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Nonclassical correlation beyond entanglement might provide a resource in quantum information
tasks, such as quantum computation or quantum metrology. Quantum discord is a measure of
nonclassical correlations, to which entanglement belongs as a subset. Exploring the operational
meaning of quantum discord as a resource in quantum information processing tasks, such as quan-
tum metrology, is of essential importance to our understanding of nonclassical correlation. In our
recent work [Phys. Rev. A, 98, 012115 (2018)], we considered a protocol—which we call greedy
local thermometry protocol— for estimating the temperature of thermal equilibrium states from
local measurements, elucidating the role of diagonal discord in enhancing the protocol sensitivity
in the high-temperature limit. In this paper, we extend our results to a general greedy local pa-
rameter estimation scenario. In particular, we introduce a quantum discord—which we call discord
for local metrology—to quantify the nonclassical correlations induced by the local optimal measure-
ment on the subsystem. We demonstrate explicitly that discord for local metrology plays a role in
sensitivity enhancement in the high-temperature limit by showing its relation to loss in quantum
Fisher information. In particular, it coincides with diagonal discord for estimating a linear coupling
parameter.

I. INTRODUCTION

While the ability of entanglement to enhance quantum
metrology has been well explored in ideal scenarios [1, 2],
experimental constraints, such as noise, mixed states and
restriction to local measurements, usually make reaching
the ultimate quantum limit impossible. In this scenario,
a more general study of the role of nonclassical corre-
lations in quantum metrology is critical, as it can lead
to more general measurement schemes, such as quan-
tum illumination [3], that take advantage on nonclassi-
cal properties [4]. Nonclassical correlations described by
the quantum discord are of particular relevance, as they
quantify loss of information as a result of measuring a lo-
cal subsystem [5, 6] and can be applied to mixed states.
The role of discord-like correlations has thus been re-
cently studied in the context of parameter estimation [7],
such as the geometric discord in phase estimation [8],
quantum discord in global phase estimation with mixed
state [9–12] and in local phase estimation assisted by in-
terferometry [13, 14], and the diagonal discord in quan-
tum thermometry [15].

Most of these works have analyzed the usual scenario
for quantum parameter estimation, where a quantum
(entangled) probe evolves under the action of an Hamilto-
nian that depends on the external parameter to be mea-
sured, before a measurement is performed on the final
state [1, 2, 16]. While the optimal measurement does
not required global measurements on the total system
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for schemes without entanglement [1], for entanglement-
enhanced schemes described above, a global measure-
ment is usually needed to achieve the optimal perfor-
mance [17]. Since performing a global measurement is
usually a demanding task, and one has to rely on local,
adaptive measurements, it is important to study whether
this restriction degrades the achievable estimation per-
formance in the case of nonclassical correlations more
general than entanglement. To better focus on this ques-
tion, we consider a different metrology scenario, where
the parameter is not encoded during the evolution but
in the equilibrium state. We show that for a local detec-
tion protocol, nonclassical correlations in the state can be
detrimental, in contrast to the dynamic scenario where
they help in the estimation. In particular, we consider a
“greedy” local measurement scheme [15], in which each
subsystem is measured sequentially with a local optimal
measurement for estimating a general parameter (See
Fig. 1). This protocol belongs to the class of local op-
erations and classical communication (LOCC) [18]. In
addition, we focus on systems at thermal equilibrium
in the Gibbs state and consider high-temperature limit,
which is a practical scenario in various systems, such
as room-temperature NMR system or biological system,
and where only nonclassical correlations beyond entan-
glement are typically found. Even in this regime, we
find a precision loss when considering only local mea-
surements, and we bound it by considering the discord
present in the system.

Hamiltonian parameter estimation at thermal equilib-
rium has been considered before by Mehboudi et al. [19],
in which they considered a special Hamiltonian consisted
of two commuting operators, to which temperature-
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independent parameters are linearly coupled. For this
special case, they proved that the quantum Fisher in-
formation (QFI) for estimating either parameter can be
characterized as a curvature of the Helmholtz free en-
ergy at an arbitrary temperature. However, for a gen-
eral Hamiltonian Hλ parameterized by a temperature-
independent parameter λ, this is not always the case
because of the noncommutativity of the Hamiltonian
and the generator of parameter λ. Still, in the high-
temperature limit, the QFI can be well approximated by
the susceptibility, as discussed in Sec. II, and we can ap-
ply the relation provided in [19].

� Global measurement scheme

A

B

Quantum discord 

Global optimal measurement

� Greedy local measurement scheme

A

B

Quantum discord 

1st (optimal) 

2nd (optimal)

FIG. 1. Global measurement and greedy local measure-
ment scheme: One first measures a subsystem A with lo-
cal optimal measurement in the sense of local QFI and then
measure the other subsystem B in order to estimate an
unknown parameter ξ. The constrained QFI is given as
FA→B(ξ) = FA(ξ) + FB|A(ξ). We explore the relation be-
tween the quantum discord DA→B(ξ) and the precision loss
∆F(ξ) = FAB(ξ)−FA→B(ξ).

