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Current techniques in quantum process tomography typically return a single point estimate of
an unknown process based on a finite albeit large amount of measurement data. Due to statistical
fluctuations, however, other processes close to the point estimate can also produce the observed
data with near certainty. Unless appropriate error bars can be constructed, the point estimate does
not carry any sound operational interpretation. Here, we provide a solution to this problem by
constructing a confidence region estimator for quantum processes. Our method enables reliable
estimation of essentially any figure-of-merit for quantum processes on few qubits, including the
diamond distance to a specific noise model, the entanglement fidelity, and the worst-case entanglement
fidelity, by identifying error regions which contain the true state with high probability. We also
provide a software package—QPtomographer—implementing our estimator for the diamond norm
and the worst-case entanglement fidelity. We illustrate its usage and performance with several
simulated examples. Our tools can be used to reliably certify the performance of e.g. error correction
codes, implementations of unitary gates or more generally any noise process affecting a quantum
system.
PACS numbers: 03.65.Wj, 02.50.-r, 03.67.-a

I. INTRODUCTION

Quantum technologies are improving at an ever faster
pace, not only by a concentrated academic effort but
increasingly via collaborations with industry. Quantum
technologies require very precise manipulation and control
of quantum systems, fueling the development of theoret-
ical tools for precise calibration and characterization of
quantum devices [1]. Notably, quantum state tomography
and quantum process tomography (also known as quan-
tum process tomography) can infer the quantum state or
the quantum process that describes a quantum device,
providing a natural “quantum debugger” [2].
Quantum state tomography aims to reconstruct the

unknown state of a system with reference to a set of
calibrated measurement apparatuses. Because of the
intrinsically probabilistic nature of the outcomes of quan-
tum measurements, one runs the experiment many times
independently, collecting data from each run, and uses a
statistical procedure to infer the quantum state. Formally,
the reconstructed state is given by an estimator that as-
sociates a quantum state to a given dataset. Statistical
properties of estimators have been extensively studied not
only in general for any statistical models [3–5] but also for
quantum state estimation [1, 2, 6]. A natural and popular
estimator, which is furthermore computationally efficient,
is the maximum likelihood estimator [7–10]. Error bars
that are asymptotically optimal can be inferred from the
quantum Fisher information [11], either via Cramér-Rao
bounds or directly as confidence intervals [1, 12–14].
In quantum state estimation, one cannot always rely

on results that are valid the asymptotic regime of many
measurements, and finite-size effects become important
especially in settings where collecting measurements is

costly [15–17]. Bayesian approaches avoid this problem,
by constructing credible regions that are well-defined for
any finite number of repetitions of the experiment [18, 19].
An alternative approach that allows to make statements
that are not prior-dependent is to carefully and rigorously
construct confidence regions with a precise confidence
guarantee for finite number of copies. Such constructions
have been demonstrated using regions based on a likeli-
hood ratio [20], as well as procedures inspired by Bayesian
methods in which a credible region can be “upgraded” to
a confidence region [21, 22].
Many tools for quantum process tomography are

adapted from quantum state tomography, for instance via
the Choi-Jamiołkowski state-process correspondence [23].
Beyond traditional process tomography [24], more ad-
vanced tools such as randomized benchmarking [25–28],
gate-set tomography [29] and compressed sensing [30]
display certain advantages such as a reduced number of
required measurements. In the case of region estimators
as in refs. [21, 22], some subtleties prevent a straightfor-
ward application of the corresponding tools for quantum
states to quantum processes. Indeed, the set of quantum
process is in one-to-one correspondence with only a subset
of all bipartite states, namely those whose reduced state
on one system is maximally mixed; this constraint has
to be incorporated explicitly in the region estimator. In
this paper, we enrich the statistical toolbox for quan-
tum process tomography by providing a confidence region
estimator for quantum process inspired by the state to-
mography method of Christandl and Renner [21], with
a rigorous confidence guarantee for any finite number of
measurements.

Often in certifying specific applications, we are not in-
terested in the full knowledge of the quantum process; a
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property of the unknown channel suffices. For example,
in quantum key distribution we are often interested in
how close the final state output by the protocol is to
the ideal key-state; this is captured for instance by the
fidelity or the trace distance of the real state to the ideal
state [31]. Likewise, in quantum computing a relevant
figure-of-merit that enables fault-tolerant computation
is the error threshold captured by the diamond distance
or the worst-case entanglement fidelity of the real imple-
mented gate relative to the ideal gate [32]. Note that
a bound on the diamond distance or the entanglement
fidelity to a given fixed channel may confine the true
channel to a small region in channel space [33]. For these
reasons, and because this significantly simplifies our anal-
ysis, we focus on estimators for quantum processes that
report confidence intervals for a given figure of merit.
Summary of main results:
Our main contribution is three-fold:

(i) A confidence region estimator for channel tomogra-
phy through the use of the Christandl-Renner-Faist
estimator for states and the Choi-Jamiolkowski iso-
morphism between quantum states and quantum
processs. We call this the bipartite-state sampling
method.

(ii) A new confidence region estimator to directly (with-
out first tomographing the Choi state associated
with the channel) estimate quantum processs and its
proof of correctness. We call this the channel space
sampling method.

