplitude limit.
The pulse minimizes the weighted mixture of cost functions
and uses only 58.3% of the power needed by the constant
pulse.

6. Implementation

The problem is divided into two parts: optimization
and classification. First, optimization is performed in
such a way as to minimize the above-mentioned cost
functions. To calculate the resulting readout fidelities,
the diffusive trajectories produced by the resulting op-
timized pulse are mixed with Additive White Gaussian
Noise of different powers, and then fed into an optimal-
linear-filter classifier (see Appendix C for details). The
parameters used for the simulation are ωq/2π = 4.6 GHz,
ωr/2π = ωd/2π = 5 GHz, g/2π = 50 MHz, κ = 50 Ms−1

and γ = 1 Ms−1. These parameters correspond to
ncrit = 16. We included 30 resonator levels and 3 trans-
mon levels in the simulation. The simulated total time
of measurement was taken to be Tf = 100 ns = 0.1T1.

Following Ref. [64], we denote pulse amplitudes in di-
mensionless form An = A/Aph. Here, A is the abso-
lute pulse amplitude, and Aph is the reference amplitude
which results in a steady-state resonator occupation of
one photon. n refers to the effective number of photons
resulting from the used amplitude. We limit the pulse
maximum amplitude to be A16 = Ancrit . The fidelity of
the optimized pulse is compared against the fidelity of a
constant square pulse of amplitude Ancrit

.

7. Results

We performed optimization with 8 parallel mini-
batches, each of size mtot = 30 using synchronous dis-
tributed training. With proper adjustments to the rel-
ative weights of different cost functions, the optimizer
obtains the solution presented in Fig. 8. As ensured by
the pulse-shaping cost functions, the pulse is smooth and
starts and ends at near zero amplitudes. The resulting
resonator occupation is shown in Fig. 9.

As evident from Fig. 9, the optimized pulse main-
tains a relatively low photon number during the mea-
surement process, and significantly decreases the photon

FIG. 9. Resonator occupation as a function of measurement
time for the optimized pulse ζ(t) and the constant pulse of
amplitude Ancrit , with the qubit starting in the |0〉 and |1〉
states.

FIG. 10. The qubit average occupation as a function of mea-
surement time for both the optimized pulse ζ(t) and the con-
stant pulse of amplitude Ancrit with the qubit starting in the
|0〉 and |1〉 states.

numbers towards the end of the pulse. The optimized
pulse achieves final photon numbers of 0.09 and 0.04 for
the qubit starting in the |0〉 and |1〉 states; respectively.
The constant pulse, by contrast, leads to occupations of
around 13 for both states, which is two orders of mag-
nitude higher than the optimized results. Therefore, op-
timization significantly improves the time needed for re-
setting the resonator after the measurement with the res-
onator almost empty already. If the active reset protocol
proposed in Ref. [33] is used, then the reset is going to
be 25 times faster than the non-optimized pulse case if
the qubit is measured in the ground state, and 43 times
faster if measured in the excited state.

Moreover, to illustrate how optimization affects the
QND nature of the readout, the qubit occupation num-
bers are plotted in Fig. 10 for both pulses. The results
show that if one were to use a constant-power readout
pulse, then the QND behavior would be compromised
since the ground state gets excited to an average oc-
cupation of 0.14. The optimized pulse, however, man-
ages to bring this occupation down to 0.002, ensuring
the ground state measurement process to be QND within
99.8%. As for the excited state, the QND nature is lim-
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FIG. 11. Readout fidelity of the optimized pulse compared to
the constant, maximum-amplitude pulse.

ited by relaxation processes. Due to relaxation with the
specified rate γ, the qubit occupation number would de-
cay to around 0.9 during the readout. However, due to
potential qubit-cavity dressing, there are additional de-
cay channels that may lower the final ideal occupation
further. For instance, Ref. [67] suggests that within the
dispersive regime, the photon occupation of the resonator
acts like an extra heat bath for the qubit. Fig. 10 shows
that the constant pulse yields final occupation of 75.5%
while the optimized pulse increases it to 82.8%, thus en-
hancing the QND character of the measurement protocol.