The paper is organized as follow. In Sec. II A, we re-
view QFI for estimating a single parameter and discuss
QFI in the global measurement scheme, namely global
QFI, in Sec. II B, and the constrained QFI in greedy local
measurement scheme, namely LOCC QFI, in Sec. II C.
Based on the definition of quantum discord [6], we intro-
duce a quantum discord induced by a local optimal mea-
surements by considering the greedy local measurement
scheme, namely discord for local metrology in Sec. III.
Then, we show the relation between the discord for local
metrology and precision loss quantified by the difference
between global QFI and LOCC QFI at high temperature
in Sec. IV, and also demonstrate that discord for local

metrology coincides with diagonal discord when the pa-
rameter to be estimated is linearly coupled. Before con-
cluding, we also provides examples to further illustrate
our results.

II. GLOBAL AND GREEDY LOCAL
MEASUREMENT SCHEME

We first review the definition of quantum Fisher in-
formation (QFI) for estimating a single parameter, and
discuss QFI for global and local measurement schemes.
In particular, we devise an optimal measurement proto-
col that only exploits local measurements and define an
associated QFI metric to evaluate its performance.

A. QFI for estimating single parameter

The ultimate precision of parameter estimation is
quantified by the QFI. Let ξ be the parameter to be
estimated, which could be a temperature independent
parameter λ in the Hamiltonian Hλ or the temperature
T itself, i.e., ξ ∈ {λ, T}. While often ξ is estimated from
a state ρξ that arises after interacting with the exter-
nal field to be measured for a given time, here we con-
sider a different scenario, where ρξ is an equilibrium state
that is determined by the parameter-dependent Hamil-
tonian. The variance (δξ)2 quantifies the estimate pre-
cision. Its lower bound, which is the ultimate precision
limit achievable, is bounded by the quantum Cramér-
Rao bound (δξ)2 ≥ 1/F(ξ, ρξ) [20–22]. Here F(ξ, ρξ) is
the QFI, defined as F(ξ, ρξ) = −2 limε→0 ∂

2εF[ρξ, ρξ+ε],
where F[ρ, σ] denotes the fidelity between states ρ and
σ [23].

B. Global QFI

Consider a finite-dimensional system described by a
Hamiltonian Hλ parameterized by a single temperature-
independent parameter λ at temperature T . We assume
the state to be in a Gibbs state, ρξ = e−Hλ/T /Z, where
we set the Boltzmann constant to be unit, kB = 1, and
Z = Tr[e−Hλ/T ] is the partition function.

We first consider a global measurement scheme for a
finite-dimensional system and derive the relation between
the global QFI F(ξ, ρξ) and the entropy of the global
system S(ρξ) in the high-temperature limit. We have
obtained the following lemma.

Lemma 1. Consider a finite-dimensional system in
Gibbs state at temperature T , with its Hamiltonian pa-
rameterized by a temperature-independent parameter λ
to be estimated. Then, the global QFI for estimating λ
and the total system entropy, S(λ;T ) are related as

∂T
(
TF(λ;T )

)
= ∂2

λS(λ;T ) +O(T−3). (1)
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The full proof is in Appendix A, here we explain the
basic idea of the proof. In the high-temperature limit, the
QFI for estimating λ can be quantified by the suscepti-
bility χ(λ;T ) to leading order: F(λ;T ) = χ(λ;T )/T +
O(T−3). From the relation between the general suscepti-
bility and entropy, ∂Tχ(λ;T ) = ∂2

λS(λ;T ), we can obtain
Eq. (1). Furthermore, let A(λ;T ) be the Helmholtz free
energy. Then, from the relation between the Helmholtz
free energy and entropy, ∂TA(λ;T ) = −S(λ;T ), we can
obtain:

F(λ;T ) = − 1

T
∂2
λA(λ;T ) +O(T−3).

This recovers the result of [19] to leading order, which
demonstrates that, in the high-temperature limit, the
QFI can be characterized as the curvature of the
Helmholtz free energy. If the parameter to be estimated
is the temperature, ξ = T the relation becomes exact :

Corollary 1. For a system in the Gibbs state, we have

∂T
(
TF(λ;T )

)
= ∂2

TS(T ). (2)

In the classical case, Eq. (1) becomes exact, as it can
also be derived from properties of the classical Fisher
information in the linear exponential family [24–26].

Let us define the optimal measurement in the high-
temperature limit as the measurement which achieves the
ultimate precision up to order O(T−2) of QFI (for ther-
mometry, O(T−4) of QFI [15]). Different from thermom-
etry case (ξ = T ), While to estimate a generic parameter
λ the optimal measurement is generally not projection
measurement onto energy eigenstates, this is instead the
case for thermometry or if λ is linearly coupled to the
Hamiltonian. Formally, we have the following lemma
(See Appendix B for proof):

Lemma 2. Consider a finite-dimensional system in
Gibbs state at temperature T with its Hamiltonian pa-
rameterized by a temperature-independent parameter λ
to be estimated. If the Hamiltonian depends only linearly
on λ, i.e., ∂2

λHλ = 0, projection measurements on the
energy eigenstates are optimal to estimate λ.

Corollary 2. Since the temperature multiplies the
Hamiltonian in the Gibbs state, projection on the energy
eigenstates is also optimal for thermometry.