(iii) A software package called QPtomographer [34] ac-
companying our theoretical results for analysing ex-
perimental data. Our software returns quantum er-
ror bars which captures all the information about the
unknown channel derivable from the tomographic
data and enables the user to construct confidence
regions for any confidence level of interest.

By comparing the differences of the two estimators,
we obtain a better understanding about the relationship
between probability measures on state space and channel
space which may be of independent interest. Because
the estimators return a confidence region, they will work
without any assumption on the prior distribution of the
unknown process.
To illustrate how to use our result, we consider the

scenario of certifying a quantum memory (an example of
quantum property testing [35]). This corresponds to certi-
fying that a quantum device (approximately) implements
the identity channel. We consider three possible figures-
of-merit: the diamond distance to the identity channel,
the entanglement fidelity and the worst-case entanglement
fidelity [36, 37]. Our method yields a reliable estimation
of these figures-of-merit.

The paper is organized as follows. We first demonstrate
in section II how one can use our method to obtain reliable
information in a tomography experiment. The correctness
of our tools is justified in section III where we present the
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FIG. 1. (Color online) The workflow of rigorous process
tomography. Our data analysis QPtomographer supports
both prepare-and-measure and ancilla-assisted experimental
schemes. The conclusion is guaranteed without any prior
information on the unknown quantum process.
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FIG. 2. Illustrations of (a) prepare-and-measure and (b)
ancilla-assisted tomographic schemes for an unknown channel
ΛA→B . In prepare-and-measure, one can only prepare input
state σj

A which is fed into an unknown channel whose out-
put state is measured by some POVM with elements E`

B . In
ancilla-assisted, one can prepared entangled input state with
some reference system P , and measure jointly the output using
some POVM with elements E`

BP .

main results. Then we study the behavior of our numerical
implementations in section IV before concluding our paper
with future directions (section V). We leave the formal
statements and detailed derivations of our results to the
Appendices.

II. SETUP AND WORKFLOW

In this section, we detail the main workflow associated
with the tomographic tools we have developed in our
paper via a concrete example.

Suppose an experimental team has developed a working
quantum memory (single qubit) and would like to certify
its performance for usage within a quantum communica-
tion protocol such as entanglement distillation. In this
context, one way of measuring the performance is the
diamond norm distance to the identity process. The work-
flow for this example is illustrated in Fig. 1. We remark
that there are other quantities of interest which do not
assume an i.i.d structure, such as for example estimating
the capacity as in [38].

The quantum memory’s performance can be determined
as follows. We assume that we have access to a given
number of uses of the quantum memory. The number of
uses can be chosen freely, noting that it affects the final
error bars.
Moreover, in order to find out what the unknown pro-

cess was, we need additional access to state preparation
and measurement devices which are information-complete
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(at least in the physical degrees of freedom where the
unknown process acts). In this example, the set of state
preparations are the Pauli eigenstates |±x〉, |±y〉, |±z〉,
while the set of measurement devices are Pauli X,Y, Z
measurements. We assume that each use of the quan-
tum process are independent, and that the same unknown
quantum process is applied for each run of the experiment,
yielding statistics which are independent and identically
distributed (i.i.d.). While here we consider a prepare-and-
measure scenario as depicted in Fig. 2(a), it is also possi-
ble to consider an ancilla-assisted scheme (Fig. 2(b)).
The first step (see Fig. 1) involves calibrating the

state preparation and measurement devices to have
|±x〉, |±y〉, |±z〉 state preparations and X,Y, Z measure-
ments. After this calibration procedure has succeeded,
one performs a chosen number n = 45000 of individual
experiments. Each experiment consists of the following
steps

• Prepare an input state by executing one of the
devices |±x〉, |±y〉, |±z〉 (perhaps at random).

• Apply the (unknown) quantum memory to the said
input state.

• Measure the output state using one of the possible
X,Y, Z measurement devices (perhaps at random).

• Record the outcome of this experiment in a
dataset E.

We remark that the preparation and measurement should
yield sufficient data in the sense that all combination of
input states and measurements should be chosen (perhaps
at random).

Such a dataset E can then be analyzed by our software
QPtomographer. One provides to our software the infor-
mation about the measurement settings and the observed
dataset. Then, using a Metropolis-Hastings sampling
method, the software determines a specific type of distri-
bution of the figure-of-merit Fig. 3 along with correspond-
ing quantum error bars (v0,∆, γ) (see (10) for the precise
definition and [22] for the origin of this terminology). The
value v0 is the location of the maximum in Fig. 3, while
∆ and γ measure the spread of the error. In our example,
the analysis based on the input data set E with n = 45000
measurement records returned the quantum error bars

(v0 = 0.058,∆ = 0.006, γ = 0.00019),

which determine the parameters of an appropriate fit
function ((red) curve of Fig. 3).