The QND and low-photon-number constraints ensure
that the optimized pulse power is reduced from the max-
imum allowed power. Lowering the readout power could
potentially cause the readout fidelity to decrease because
of the presence of noise. To inspect whether readout
power reduction negatively impacted the readout fideli-
ties, we calculated the readout fidelities of the two pulses
given different values for the noise power. The simu-
lated noise power is again normalized in the same man-
ner as the readout power, and we included normalized
noise powers of up to P20. The corresponding readout fi-
delities are presented in Fig. 11. The fidelities we obtain
from both pulses are actually very close despite using al-
most half the total power. For most noise powers, the
optimized pulse gives better fidelities. Therefore, we see
that maintaining the QND nature of the readout and low
photon-occupation numbers was achieved in a way that
does not harm the readout fidelity.

In summary, our implementation allows for optimizing
complex open systems under several constraints with-
out having to analytically calculate their gradients. In
addition, the simulation complexity is significantly re-
duced. For example, in this application, the Hilbert
space dimension is 90. A naive open-system GRAPE im-
plementation would require propagating superoperators
of dimension 8, 100 × 8, 100. Using direct integration of
the equations of motion, this problem can be bypassed
in favor of the time-evolution of density marices of size
90×90. Instead, we process batches of 90-component vec-
tors either in series or in parallel and achieve convergence
with careful adjustment of convergence parameters such

as learning rate, initial guess and relative cost function
weights. The results suggest that readout could be per-
formed with optimized pulses to control several aspects
of the measurement. The example we presented suggests
that the readout fidelities are not necessarily hurt by us-
ing smaller integrated powers, while significant benefits
could be gained by allowing for constantly and smoothly
changing amplitude pulses that restore the QND nature
of the measurement and also allow for much faster res-
onator reset.

V. CONCLUSION

In conclusion, we have harnessed the concept of auto-
matic differentiation to build a flexible optimizer for open
quantum systems. The optimizer is based on quantum
trajectories, leading to significant reduction in the com-
putational overhead compared to approaches based on
density matrices. Combinations of improved-sampling
techniques, generating mini-samples of trajectories for
stochastic gradient descent and parallelization of trajec-
tories are used according to the application to take ad-
vantage of the quantum trajectories nature of the opti-
mizer.

The optimizer was then utilized for both small and
moderately sized quantum systems with quantum jumps
being rare or common, and showed quick convergence to
results that enhance over existing protocols. The opti-
mizer could be used in the future to find optimal ways to
control protected qubits such as the heavy fluxonium and
0-π qubits which have similar structure to the Λ system
considered in the paper, but involve additional quantum
levels and matrix elements. In this case, improved sam-
pling will be very efficient as the jump probability during
the gate time will generally be small, which allows for
treating the system at a significantly reduced complex-
ity. In addition, extra realistic optimization targets could
be added to the employed cost functions. For example,
control over the final gate time and the bandwidth of the
used pulses are potential targets to include in the future.
Another item of future research interest is to enable mul-
tiple jumps per time step which is possible thanks to the
flexibility of the TensorFlow package.
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Appendix A: Automatic Differentiation

Here, we give an overview of the concept of automatic
differentiation and examples of its usage. Automatic dif-
ferentiation is a widely used concept in machine learn-
ing to generate the gradients of complex neural networks
at runtime. An automatic differentiator allows users to
define any mathematical relationships between an out-
put function and its inputs, then can calculate the cor-
responding gradients by concatenating a series of pre-
defined gradients. The full procedure of automatic dif-
ferentiation is described in the following steps:

1. The differentiator uses a basic set of m pre-
defined operations {fi(x1, x2, . . . , xni)} where i =
1, 2, . . . ,m. For each operation fi, the gradients
∂fi
∂x1

, . . . , ∂fi
∂xni

with respect to all ni inputs must be

defined.

2. The user sets up the optimization problem by defin-
ing a cost function that is expressed solely by the
operations fi. This step creates the so-called com-
putational graph.

3. The algorithm runs through the computational
graph in forward direction, starting from certain
values of the inputs and computing the resulting
cost-function value. The corresponding gradients
are calculated as every operation is executed, and
are saved for processing.

4. After completion of the forward path, reverse-mode
automatic differentiation is utilized to trace back-
wards all paths relating the cost function to the
inputs. This involves properly summing the stored
partial derivatives of each path, generated by a re-
cursive chain rule.