Here we note that for a generic Hamiltonian, Hλ, the
susceptibility with respect to λ is given by

χ(λ;T ) =
〈G2

λ〉 − 〈Gλ〉2

T
− 〈∂λGλ〉

=
(δGλ)2

T
− 〈∂λGλ〉,

where Gλ = ∂λHλ. From Eq. (A1), the QFI becomes:

F(λ;T ) =
(δGλ)2

T 2
− 〈∂λGλ〉

T
+O(T−3). (3)

If λ is linearly coupled to the Hamiltonian, i.e., ∂λGλ =
∂2
λHλ = 0, the projection measurements on the energy

eigenstate are optimal since measuring Gλ corresponds to
projection measurements on the energy eigenstates and
the sensitivity of measuring Gλ saturates the Fisher in-
formation as follows

(δλ)2 =
(δGλ)2

(∂λ 〈Gλ〉)2 =
(δGλ)2

χ(λ;T )2
=

T 2

(δGλ)2
≈ 1

F(λ;T )
.

(4)
For a general parameter λ, we usually have 〈∂λGλ〉 6= 0
and from Eq. (3), the projection measurements on the
energy eigenstate are not optimal. However, there still
exits a set of observables that achieves the optimal mea-
surement.

C. LOCC QFI

Global measurements on a composite system are gen-
erally required to achieve the optimal QFI, but are usu-
ally difficult to implement. If only local measurements
are available, even the best measurement protocol might
not reach optimality. Here, we consider a local measure-
ment scheme with sequential local optimal measurements
on subsystems that we call “greedy” local measurement
scheme [15]. This scheme belongs to the class of LOCC,
thus we call the constrained QFI of this scheme LOCC
QFI.

Consider an arbitrary bipartite system in the state
ρABξ . In the greedy local measurement scheme, we first

perform a local optimal projection measurement Π̃A
j on

the first subsystem, where we use the notation Π̃ in or-
der to emphasize that the measurement is optimal. Af-
ter the measurement, the state of subsystem B is a con-
ditional state based on the measurement result of Π̃A

j ,

ρ
B|Π̃Aj
ξ = TrA[(Π̃A

j ⊗ 11B)ρABξ (Π̃A†
j ⊗ 11B)]/pj(ξ), with

pj(ξ) = Tr[(Π̃A
j ⊗ 11B)ρABξ (Π̃A†

j ⊗ 11B)] the measurement
probability. Given the conditional QFI for outcome j,

FB|Π̃Aj (ξ) = F(ξ, ρ
B|Π̃Aj
ξ ), the unconditional local QFI for

subsystem B is given by

FB|A(ξ) =
∑
j

pj(ξ)FB|Π̃Aj (ξ),

Note that feed forward is required as the optimal mea-
surement on B depends on the outcome of Π̃A

j . From
the additivity of the Fisher information, the LOCC QFI
FA→B(ξ) is given by

FA→B(ξ) = FA(ξ) + FB|A(ξ),

where FA(ξ) = F(ξ, ρAξ ) is the local QFI for subsystem

A [15, 27, 28]. Note that LOCC QFI has been origi-
nally proposed by [27] from information-theoretic per-
spective and by [28] from quantum metrology perspec-
tive. By definition, the global QFI FAB(ξ) always satis-
fies FAB(ξ) ≥ FA→B(ξ) [15, 28]. Here we are interested
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in relating the precision loss

∆F(ξ) = FAB(ξ)−FA→B(ξ)

due to local measurements to the presence of nonclassical
correlations in ρABξ .

III. DISCORD FOR LOCAL METROLOGY

Nonclassical correlations associated with the loss of
quantum certainty in local measurements have been
quantified by quantum discord [5, 6, 29]. For a bipartite
system (AB), the quantum discord [6] upon measuring
subsystem A is defined as

DA→B = −SAB + SA + min
{ΠAj }

SB|{ΠAj },

where {ΠA
j } are the set of projection measurements on

subsystem A, and Si = −Tr[ρi ln ρi] is the entropy of
state ρi. Here, SB|{ΠAj } is defined as

SB|{ΠAj } =
∑
j

pjSB|ΠAj ,

with pj = Tr[(ΠA
j ⊗ 11B)ρAB(ΠA†

j ⊗ 11B))] the probabil-

ity associated with the projection measurement ΠA
j . The

minimization over all sets of projection measurements on
subsystem A is required in order for quantum discord to
be basis-independent, and for extracting maximum infor-
mation about subsystem B.

In order to connect nonclassical correlations to the pre-
cision loss in metrology, we need to define a related met-
ric, that we call discord for local metrology, where the
minimization is restricted to projectors achieving opti-
mal estimate of ξ:

Definition 1. Let {Π̃A
j } be a set of optimal projection

measurements on subsystem A so that there exists an ob-
servable Γ̃A =

∑
j cjΠ̃

A
j (cj ∈ C), which can achieve the

ultimate precision of estimating ξ, i.e.,

(δξ)2 =
(δΓ̃A)2(
∂ξ〈Γ̃A〉

)2 =
1

FA(ξ)
,

where FA(ξ) is the local QFI for estimating ξ from ρAξ .