The quantum error bars contain the information about
the error analysis with an accurary that can be measured
by the goodness-of-fit value between the fit model and
the simulated histogram. Namely, they (i) form a concise
description of the error, (ii) provide an intuitive idea of
the magnitude of the error, and (iii) can easily determine
confidence regions for the quantum state or quantum pro-
cess [22]. In this sense, quantum error bars are perfectly

analogous to classical error bars: The latter are indeed
a concise, intuitive description of the error from which
one easily determines rigorous confidence intervals. For
this reason it is a natural object to report at the end of a
process tomography procedure.
If one wishes to actually derive rigorous confidence

regions for the diamond norm distance, one may proceed
as follows. First, one fixes a confidence level, say α =
99%, which sets the corresponding error parameter as
ε = 1 − α = 10−2. By Theorem 2, for n = 45000 (size
of our dataset E) and dA = dB = 2, we need to find a
region of diamond norm distance values with weight at
least

1− ε

2

(
2n+ d2

Ad
2
B − 1

d2
Ad

2
B − 1

)−2

≥ 1− 10−151 ,

With reference to Fig. 3, this means we need to find the
x-position such that the area under the curve exceeds
1− 10−151. A numerical integration leads to a region at
least as large as [0, 0.24]. Together with the enlargement
by

δ =

√
2

n

(
ln

2

ε
+ 3 ln

(
2n+ d2

Ad
2
B − 1

d2
Ad

2
B − 1

))
= 0.1

(to exclude nearby channels which could result in the
same observed dataset with high probability) the final
confidence region is [0, 0.34]. This means we have certified
that the diamond norm distance of the unknown quantum
memory to an ideal quantum memory is at most 0.34
with 99% confidence. In general, increasing the number
n of measurement data points will shrink this confidence
interval (due to the exponential decays in the diamond
distance density, see also Appendix F).
We emphasize that the unnaturally large size of the

regions is due in large part to a technical difficulty in
the proofs of our bounds that is dealt with by employing
tools that are known not to be tight in this context. For
this reason, the quantum error bars are more informative
than the actual final confidence regions.
This concludes the general workflow associated with

our tomographic tools. The next section explain at a high
level how our software transform tomographic data into
confidence regions.

III. MAIN RESULTS

Our software package QPtomographer is built on top
of two rigorously proven theoretical constructions. These
are confidence region estimators based on the bipartite-
state sampling method or the channel-space sampling
method. The bipartite-state method works in the ancilla-
assisted scheme, while the channel-space method works in
both ancilla-assisted and prepare-and-measure schemes.
This section gives a high level overview of the construc-
tions together with the main ideas behind the proof of
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FIG. 3. (Color online) Typical output from QPtomographer.
The (blue) dots form the estimated distribution of values of the
diamond norm distance to the identity channel as determined
by the Metropolis-Hastings random walk. These are well-fitted
to the (red) curve, which is compactly described by the triple
of numbers (v0,∆, γ) which we called quantum error bars.
Here v0 is the position of the peak, ∆ is half width at relative
height 1/e, and γ is a measure of skewness. These data encode
information about the performance of the quantum memory,
and enable us to construct confidence intervals certifying its
quality.

correctness, and leave the details to Appendix B and Ap-
pendix C, respectively. We begin with a brief motivation
for confidence region estimators.

A. Confidence region estimators

In the limit of infinite data (i.e. the number of records in
dataset E is infinity), it is possible to exactly compute the
probabilities of each measurement outcome from E and
reconstruct the unknown channel by linear inversion on
these observed probabilities [2]. However, in the practical
scenario of finite data (i.e. dataset E contains n records)
statistical fluctuations will imply the failure of all point
estimation methods such as linear inversion or maximum
likelihood estimation. This is due to the fact that channels
close to the point estimate can produce the same dataset
with high probability.

In order to make statistically rigorous and operationally
sound statements on the unknown channel in this regime,
we turn to region estimators, which are generalisations
of the process of constructing error bars. We will look at
a type of region estimators known as confidence region
estimators. These are maps from data E to subsets SE ⊆
C (HA → HB) of the set of quantum processes with the
property that for all Λ ∈ C (HA → HB)

Pr
E

[Λ ∈ SE ] ≥ α, (1)

where α is a prefixed confidence level and the probability
is evaluated over the random data E according to the
distribution Pr[E|Λ]. It is important to note that confi-
dence is a property of the entire estimator (the procedure
E 7→ SE) and not of any particular subset SE produced
by the estimator.
The operational meaning of confidence region estima-

tors can be understood as follows. Suppose the black
box implementing the unknown channel Λtrue is in fact
prepared by a referee, who knows exactly which channel
the black box applies. We proceed with a sequence of
state preparations, applications of the channel and mea-
surements of the output states to obtain a dataset E.
Then we apply the estimator on E to get SE . Repeating
this procedure a large number of times, say N = 105, if
r denotes different repetitions then we obtain different
datasets E(r = 1), ..., E(r = 105) with corresponding
conclusions that the true channel Λtrue should be in the
region SE(r=1), ..., SE(r=105). Now since the referee knows
exactly the unknown channel, the referee can evaluate
the proportion of correct conclusions

∣∣{r : r = 1, ..., N and Λ ∈ SE(r) is true }
∣∣

N
.