In the following, we discuss a simple example where all
operations involved act on scalars. Consider automatic
differentiation of the cost function C(x1, x2) = 2x2

1 +
exp(x1x2) with respect to its optimization inputs x1 and
x2. To have an automatic differentiator, a set of building
block operations needs to be predefined, one example of
this set is shown in Table II.

TABLE II. Example set of scalar operations for automatic
differentiation

Name Definition Gradients

MUL f(x1, x2) = x1x2
∂f
∂x1

= x2 and ∂f
∂x2

= x1

DIV f(x1, x2) = x1
x2

∂f
∂x1

= 1
x2

and ∂f
∂x2

= −x1

x2
2

ADD f(x1, x2) = x1 + x2
∂f
∂x1

= 1 and ∂f
∂x2

= 1

SCALE f(a, x1) = a x1
∂f
∂x1

= a

EXP f(x1) = ex1 ∂f
∂x1

= ex1

Note that the exponential operation does not strictly
have to be included, since it could be represented in a

FIG. 12. Computational graph for the example cost function
C(x1, x2) = 2x2

1 + exp(x1x2), created for automatic differen-
tiation to calculate ∂C

∂x1
and ∂C

∂x2
. Every ellipse represents one

basic operation whose gradients are known and symbolically
given by the expressions in rounded rectangles, attached by
arrows. The inputs to each operation are represented by lines
entering the ellipse from above or from the left/right. The
output of each operation is given a name zi written on the
output line emerging from the bottom. After the computa-
tional graph run in forward direction (from x1, x2 towards
C), reverse-mode automatic differentiation identifies paths
between C and each of x1 and x2. In this example, there
is one path (orange color) relating C to x2 while there are
3 paths (red paths) between C and x1. Gradients are au-
tomatically calculated in a backward fashion by recursively
multiplying the gradients in each path from bottom to top,
then summing over all paths contributing to the same vari-
able.

Taylor series involving only MUL, ADD and SCALE op-
erations. The same thing applies to other functions like
sine and cosine, as well as taking the integer power of an
input, etc. In practice though, it is convenient to include
special functions with compact analytical derivative in
the basic set to give the user more flexibility in defining
the computational graph.

Using Table II as the basic-operation set, we next de-
fine the computational graph, see Fig. 12. After the com-
putational graph is run in forward direction (from x1 and
x2 towards C), reverse-mode automatic differentiation
identifies paths between C and each of x1 and x2. In
this example, there is one path (the orange path) relat-
ing C to x2 while there are 3 paths (red paths) between
C and x1. Gradients are then automatically calculated
in a backward fashion by recursively multiplying the gra-
dients in each path from bottom to top, then summing
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over all paths contributing to the same variable. Follow-
ing this scheme, automatic differentiation will calculate
the gradients in the reverse mode to be

∂C

∂x1
=
∂C

∂z1

∂z1

∂z0

∂z0

∂x1
+
∂C

∂z1

∂z1

∂z0

∂z0

∂x1
+
∂C

∂z3

∂z3

∂z2

∂z2

∂x1

= 1 · 2 · x1 + 1 · 2 · x1 + ez2x2 = 4x1 + ex1x2x2,

∂C

∂x2
=
∂C

∂z3

∂z3

∂z2

∂z2

∂x2
= 1 · ez2x1 = ex1x2x1,

which are indeed the correct gradients. In this way, auto-
matic differentiation allows for calculating gradients for
any computational graph that is defined in terms of the
building blocks of the differentiator.

To utilize automatic differentiation in the optimiza-
tion of quantum simulations, the set of basic operations
must include matrix operations since the quantum dy-
namics is propagated through matrix operations. The
definition of gradients then needs to account for the non-
commutativity of matrix multiplication. To be able to
generate gradients in the backward paths, the differen-
tiator must be able to express the gradients with respect
to the outputs in terms of the gradients with respect to
the inputs of the operation in hand. Thus, for every
basic matrix operation f(Mi), we need to specify how
the gradients with respect to the inputs of the operation,
∂C
∂Mi

, can be calculated given gradients with respect to

the output ∂C
∂f . Table III shows some of the basic ma-

trix operations and their gradient relations needed for
automatic differentiation.

TABLE III. Examples of basic matrix operations needed for
automatic differentiation. Arguments of MATMUL must be
compatible under matrix multiplication; arguments of ADD
must have the same dimensions, and DET is only defined for
square matrices.