Then, discord for local metrology D̃A→B(ξ) is defined as

D̃A→B(ξ) = −SAB(ξ) + SA(ξ) + min
{Π̃Aj }

SB|{Π̃Aj }
(ξ),

which is minimized over all the possible sets of projection
measurements that are optimal for estimating the param-
eter ξ.

The minimization indicates that discord for local
metrology is independent of the choice of the optimum
basis for estimating ξ. Because the measurement basis

is chosen according to the optimal parameter estimation,
discord for local metrology is an upper bound of the dis-
cord, i.e., D̃A→B(ξ) ≥ DA→B . Also, the minimization is
required to avoid the ambiguity when multiple projection
bases are optimal. Note that the discord for local metrol-
ogy is a function of a state and a parameter; therefore, it
is not a typical correlation measure for the state. Discord
for local metrology has the following properties:

1. D̃A→B ≥ 0 (nonnegative);

2. D̃A→B 6= D̃B→A (asymmetric);

3. If the total system is in the product state, i.e.,
ρAB = ρA ⊗ ρB , then D̃A→B = 0; If D̃A→B = 0,
then the total system is in a classical-quantum
state, i.e., ρAB =

∑
j pj |j〉 〈j| ⊗ ρj,B , for some set

of orthonormal basis vectors {|j〉}, probability dis-
tribution {pj} and states {ρj,B}.

4. D̃A→B is invariant under local unitary operations.

Properties 1 and 2 are trivial. The first half of Property
3 is straightforward, and the second part follows from
the fact that D̃A→B(ξ) ≥ DA→B ; thus D̃A→B(ξ) = 0
leads to zero discord, and the state must be classical-
quantum. Property 4 is due to the state dependence
of the local measurement basis, which makes the quan-
tity only a function of the state and parameter choice.
Local unitary operations change the state, but the opti-
mal basis also changes accordingly, thus leaving invariant
the discord for local metrology. Note that one does not
expect invariance under more general local operations,
since discord can increase under local noise [30]. Prop-
erty 4 distinguishes our metric from the family of basis-
dependent discord [31–33], with which it otherwise shares
many commonalities.

Since discord for local metrology satisfies the condi-
tions of nonnegativity and the invariance under local uni-
tary operations, we can regard it as a good measure of
correlations [34]. While it can be non-zero for some spe-
cific classical-quantum state, an unpleasant property for
a discord metric, it is a practical quantity to measure
correlations in terms of local optimal measurement for
metrology.

For a general bipartite system, it is a demanding
task to find {Π̃A

j }. However, when ξ = T or ξ = λ
is a linear coupling parameter, for Gibbs state in the
high-temperature limit, Π̃A

j becomes the eigenbasis of

ρA, i.e., ρA =
∑
j rjΠ̃

A
j , as shown in Sec. II B. There-

fore, D̃A→B(ξ) becomes the so-called diagonal discord
DA→B(ξ) [35].

IV. QUANTIFYING ∆F(ξ;T ) VIA D̃A→B(ξ;T )

In this section, we prove our main result, Theorem 1,
stating the relation between the discord for local metrol-
ogy and the precision loss quantified by the difference
between global QFI and LOCC QFI.
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Theorem 1. Consider a finite-dimensional system in
Gibbs state with its Hamiltonian Hλ parameterized by a
temperature-independent parameter λ at temperature T .
Let ξ ∈ {λ, T} denote an unknown parameter to be esti-
mated. If FAB(ξ;T ) is the global QFI, and FA→B(ξ;T ) is
the LOCC QFI for estimating ξ, in the high-temperature
limit, we have

− ∂2
ξ D̃A→B(ξ;T ) = ∂T

(
T∆F(ξ;T )

)
+O(T−αξ), (5)

where αλ = 3 and αT = 5. Particularly, for thermom-
etry (ξ = T ), D̃A→B(T ) becomes the diagonal discord
DA→B(T ), which obeys

− ∂2
TDA→B(T ) = ∂T

(
T∆F(T )

)
+O(T−5), (6)

Proof. First, let us prove the case for ξ = λ. For a general
finite-dimensional system, in the high-temperature limit,
the state of the total system ρAB,λ can be written as

ρAB,λ =
1

dAB

(
11AB −

1

T

(
Hλ −

Tr[Hλ]

dAB

))
+O(T−2),

where dAB is the dimension of the system. The reduced
state of subsystem A is given by ρA,λ = TrB [ρAB,λ],
and within the same approximation we have ρA,λ ∝
11A − 1

T

(
HA,λ + ΩA,λ

)
+O(T−2), where ΩA,λ = const +

1
dB

∑
k〈E

(B)
k |HAB,λ|E(B)

k 〉, which is independent of tem-
perature. In the high-temperature limit, ρA,λ can be ap-

proximated by a Gibbs state ρA,λ ' Z−1
A,λe

−Heff
A,λ/T with

the effective Hamiltonian Heff
A,λ = HA,λ + ΩA,λ and the

normalization factor ZA,λ = Tr[e−H
eff
A,λ/T ]. Then, the

local QFI follows Eq. (1), i.e.,

∂T

(
TFA(λ;T )