If the estimator used is a confidence region estimator with
confidence level α = 0.99, then in the limit of N → ∞
this proportion is at least 0.99. This is the meaning
of confidence: the correct conclusion is guaranteed for
a large number of uses of the estimator, regardless of
the unknown channel. Note that for a specific use of
the estimator which returns SE , we cannot draw the
conclusion that Λ ∈ SE .

An alternative justification of confidence regions comes
from a Bayesian point of view: Bayesian tomography uses
outcomes of measurements to update a prior distribu-
tion about the quantum state to a posterior distribution.
While this posterior clearly depends on the prior, it is
known that when enough data is collected, the posterior
distribution is no longer sensitive to the exact prior which
was originally used (as long as the original prior has full
support). Now consider a high-weight region of a poste-
rior distribution, which is also known as a credible region.
We may ask to what extent this region remains a credible
region if we change the underlying prior. It turns out that
for a large enough number of measurements, we may find
regions which are credible regions for any prior, except for
some exceptionally unlikely measurement datasets [21].
Such regions are precisely confidence regions.

B. Our confidence region estimators

Our method of constructing region estimators uses the
information about the underlying unknown channel via
the likelihood function defined generically for an observed
dataset E as

L(Λ|E) = Pr(E|Λ), (2)
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where the probability of the dataset E under the assump-
tion that the unknown channel is Λ is given by Born’s
rule. The specific form of the likelihood function depends
on the scenarios and assumptions we postulate, c.f. Ap-
pendices B,C. The likelihood function can be seen as
giving a ranking about which channel best produce the
observed dataset. We now present our methods of process
tomography.
Bipartite-state sampling method: the main idea

behind this method is that a quantum process is in
correspondence with bipartite Choi states via the Choi-
Jamiolkowski isomorphism. Hence, we can construct con-
fidence regions for quantum states using the method of
Christandl-Renner, and then perform an additional clas-
sical post-processing step to recover a confidence region
for quantum processes.
Let us now first assume the use of an ancilla-assisted

tomographic scheme Fig. 2(b), which loosely corresponds
to physically performing the Choi-Jamiolkowski isomor-
phism in the laboratory. This means having access to a
full rank bipartite entangled state |ψAP 〉 as input to the
channel, and performing tomography on the output state
ρBP := ΛA→B(ψAP ) which is the unknown Choi state
associated with the unknown channel.
Treating ρBP as the unknown state in a state tomog-

raphy problem, we now apply the Christandl-Renner
method of constructing confidence regions from tomo-
graphic data. Recall that the Christandl-Renner confi-
dence region is constructed from the measure

dµE(σAB) := c−1
E tr(σ⊗nABE)dσAB (3)

where cE =
∫

tr(σ⊗nABE)dσAB is the normalizing constant,
and dσAB is the uniform distribution on bipartite density
matrices (obtained by tracing out a Haar random pure
state on a larger space). Note that tr(σ⊗nABE) is the
likelihood function for the outcome E given the state
σAB in this scenario. Confidence regions for the unknown
ρAB can be constructed from dµE(σAB) as the following
proposition asserts.

Theorem 1 (Christandl & Renner [21], informal). Let n
be the number of systems measured by a POVM during
tomography and 1− ε be the desired confidence level. Let
SµE ⊆ D(HAB) be any set of bipartite states with high
weight under the probability measure dµE(σAB). Then
the enlargement in purified distance SδµE where

δ =

√
2

n

(
ln

2

ε
+ 2 ln s2n,d2

AB

)
(4)

with sn,d :=
(
n+d−1
d−1

)
is a confidence region of confidence

level 1− ε.

Intuitively, we can think of the enlargement as a way
to exclude nearby states/channels (relative to a proposed
region of states/channels) that can give rise to the same
observed dataset E with nonzero probability.

The confidence region SδµE contains bipartite quantum
states which are not Choi states. This is due to the fact
that the method of Christandl and Renner does not a
priori allow the Choi state constraint trB(σAB) = 1A/dA.
Hence, we have to invent an additional post-processing
step to map SδµE to a region consisting of exclusively
Choi states. By the Choi-Jamiolkowski isomorphism we
then have a confidence region for the unknown quantum
process. The detailed explanation is left to Appendix B.

Channel-space sampling method: this method is
a new construction of confidence region that directly re-
turns channel-space confidence regions. Compared to the
bipartite-state method, the channel-space method works
in both the prepare-and-measure and ancilla-assisted to-
mographic schemes and takes into account the a pri-
ori knowledge that we are estimating a quantum pro-
cess. This leads to computational efficiency relative to
the bipartite-state method because the additional post-
processing step of the bipartite-state method is not re-
quired here.

The estimator is constructed from the probability mea-
sure on the set of quantum processs C (HA → HB)

dνE(Λ) := c′−1
E L(Λ|E)dν(Λ) (5)

where L(Λ|E) is the likelihood for the event E given
a channel Λ, c′E =

∫
L(Λ|E)dν(Λ) serves as a normal-

izing constant and dν(Λ) is the Haar-induced measure
on C (HA → HB). The likelihood function is adapted
depending on prepare-and-measure or ancilla-assisted to-
mographic scheme and is defined as the probability of
obtaining the dataset E given a channel Λ. Informally,
this measure captures the information of the unknown
channel as revealed by the observed dataset E in an unbi-
ased manner (that is without using any prior knowledge
on the unknown).