Name Definition Gradients

MATMUL f(M1,M2) = ∂C
∂M1

= M2
∂C
∂f

M1M2 and ∂C
∂M2

= ∂C
∂f

M1

ADD f(M1,M2) = ∂C
∂M1

= ∂C
∂f

M1 + M2 and ∂C
∂M2

= ∂C
∂f

SCALE f(a,M1) = aM1
∂C

∂M1
= a ∂C

∂f

TRACE f(M1) = Tr(M1) ∂C
∂M1

= 1 ∂C
∂f

DET f(M1) = det(M1) ∂C
∂M1

= det(M1)M−T
1

∂C
∂f

TRANSPOSE f(M1) = MT
1

∂C
∂M1

= ∂C
∂f

CONJUGATE f(M1) = M∗
1

∂C
∂M1

= ∂C
∂f

Because of the asymmetry in the MATMUL-gradient
rule, it is not simple to express the gradient relations
for most special functions like it was in the scalar case.
Most of the functions not defined in Table III (including
the matrix exponential) must be expressed in terms of
the basic operations like MATMUL, ADD and SCALE
so that the gradient calculation is accurate.

Appendix B: Analytical Gradient of State Transfer
in Quantum Trajectories

In this appendix, we will show how the analytical gra-
dients of the cost function

C = 1− |〈ψT |ψN 〉|2 (B1)

could be calculated in a quantum trajectory. The final
state in a quantum trajectory can be written as

|ψN 〉 =
MNMN−1 · · ·M1 |ψ(0)〉
‖MNMN−1 · · ·M1 |ψ(0)〉‖

(B2)

where the non-unitary propagators Mj are given by

Mj = exp(−iHjdt− dt
2

∑
l γlc

†
l cl) (B3)

in the absence of a jump, or

Mj = cl, (B4)

if a jump occurs in decoherence channel l. If we define

Fj =
√
〈ψ(0)|M†1 · · ·M

†
jMj · · ·M1 |ψ(0)〉 (B5)

and Y = F 2 with F = FN , then the gradient in the case
of no jump is

∂Y

∂ukj
=

∂

∂ukj
〈ψ(0)|M†1 . . .M

†
N−1M

†
NMNMN−1 . . .M1 |ψ(0)〉 =

idt 〈ψ(0)|M†1 . . .M
†
jHk . . .M

†
NMNMN−1 . . .M1 |ψ(0)〉+

− idt 〈ψ(0)|M†1 . . .M
†
NMN . . . HkMj . . .M1 |ψ(0)〉 =

+ 2dtFFj Im(〈ψN |MN . . .Mj+1Hk |ψj〉)
(B6)

Hence,

∂( 1
F )

∂ukj
=
∂( 1

F )

∂Y

∂Y

∂ukj
= −dtFj Im(〈ψN |MN . . .Mj+1Hk |ψj〉)

F 2

(B7)
Therefore, we can finally write the dependence of the
final state |ψN 〉 on the control parameters as

∂ |ψN 〉
∂ukj

=

−idtFjMNMN−1 . . .Mj+1Hk |ψj〉
F

− dtFj Im(〈ψN |MN . . .Mj+1Hk |ψj〉) |ψN 〉
F

(B8)

Then, if no jump happens at time step j,
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∂C

∂ukj
= −〈ψT |

∂ |ψN 〉
∂ukj

〈ψN |ψT 〉 − 〈ψT |ψN 〉
∂ 〈ψN |
∂ukj

|ψT 〉

= −〈ψN |ψT 〉 〈ψT |
[−idtFjMNMN−1 . . .Mj+1Hk |ψj〉

F
− dtFj Im(〈ψN |MN . . .Mj+1Hk |ψj〉) |ψN 〉

F

]
− 〈ψT |ψN 〉

[ idtFj 〈ψj |HkM
†
j+1 . . .M

†
N−1M

†
N

F
− dtFj Im(〈ψN |MN . . .Mj+1Hk |ψj〉) 〈ψN |

F

]
|ψT 〉

=
−2Fjdt

F
Im

[
〈ψT |

[ ∏
j′>j

Mj′

]
Hk|ψj〉〈ψN |ψT 〉

]
+ (C − 1)

dtFj Im(〈ψN |
[∏

j′>jMj′

]
Hk |ψj〉)

F

(B9)

If we define fjk(ψ) = 〈ψ|
[∏

j′>jMj′

]
Hk |ψj〉, then the

analytical gradients take the form

∂C

∂ukj
=


−2Fjdt
F Im(fjk(ψT )〈ψN |ψT 〉)

+ (C−1)
F dtFj Im(fjk(ψN )) no jump

0 jump

(B10)
Note that the extra gradient term due to the decay of the
norm of the state is only negligible at the beginning of
training when C ≈ 1 but as the algorithm enhances the
fidelity, this term becomes more and more dominant.