)
= ∂2

λSA(λ;T ) +O(T−3). (7)

Suppose that projectors Π̃A
j are the local optimal pro-

jection measurements for estimating λ from state ρA,λ.
Then, the conditional state ρB|Π̃Aj ,λ

after measuring sub-

system A can also be approximated as Gibbs state in the
high-temperature limit with the effective Hamiltonian
HB|Π̃Aj ,λ

= HB,λ + ΩB|Π̃Aj ,λ
, where ΩB|Π̃Aj ,λ

= const +

Tr[HAB,λΠ̃A
j ]. Then, the local QFI obeys Lemma 1, i.e.,

∂T

(
TFB|Π̃Aj (λ;T )

)
= ∂2

λSB|Π̃Aj
(λ;T ) +O(T−3). (8)

Let us select Π̃A
j∗ such that

∑
j pj∗(λ;T )SB|Π̃Aj∗

(λ;T ) =

minΠ̃Aj

∑
j pj(λ;T )SB|Π̃Aj

(λ;T ). Then,

∂2
λD̃A→B(λ;T ) =

(
∂2
λSA +

∑
j∗
pj∗∂

2
λSB|Π̃Aj∗

− SAB
)

+
∑
j∗

(
∂2
λpj∗SB|Π̃Aj∗

+ 2∂λpj∗∂λSB|Π̃Aj∗

)
.

From Eq. (1), Eq. (7), and 8), we can obtain

−∂2
λD̃A→B(λ;T ) =∂T

(
T∆F(λ;T )

)
−
∑
j∗

(
∂2
λpj∗SB|Π̃Aj∗

+ 2∂λpj∗∂λSB|Π̃Aj∗

)
In the high-temperature limit, the entropy has the or-

der of SB|Π̃Aj∗
(λ;T ) = ln(dB) +O(T−2) and the measure-

ment probability is

pj∗(λ;T ) = Tr[(Π̃A
j∗⊗11B)ρAB,λ(Π̃A†

j∗ ⊗11B)] =
1

dA
+O(T−1).

(9)
In the high-temperature limit, we have

∂2
λSB|Π̃Aj∗

(λ;T ) = O(T−2).

By using the fact
∑
j∗ pj∗(λ;T ) = 1, we can write∑

j∗
∂2
λpj∗(λ;T )SB|Π̃Aj∗

(λ;T ) = O(T−1)O(T−2) = O(T−3)

∑
j∗
∂λpj∗∂λSB|Π̃Aj∗

= O(T−1)O(T−2) = O(T−3).

Therefore, we can write

−∂2
λD̃A→B(λ;T ) = ∂T

(
T∆F(λ;T )

)
+O(T−3).

Second, for thermometry, from Lemma 2 and Def. 1,
the optimal measurement basis is the diagonal basis of
ρA,T . Therefore, discord for local metrology D̃A→B(T )
becomes diagonal discord DA→B(T ). From our previous
result in [15], since we have already known that

− 1

T
∂TDA→B(T ) = ∆F(T ) +O(T−5),

we can obtain

−∂2
TDA→B(T ) = ∂T

(
T∆F(T )

)
+O(T−5),

Therefore, for any parameter ξ, in the high-
temperature limit, we can approximately write

∂2
ξ D̃A→B(ξ;T ) ' −∂T

(
T∆F(ξ;T )

)
, (10)

which demonstrates that ∂T
(
T∆F(λ;T )

)
is the curva-

ture of D̃A→B . Even if the curvature of the discord for
local metrology is not directly related to the amount of
nonclassical correlations, Eq. (10) still describes the role
of nonclassical correlations in the greedy local measure-
ment scheme in LOCC regime. While we derived The-
orem 1 for a bipartite system, the results in the high-
temperature limit can be extended to the case of multi-
partite systems (See Appendix D).

When the parameter λ is linearly coupled in the Hamil-
tonian, discord for local metrology becomes diagonal dis-
cord. From Theorem 1 and Lemma 2, we can obtain the
following corollary:



6

Corollary 3. Consider a finite-dimensional system in
Gibbs state at temperature T , with its Hamiltonian pa-
rameterized by a temperature-independent parameter λ.
When λ is linearly coupled to the Hamiltonian Hλ, i.e.,
∂2
λHλ = 0, we have

∂2
λDA→B(λ;T ) = −∂T

(
T∆F(λ;T )

)
+O(T−3), (11)

where DA→B(λ;T ) is the diagonal discord.

In addition, let us note the case for estimating a pa-
rameter linearly coupled to the single-body term. For
this case, we can obtain the following corollary (See Ap-
pendix C for proof):

Corollary 4. For a finite-dimensional system in Gibbs
state at temperature T , when λ is a parameter linearly
coupled to the single-body term as

Hλ = λHA + λHB +HAB ,

where HA and HB are the system Hamiltonians and HAB

is the interaction Hamiltonian. Then we have

−∂2
λDA→B(λ;T ) = O(T−3)

∂T

(
T∆F(λ;T )

)
= O(T−3).

(12)

To this order, the local measurements are optimal.
Here, note that the leading term that Theorem 1 cares
about is O(T−2), and this is 0 in this case.