Given this measure, we obtain

Theorem 2 (informal). Let n be the number of channel
uses during tomography and 1−ε be the desired confidence
level. Let RνE ⊆ C (HA → HB) be a set of channels with
high weight under the probability measure dνE(Λ). Then
the enlargement in purified distance (for quantum processs,
induced from states) RδνE where

δ =

√
2

n

(
ln

2

ε
+ 3 ln s2n,d2

AB

)
. (6)

with sn,d :=
(
n+d−1
d−1

)
is a confidence region with confidence

level 1− ε.
Confidence interval for figures-of-merit: in practice, we

choose the region in Theorem 2 for any chosen figure-of-
merit to be the subset of channels whose figure-of-merit
is better than a certain threshold. For the diamond norm
distance to the ideal channel, we consider

R =
{

Λ : 1/2‖Λ− Λideal‖� ≤ γE
}
, (7)



6

and for the worst-case entanglement fidelity we consider

R = {Λ : Fworst(Λ) ≥ γE} . (8)

We can work directly with the figure-of-merit by push-
forwarding the measure dνE(Λ) to the space of figures-of-
merit, which is typically the reals R or the interval [0, 1],
and obtain the histogram h(v) over different values of the
figure-of-merit; the enlargement of these regions under
the purified distance is translated into a loss in the value
of the figures-of-merit: γE → γE + dAδ/2 for diamond
distance and γE−dAδ for worst-case entanglement fidelity.
The loss vanishes with increasing number of channel uses
(as evident in Equation 4 and Equation 6), which allows
reliable estimation of the figure-of-merit.

C. Numerical implementations

The previous section outlined the theoretical results
underpinning our software package. We observe a reduc-
tion from the problem of constructing confidence regions
to a problem of approximating the measures dνE(Λ) or
dµE(σAB). Solving this latter problem is the objective of
the numerical implementations.
Computing dνE(Λ) and dµE(σAB): in order to ap-

proximate a probability measure, we will take the Monte-
Carlo approach of producing its samples, i.e. producing a
histogram approximating a measure. More samples lead
to better approximation but require more computational
resources. Sampling according to dµE(σAB) (i.e. the
bipartite-state method) has been implemented in [22],
and sampling according to dνE(Λ) (i.e. the channel space
method) can be obtained by similar methods. More
precisely, dνE(Λ) can be approximated by Metropolis-
Hastings sampling [39] on channel space, which reduces
to the ability of sample a “uniformly random quantum
process” according to dν(Λ). To do this, it suffices to sam-
ple a unitary operator at random according to the Haar
measure, by Stinespring dilation (see Appendix A 2). Cru-
cially, because we use the Metropolis-Hasting algorithm,
it is not necessary to calculate the normalizing constants
cE and c′E which are difficult to obtain in practice. The
parameters required to run the Metropolis-Hastings algo-
rithm are the initial starting point and a jump distribution
(a distribution from which we know how to produce sam-
ples). For the jump distribution, we have implemented
two versions which we call eiH and elementary rotation.
The Metropolis-Hastings algorithm starts with an ini-

tial point U0 in the sample space, which we take to be
the identity unitary operator, and conducts a random
walk around this space. For each iteration, starting from
current location U the jump distribution produces a candi-
date U ′ (depending on the current location) for a sample—
a unitary matrix—which could potentially comes from
dνE(Λ). This candidate is accepted to be a sample of
dνE(Λ) with acceptance probability a, and upon accep-
tance the current location is updated to this point. The

acceptance probability is defined to be the likelihood ra-
tio (i.e. probability ratio) of U ′ to produce the observed
dataset E with respect to the the current location U . This
can be computed as the state preparations and measure-
ments are known from calibration, and the dataset E is
given from the experiment. The sequence of points {Ui}
visited in this fashion, albeit correlated, are asymptoti-
cally distributed according to dνE(Λ) [39].
Extracting information for a given figure-of-

merit: in terms of a given figure-of-merit f , the dis-
tribution dν(Λ) can be represented as a density function
h(v) for any possible value v of the figure-of-merit asso-
ciated with the unknown channel Λ. For all practical
purposes, our goal is to obtain a compact description of
this density. Clearly, this function is well approximated
by the sequence of values {f(Ui)} derived from the output
of the Metropolis-Hastings algorithm by simply evaluat-
ing the figure-of-merit at each point Ui. We organize
{f(Ui)} into bins of some size to produce a histogram
approximating h(v). This histogram is further subjected
to a statistical fit analysis to obtain quantum error bars
(v0,∆, γ), which contain enough information to recon-
struct a good approximation of h(v). We consider the fit
model given in Ref. [22]

lnµfit(v) = −a2v
2 − a1v +m ln v + c . (9)

From this, the reported quantum error bars are computed
from the fit parameters of the fit model as:

v0 =
1

4a2

[
−a1 +

√
a2

1 + 8a2m

]
; (10a)

∆ =

(
a2 +

m

2v2
0

)−1/2

; (10b)

γ = m
∆4

6v3
0

. (10c)

Note that if this fit model does not agree well with the
histogram bins, one can always modify the fit model, and
report analogous quantum error bars. See Appendix D
and section IV for more details.