This whole analysis also assumed that a jump occu-
pies a whole time step while in principle it should not.
Instead, a more accurate approach would be to integrate
the state to find the time tjump when its norm reaches
the random number r, apply a quantum jump at that
time, and then keep propagating/integrating the result-
ing state starting again from tjump. In this case, the cor-
responding analysis to find the analytical gradient would
be even more complex since it clearly deviates from the
standard picture of having one propagator at every time
step.

Appendix C: Readout Fidelity Implementation

In this appendix, we detail our implementation of the
calculation of the readout fidelity as defined in Eq. (26).
The qubit-cavity readout application in section IV C is of
a different nature than the rest of applications, since it
does not include the usual penalization of a state-transfer
fidelity. Instead, several targets are desired to be mini-
mized as specified by the cost functions Cf , Cr and Cq.
We note that the readout fidelity itself is not one of the
cost functions used in the simulation.

In order to keep the same structure of the optimizer
code from the previous applications, we separated the
simulation into two parts. First, the optimization part
is utilized to minimize the three cost functions according
to their defined relative weights. Then a classifier code
is used afterwards to calculate the readout fidelity given

the resulting optimized pulse. The classifier generates a
sample of trajectories starting from the ground and ex-
cited states, then adds random noise of different powers
to each trajectory and finally calculates the resulting fi-
delities.

First, for the trajectories generation part, the classi-
fier uses the optimized pulse to simulate the dynamics
of the stochastic Schrödinger equation (SSE) that repre-
sents diffusive trajectories of the qubit-resonator system.
Since readout is implemented in the lab via a homodyne
measurement of the resonator [68], the resulting trajec-
tories are of diffusive (not jump) type. The optimizer
still uses jump trajectories like all the other applications,
which is allowed since all the used cost functions only
involve averages over trajectories. Regardless of the type
of unraveling used (e.g. jump vs diffusive), the averaged
expectation values of operators remain the same, which
match the results from the master equation. However, for
the readout-fidelity calculation, it is crucial to simulate
the actual diffusive trajectories that are observed in the
lab since the classification is a process that depends on
how the individual trajectories could be distinguished.

The SSE used to generate the correct diffusive trajec-
tories is [34, 69, 70]:

d |ψ〉 =
[√
κa dW1 +

√
γb dW2+ (C1)

dt(−iH − κ

2
a†a− γ

2
b†b+ κa

〈
a† + a

〉
+ γb

〈
b† + b

〉
)
]
|ψ〉

where dW1 and dW2 are independent Wiener increments
that satisfy E(dW ) = 0 and E((dW )2) = dt. (a, κ) and
(b, γ) are the lowering operators and decay rates for the
resonator and qubit, respectively. Solutions of this SSE
were obtained using the Euler-Maruyama method with
Richardson extrapolation [71].

After obtaining the trajectories, noise is added with
different powers to simulate multiple sources of exper-
imental readout noise. The noisy trajectories are then
multiplied by an optimal linear filter [63] and integrated
over the measurement time as in Eq.(27). The classi-
fier finally decides on a threshold value for the integrated
signals that maximizes the fidelity and calculates the cor-
responding value of the fidelity.



19

[1] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen,
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T. S. Herbrüggen, Physical Review B, Condensed matter
81, 085328 (2010).

[19] D. J. Egger and F. K. Wilhelm, Superconductor Science
and Technology 27, 014001 (2013).

[20] K. Singer, U. Poschinger, M. Murphy, P. Ivanov,
F. Ziesel, T. Calarco, and F. S. Kaler, Reviews of Mod-
ern Physics 82, 26092632 (2010).

[21] N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johan-
ning, W. Neuhauser, and C. Wunderlich, Physical Re-
view A 77, 052334 (2008).

[22] M. Zhao and D. Babikov, Physical Review A 77, 012338
(2008)N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-
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