In the following section, we show some examples that
verify Theorem 1, Corollary 3, and 4.

V. EXAMPLES

In this section, we verify the relation in Eq. (5),
Eq. (11) and Eq. (6) by providing several examples of
two-qubit Heisenberg interaction, whose Hamiltonian can
be written as

H =
B1

2
ZA +

B2

2
ZB +

Jx
2
XAXB +

Jy
2
YAYB +

Jz
2
ZAZB ,

where Xj , Yj , and Zj (j = A, B) are the Pauli matrices
acting on jth spin.

A. Thermometry

First, let us discuss the case of thermometry. From our
recent result [15], we have:

∆F(T ) =
J2
x + J2

y

4T 4
+O(T−5)

− 1

T
∂TDA→B(T ) =

J2
x + J2

y

4T 4
+O(T−5),

which directly yields

∂T
(
T∆F(T )

)
= −

3(J2
x + J2

y )

4T 4
+O(T−5)

−∂2
TDA→B(T ) = −

3(J2
x + J2

y )

4T 4
+O(T−5).

Therefore, Eq. (6) is valid.

B. Coupling strength

Next, let us consider the case of estimating the cou-
pling strength J when Jx = Jy = J . Then, we have

∆F(J ;T ) =
1

2T 2
+O(T−3)

DA→B(J ;T ) =
J2

4T 2
+O(T−3),

which directly yields

∂T
(
T∆F(J ;T )

)
= − 1

2T 2
+O(T−3)

−∂2
JDA→B(J ;T ) = − 1

2T 2
+O(T−3),

Therefore, Eq. (11) is valid.

C. Magnetometry

Finally, let us consider the magnetometry, which
demonstrates Eq. (12). We consider the case B1 = B2 =
B, where B is the parameter to be estimated. In this
case, we can find that

∂T
(
T∆F(B;T )

)
= − (Jx − Jy)2

8T 4
+O(T−5)

−∂2
BDA→B(B;T ) = −

J2
x + JxJy + J2

y

24T 4
+O(T−5).

From Eq. (12), the leading term should be O(T−3); there-
fore, we can say that Eq. (12) is valid but the term to
the corresponding order O(T−3) is 0.

VI. CONCLUSION

In conclusion, we introduced a novel metric for nonclas-
sical correlations, the discord for local metrology, which
is defined as a quantum discord in the greedy local mea-
surement scheme, and we derived a relation between dis-
cord for local metrology and the difference in QFI of the
global optimal scheme and the greedy local measurement
scheme in the high-temperature limit. We demonstrated
that the curvature of the discord for local metrology
quantifies the precision loss in the estimation of a general
parameter due to availability of local measurements only
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(Theorem 1). This also indicates that variations in non-
classical correlations at thermal equilibrium, quantified
by discord for local metrology, are related to the abil-
ity of the greedy local measurement scheme to achieve
the ultimate estimation precision limit, quantified by the
global QFI. We also showed that discord for local metrol-
ogy coincides with diagonal discord when one estimates
a linear coupling parameter (Corollary 3 and 4).

While we focused on finite-dimensional systems in the
high-temperature limit, it would be interesting to ex-
tend the relation between the discord for local metrology
and QFI for more general Gibbs states, especially in the
low-temperature limit where one could search for con-
nections to phase transition phenomena, or for infinite-
dimensional systems, such as bosonic gases [36, 37].

The relation between the curvature of the discord
for local metrology and the difference in QFI explic-
itly demonstrates the role of nonclassical correlations in
quantum metrology based on the original definition of
quantum discord. This provides insights on the role of
nonclassicality in quantum metrology and motivates fur-
ther exploration in more general settings, which can po-
tentially inspire experimentalists to design measurement
and control protocols to utilize quantum discord as a re-
source to achieve precise sensing and imaging, e.g., in the
context of room-temperature nuclear magnetic resonance
or bioimaging with defect spins [38–41].
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Appendix A: Proof of Lemma 1

First, let us prove the case of ξ = λ.
Let ε be an error in our estimation. Then, the Hamil-

tonian with the error becomes

Hλ+ε = Hλ + εGλ +O(ε2),

where

Gλ = ∂λHλ.

The fidelity between ρλ and ρλ+ε is defined as

F[ρλ, ρλ+ε] =
(

Tr
[√

ρ
1/2
λ ρλ+ερ

1/2
λ

])2

.

Since

e−
Hλ
2T e−(Hλ+εGλ)/T e−

Hλ
2T = e−(2Hλ+εGλ)/T+O(T−3)

we can write

F[ρλ, ρλ+ε] =
1

ZλZλ+ε

(
Tr[e−(Hλ+ ε

2Gλ)/T+O(T−3)]
)2

=
1

ZλZλ+ε

(
Tr[e−(Hλ+ ε

2Gλ)/T ]
)2

+O(T−3).