D. Relation between our two sampling methods

There is a connection between our two estimators, which
we explain in detail in Appendix G. The essential differ-
ence between the bipartite sampling method and the
channel-space method can be traced back to how one uses
the prior information about the input state. In the former,
nothing is assumed about the exact input state other than
what can be inferred directly from the measurement data
(of course, still under the physical assumption of a pure
entangled input); in the latter, the exact input state is
assumed with certainty, and is used in the construction
of the estimator (as manifestly visible in the likelihood
function).
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IV. APPLICATION: EXAMPLES

We now illustrate in more details the use of our soft-
ware package QPtomographer by continuing the quantum
memory example. The generic procedure is described in
Algorithm 1 and Algorithm 2. In the rest of this Section,
simulation results are obtained using the channel-space
sampling method unless otherwise stated. All numerics
were run on a 2016 Macbook Pro with 4 physical/8 virtual
cores using our code provided at [34].

Algorithm 1 Ancilla-Assisted (see Fig. 2(b))
1: input a pure entangled state and a collection of measure-

ments
2: for i = 1 to n do
3: Choose a measurement from the set
4: Apply the channel to the entangled input state
5: Measure the output state with the chosen measurement
6: Record the observed outcome
7: end for
8: return dataset E storing the measurement and outcomes

for each repetition

Algorithm 2 Prepare-and-Measure (see Fig. 2(a))
1: input a set of states and a collection of measurements
2: for i = 1 to n do
3: Choose an input state and a measurement from the set
4: Apply the channel to this input state
5: Measure the output state with the chosen measurement
6: Record the input choice and the observed outcome
7: end for
8: return dataset E storing input state, output measurement

and outcomes for each repetition

The output of our classical data analysis is called
“quantum error bars” which contain all the information
about the figure-of-merit that can be obtained from
the tomographic dataset. From here, it is easy to con-
struct confidence regions for any specified confidence level.

A. One-qubit example

In the following, see example qubit-noisy-identity in our
software package [34] for more details.
Step 1. Data collection:
Consider the scenario of testing the performance of a

quantum memory ΛA→B. The ideal channel we wish to
implement is the identity channel I. Suppose that the real
channel implemented in the experiment the depolarizing
channel

ΛA→B(ρ) = p ρ+ (1− p) d−1
B 1B , (11)

acting on one qubit (dA = dB = 2), with the parameter
p = 0.9. In other words, the experiment is slightly off
from the ideal implementation by some white noise.

Furthermore, we consider the ancilla-assisted scheme,
and assume that the input to the channel is half of a pure
entangled state |ψ〉AP = (σ

1/2
A ⊗ 1) d

1/2
A |Φ̂〉AP , where we

choose

σA =

(
0.6 0.1
0.1 0.4

)
, (12)

which mimics an input state which deviates slightly from
the maximally mixed state. Note that the entangled input
state has full Schmidt rank.
Since we do not have an actual experiment, we have

to simulate Pauli measurements on the joint state ρBP
after application of the channel ΛA→B, with 2 possible
outcomes for each of the 3 measurement settings. For each
measurement setting, 500 measurement outcomes were
simulated. These constitutes the information contained
in the (simulated) observed dataset E with n = 45000.
We now subject this dataset to an analysis which

we aim to measure three figures-of-merit corresponding
to our unknown channel: the diamond distance to
the identity channel, the average entanglement fidelity
and the worst case entanglement fidelity. Refer to the
Appendix A for the precise definitions.

Step 2 and 3. Random sampling and histogram:
We run the channel-space sampling method to estimate

the three figures-of-merit. The calculation of all three
figures-of-merit functions was done in C++ using the SCS
toolbox [40, 41]. A simple Python interface was used to
control the execution of the program. The Metropolis-
Hastings random walk is run on the space of all quantum
processes using elementary rotation jump distribution,
as described in Appendix D, until 32768 data points
have been collected. Samples from the random walk
allow to construct a histogram approximating a specific
distribution of the figure-of-merit.
Step 4. Fit analysis of histograms:
In our example, we discovered that the fit model as

described in (9) does have good agreement with the un-
derlying histogram bins, as underscored by goodness-of-fit
values (reduced χ2) of the order of ∼ 4 in most cases. In
case of poor fit to the default model, one may modify
the empirical fit model until an acceptable goodness-of-fit
is achieved, before quantum error bars and confidence
regions can be derived.
Step 5. Quantum error bars and confidence regions:
The quantum error bars (v0,∆, γ) are a simple trans-

lation from the parameters of the fit model. The steps
towards a confidence region for diamond norm has been
illustrated in section II. In theory we have the guarantee
that collecting a larger dataset will yield smaller regions
converging to the true value. Unfortunately, the confi-
dence interval for diamond norm distance returned by our
method is unreasonably large for the current example: for
99% confidence level we are able to bound the diamond
norm by 0.34 as compared to the true value of 0.05. We
believe that this is due to operator inequality involved in
bounding the failure probability (Proposition 1). Further