In the high-temperature limit, the fidelity between ρλ
and ρλ+ε becomes

F[ρλ, ρλ+ε] =
Z2
λ+ ε

2

ZλZλ+ε
+O(T−3),

where Zλ+ ε
2

= Tr[e
−Hλ+ ε

2
/T

], and from the definition of
QFI, we can obtain

F(λ;T ) =
Zλ∂2

λZλ − (∂λZλ)2

Z2
λ

+O(T−3)

Here, for Gibbs state, 〈Gλ〉 = Tr[Gλρλ] is always

〈Gλ〉 = −T∂λ lnZλ.

Then, the susceptibility with respect to a temperature-
independent parameter λ can be defined as

χ(λ;T ) = −∂λ〈Gλ〉.

so that we have

F(λ;T ) =
χ(λ;T )

T
+O(T−3). (A1)

Since the entropy of the bipartite system, S(λ;T ) =
−Tr[ρλ ln ρλ], satisfies the following relation

∂T 〈Gλ〉 = −∂λS(λ;T ), (A2)

from Eq. (A1) and Eq. (A2), we can obtain

∂T
(
TF(λ;T )

)
= ∂2

λS(λ;T ) +O(T−3).

Second, for the thermometry case, ξ = T , the global
QFI is F(T ) = C(T )/T 2 [42] for finite temperature,
where C(T ) is the heat capacity so that C(T ) =
T∂TS(T ). Therefore, we can obtain an exact relation

∂2
TS(T ) = ∂T

(
TF(T )

)
.

Therefore, Lemma 1 is valid.

Appendix B: Proof of Lemma 2

First, let us prove the case of ξ = λ. When ∂λGλ = 0,
the QFI becomes

F(λ, T ) =
(δGλ)2

T 2
+O(T−3). (B1)
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Let Ek(λ) be the eigenvalues of the Hamiltonian Hλ.

Then, Hλ can be diagonalized as Hλ = PλKλP
†
λ, where

Pλ is an unitary operator, P †λPλ = PλP
†
λ = 11 and Kλ =

diag(E1(λ), E2(λ), · · · , Ed(λ)) =
∑d
k=1Ek(λ)|k〉〈k| and

|k〉’s form a complete basis independent of λ, and d is
the dimension of the system. Thus,

∂λKλ =

d∑
k=1

∂λEk(λ)|k〉〈k|.

Then, Gibbs state becomes

ρλ =
1

Zλ
Pλe

−Kλ/TP †λ =
1

Zλ

d∑
k=1

e−Ek(λ)/TPλ|k〉〈k|P †λ.

Let us calculate the expectation value of Gλ = ∂λHλ.
Since

Gλ = ∂λPλKλP
†
λ + Pλ∂λKλP

†
λ + PλKλ∂λ(P †λ),

we have

〈Gλ〉 =Tr[ρλGλ] =
1

Zλ
Tr
[(
Pλe

−Kλ/TP †λ

)(
∂λPλKλP

†
λ + Pλ∂λKλP

†
λ + PλKλ∂λ(P †λ)

)]
=Tr

[e−Kλ/T
Zλ

∂λKλ

]
+

1

Zλ
Tr
[
Kλe

−Kλ/T (P †λ∂λPλ) + (∂λ(P †λ)Pλ)e−Kλ/TKλ

]
=Tr

[e−Kλ/T
Zλ

∂λKλ

]
+

1

Zλ
Tr
[
e−Kλ/TKλ∂λ(P †λPλ)

]
=Tr

[e−Kλ/T
Zλ

∂λKλ

]
= Tr[ρλPλ∂λKλP

†
λ],

where we used the cyclic property of trace operation, and
the fact of [e−Kλ/T ,Kλ] = 0. Therefore,

〈Gλ〉 = 〈Pλ∂λKλP
†
λ〉,

and Pλ∂λKλP
†
λ has same diagonal basis of ρλ, which are

{Pλ|k〉〈k|P †λ}dk=1. This means that the optimal measure-
ment for estimating the linear coupling parameter is the
projection measurement to the diagonal basis of ρλ.

Second, for the case of ξ = T , QFI is given as

F(T ) =
C(T )

T 2
,

where C(T ) is the heat capacity [42]. Because of C(T ) =
∂T 〈Hλ〉 = (δHλ)2/T 2, the temperature variance, (δT )2,
becomes

(δT )2 =
(δHλ)2

(∂T 〈Hλ〉)2
=

T 2

C(T )
=

1

F(T )
.

Therefore, for thermometry, the projection measure-
ments on diagonal basis are optimal.

Appendix C: Proof of Corollary 4

Let us consider the following Hamiltonian:

Hλ = λHA + λHB +HAB ,

where HA and HB are the system Hamiltonians, i.e.,
[HA, HB ] = 0 and HAB is the interaction Hamilto-
nian and generally [HA + HB , HAB ] 6= 0. Here, λ is

the parameter to be estimated. In this case, Hλ+ε =
Hλ + εGλ +O(ε2), where Gλ = HA +HB , which is inde-
pendent of ξ = {λ, T}. Here, we just simply write Gλ as
G in order to emphasize its independence of λ.

We already know that for the Gibbs state, we have
〈G〉 = −T∂λ lnZλ. In this case, we can immediately
obtain

〈G〉 = 〈HA〉+ 〈HB〉 = O(T−1)

because the entropy is SAB(λ;T ) = ln(dAB) + O(T−2)
and the relation between the entropy and 〈G〉 is

∂T 〈G〉 = −∂λSAB(λ;T ) = O(T−2).

By defining a general susceptibility with respect to λ as

χ(λ;T ) = −∂λ〈G〉 = O(T−1),

the QFI can be given as

FAB(λ;T ) = − 1

T
∂λ〈HA〉 −

1

T
∂λ〈HB〉 = O(T−2). (C1)

Now, let us consider the subsystem A. The effective
Hamiltonian Heff

A,λ can be written as Heff
A,λ = λ(HA +

const) + ΩA. Therefore,

FA(λ;T ) = − 1

T
∂λ〈HA〉+O(T−3).

Similarly, for ρB|Π̃Aj∗,ξ
, we have

FB|Π̃Aj∗(λ;T ) = − 1

T
∂λ〈HB〉+O(T−3).
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Therefore, by using Eq. (9), we have

FA→B(λ;T ) = − 1

T

(
∂λ〈HA〉+ ∂λ〈HB〉

)
+O(T−3)

From Eq. (C1) and Eq. (11), we can obtain

−∂2
λDA→B(λ;T ) = O(T−3)

∂T

(
T∆F(λ;T )

)
= O(T−3).

Appendix D: Generalization to multipartite case

Let us consider a finite-dimensional system composed
of N subsystems indexed by an integers 1 ≤ k ≤ N . In
the multipartite case, each subsystem is measured with
local optimal measurement sequentially, and we demon-
strate that the difference in global QFI and LOCC QFI
can be quantified via the curvature of the discord for lo-
cal metrology in the high-temperature limit, in parallel
to ref. [15].

We denote the order of measurement in a greedy local
measurement scheme by σ1:N ≡ (σ1, σ2, · · · , σN ), where
σk = {1, 2, · · · , N}. Let us write H(σk) as the Hilbert
space of the system on which we perform local optimal
measurement Π̃σk and H(σk+1:N ) as the Hilbert space of
the rest of system on which we perform the local optimal
measurement Π̃σk+1:N

. Therefore, the total system can
be decomposed sequentially into

H(σ1:N ) = H(σ1)⊗H(σ2:N )

= H(σ1)⊗H(σ2)⊗H(σ3:N )

...

= H(σ1)⊗H(σ2)⊗ · · · ⊗ H(σk)⊗H(σk+1:N ),

where 2 ≤ k ≤ N − 1.

At the first step (k = 1), we first perform the local

optimal measurement Π̃σ1
. Then conditioned on the

measurement result of Π̃σ1
, we perform the other lo-

cal optimal measurement Π̃σ2:N
on the rest of system.

Let us write the global QFI as Fσ1:N
and LOCC QFI

as Fσ1→σ2:N
. Then, in the high-temperature limit, from

Eq. (10), we have

∂T

(
T (Fσ1:N

−Fσ1→σ2:N
)
)
' −∂2

ξ D̃σ1→σ2:N
.

For the 2 ≤ k ≤ N − 1 steps, the measure-
ment Π̃σk is conditioned on the results of the previ-

ous sequence of local optimal measurements Π̃1:k−1 ≡
(Π̃σ1

, Π̃σ2
, · · · , Π̃σk−1

). We treat the rest of system as
bipartite system composed of H(σk) and H(σk+1:N ).

Then, from Eq. (10), we have ∂T

(
T (Fσk:N |Π̃σ1:k−1

−

Fσk→σk+1:N |Π̃σ1:k−1
)
)
' −∂2

ξ D̃σk→σk+1:N |Π̃σ1:k−1
. Here,

we have Fσk→σk+1:N |Π̃σ1:k−1
= Fσk|Π̃σ1:k−1

+Fσk+1:N |Π̃σ1:k
.

The unconditional QFI is given by the average over
measurement outcome distribution p(Π̃σ1:k−1

) as

Fσk→σk+1:N |σ1:k−1
≡

∑
Π̃σ1:k−1

p(Π̃σ1:k−1
)Fσk→σk+1:N |Π̃σ1:k−1

.

Then one can define an unconditional version of discord

D̃σk→σk+1:N |σ1:k−1
=

∑
Π̃σ1:k−1

p(Π̃σ1:k−1
)D̃σk→σk+1:N |Π̃σ1:k−1

,

which is related to the average measurement precision
difference

∂T

(
T (Fσk:N |σ1:k−1

−Fσk→σk+1|σ1:k−1
)
)

' −∂2
ξ D̃σk→σk+1:N |σ1:k−1

,

where Fσk→σk+1|σ1:k−1
= Fσk|σ1:k−1

+Fσk+1:N |σ1:k
. There-

fore, by adding the equation above from k = 1 and
k = N , the difference in QFI can be written as

∆Fσ1:N
= Fσ1:N

−
N∑
k=1

Fσσk |σ1:k−1

so that we can obtain

∂T (T∆Fσ1:N
) ' −∂2

ξ D̃σ1:N
, (D1)

where

D̃σ1:N
=

N∑
k=1

D̃σk→σk+1:N |σ1:k−1
.

Eq. (D1) is the generalization of Eq. (10) for the multi-
partite case.
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