8

0.00 0.05 0.10 0.15 0.20
Diamond norm distance to the identity

0

20

40

60

80

100
pr

ob
ab

ili
ty

 d
en

si
ty

true value histogram
fit

0.850 0.875 0.900 0.925 0.950 0.975 1.000
Worst-case/average entanglement fidelity

0

25

50

75

100

125

150

175

pr
ob

ab
ili

ty
 d

en
si

ty

averageworsthistogram, average
fit, average
histogram, worst
fit, worst

FIG. 4. (Color online) Distribution of the figures-of-merit for the single-qubit noisy quantum memory example relevant to
construct confidence regions. This figure is obtained by the channel-space sampling method run over simulated data from
a known true state; vertical dashed lines are true figure-of-merit values of the channel. The data points are the histogram
resulting from our Metropolis-Hastings integration method, and the solid lines a corresponding fit to the empirical model of [22]
(see main text). Left: the diamond norm is chosen as figure of merit. Right: the figure of merit is chosen to be either the
worst-case entanglement fidelity (blue/dark gray) or the average entanglement fidelity (red/light gray). These plots should be
understood as tools to construct confidence regions: Given a threshold on the x-axis, one may easily calculate from these curves
the confidence with which one may ascertain the true figure-of-merit (see main text). The present example is included in our
software package [34].

research is needed to provide better construction of confi-
dence regions (i.e. more efficient in terms of the number
of data samples n).

B. Two-qubits example

Now we consider a two-qubit example to illustrate the
practicality of our method in this situation. This example
also shows that the channel-space and the bipartite-state
sampling methods do not in general produce the same
histogram, as one might have concluded from Fig. 4.
In the following, see example 2qubits-noisy-identity in

our software package [34] for more details.
Suppose that the real channel implemented in the ex-

periment the two-qubits depolarizing channel

ΛA→B(ρ) = p ρ+ (1− p) d−1
B 1B , (13)

with dA = dB = 4 and we are interested in the diamond
distance to the identity channel. Assuming access to state
preparation that produces |ψ〉AP = (σ

1/2
A ⊗1) d

1/2
A |Φ̂〉AP

with

σA =




0.35 0 0.04 0.1i
0 0.15 0.05 0

0.04 0.05 0.32 0
−0.1i 0 0 0.18


 , (14)

and 34 = 81 Pauli measurement settings each having
22 = 4 outcomes. We perform similar analyses on a
simulated dataset of size n = 40500 which we generated
using the state preparations and measurements described
above. The result is presented in Fig. 5.
The channel-space sampling method’s h(v) is peaked

at lower values of the figure-of-merit, as can be seen in
Fig. 5. We observe that, in this case, the knowledge
of the input state significantly shifts the corresponding
histogram distribution towards lower values of the figure-
of-merit, allowing to construct smaller confidence regions.
Based on several examples studied, this is not always the
case; with less noise (smaller p), for instance, the curve
for µ(v) and the curve for h(v) get closer to each other.

On a technical level, we show that the Hilbert-Schmidt
measure over the bipartite states factorizes as a measure
over states on the input system and the relevant measure
over all channels (Appendix G). Hence, a large uncertainty
over the input state may enlarge the resulting region
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FIG. 5. (Color online) Distribution of the diamond norm
distance for the two-qubit noisy quantum memory example.
Results from other jump distributions of the same sampling
method (not shown), namely bipartite-state or channel-space,
coincide with plotted curves. The difference between the
two methods for the entanglement fidelity is not a contra-
diction, rather, in this situation the channel space method
(blue/dark gray) gives better tomographic results compared
to the bipartite-state method (red/light gray). The reason
is due to the additional use of prior information about the
input state in the channel space method. This figure can be
reproduced in its entirety from example 2qubit-noisy-identity
in our software package [34].

as opposed to considering a region only on the channel
space for a fixed known input state. However, it is not
impossible that under some lucky circumstances a finite
distribution width on the input state helps add more
weight to regions of a higher figure of merit, effectively
shrinking the region. Indeed, it could happen that the
input state assumed in the channel-space method is far
from the optimal state for distinguishing the channels in
terms of the diamond norm; in such a case a prior which is
more “smeared out” over different input states might result
in smaller quantum error bars for the diamond norm. We
believe that this is why neither method performs globally
better than the other. See Appendix G for further details
on the relationship between the two methods.

V. CONCLUSIONS

One might think that carrying over the notion of quan-
tum error bars in quantum state tomography to quantum
process tomography is as straightforward as converting
quantum states to channels via the Choi-Jamiołkowski
isomorphism. However, our study reveals a more compli-
cated structure. We find that different analysis methods
are suited to different experimental process tomography
setups. In the experimentally more realistic prepare-and-
measure scheme, a judicious use of the prior knowledge

about the input state to the process allows us in typi-
cal situations to obtain tighter quantum error bars for
the process. These results are obtained by developing a
new method, along with corresponding proofs, which are
specific to process tomography. On the other hand, in
the case of the ancilla-assisted scheme, we can directly
apply the methods developed for quantum state tomogra-
phy, harnessing them to directly yield reliable statements
about the quantum process itself, while ignoring any infor-
mation the measurements provide about the input state
used to probe the process.

We hence provide a fully-fledged and practical toolbox
named QPtomographer, with solid theoretical foundations,
for quantum process tomography of arbitrary quantum
processes, using any experimental quantum process to-
mography setup, and given measurement outcomes from
any measurement settings. Our software package facili-
tates the numerical analysis in practice by automating the
implementation of the Metropolis-Hastings random walk,
as well as the calculation of the diamond norm, by sim-
ple high-level Python function calls, while transparently
delegating the computation-intensive routines to heavily
optimized C++ code which makes use of modern program-
ming techniques including template metaprogramming
and exploiting hardware SIMD instructions.
On the spectrum of characterization tools for quan-

tum devices, our method can be seen as lying on the
opposite end of randomized benchmarking [25–28]. While
slightly more involved, our technique can be applied to
any choice of state preparations and measurements, and
can be applied to any individual process. By determin-
ing the diamond norm or the worst-case entanglement
fidelity to any given ideal process, we provide individual
full characterization of the processes implemented by in-
dividual gates. More generally our methods allow the
reliable estimation of any specific property of the quantum
process.
We note that our method is currently limited to pro-

cesses acting on few qubits, as our confidence region
produces unreasonably large regions, and the algorithm
stores dense representations of the quantum process. How-
ever, we expect that our methods will be used to certify
individual components of complex setups, for instance,
individual 2-qubit gates. Because we estimate robust,
composable figures-of-merit such as the worst-case entan-
glement fidelity or the diamond norm, the composition
of individually certified components is still certified to
function accurately. The generous size of the region is
partially due to the fact that we provide rigorous con-
fidence guarantees that are valid for any finite number
of measurements, the proof of which requires the use of
mathematical bounds that are not necessarily tight. In
practice, however, it appears that the quantum error bars
are comparable in magnitude to error bars obtained by
methods that would formally be exact only in the asymp-
totic regime, such as the bootstrap [22]. As future work
we would envisage a more systematic analysis of the dis-
crepancies between the quantum error bars in the finite
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regime and traditional methods such as those based on
the Fisher information or the bootstrap.

In addition, we may ask whether the channel method
is always superior to the bipartite sampling method. As
noted above, the additional prior knowledge about the
input state which the channel-space method enjoys in
contrast to the bipartite sampling method is not sufficient
to guarantee this. We leave a more precise understanding
of the relation between our two methods open for future
study.
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Appendix A: Notations & preliminaries

We begin by setting up some notations and recalling standard definitions. For more information on states and
processes see [42–44].

1. Quantum processes and figures-of-merit

Let HA be the Hilbert space of dimension dA associated with the quantum system denoted A. By D(HA) we
mean the subset of End(HA)—the set of linear transformations on HA—consisting of density matrices ρA ≥ 0
(positive semidefinite) with tr(ρA) = 1. Composite systems are described by tensor product constructions, for instance
HAB = HA ⊗HB is the Hilbert space of composite system AB.

Quantum measurements on quantum system are the positive operator valued measures or POVMs on H. For finite
number of outcomes, a POVM is a set of positive operators—the effects—that sum to the identity operator on H. We
will overload the notation E to mean an outcome label, and also the effect E (i.e. an operator/matrix) in the POVM.
This is equivalent to the usual “observables” formulation of measurement, i.e. a hermitian operator. For example, a Z
measurement/observable has two outcomes E = +1 and E = −1 with associated effects |0〉〈0 | and |1〉〈1 |, respectively.
A quantum process ΛA→B mapping a quantum system A to a quantum system B is a completely positive trace-

preserving linear map from End (HA) to End (HB). In general we will denote quantum processs by capital greek
letters. We will often drop the subscripts when the quantum systems are clear from the context.

The set of all possible quantum processs is denoted C (HA → HB), and it is in one-one correspondence with the set
of bipartite Choi states C (HAB) via the Choi-Jamiolkowski isomorphism

J : C (HA → HB)→ End (HA ⊗HB) (A1)

ΛA→B 7→ (IA ⊗ ΛĀ→B)(|Φ̂〉〈Φ̂ |AĀ)

where |Φ̂〉 := 1√
dA

∑
k |k〉A|k〉Ā is the maximally entangled state on HA ⊗HĀ and IA is the identity channel acting on

the system A. Explicitly, the set of Choi matrices is defined as the image of C (HA → HB) under the Choi-Jamiolkowski
isomorphism and has the following compact description

C (HAB) = {ρ ∈ D(HAB) : trB(ρAB) = 1A/dA} . (A2)

Throughout the appendix, we will use the convention that ΛAB is the Choi state associated with the channel ΛA→B .
The action of the channel can be recovered from its Choi state by the inverse of Choi-Jamiolkowski isomorphism

Λ(ρ) = dAtrA(ΛAB · ρᵀA ⊗ 1B) , (A3)

where ᵀ is the transpose with respect to the basis of HA defining the maximally entangled state.
Recall that the fidelity between two states σ, σ′ is defined as

F (σ, σ′) :=
∥∥√σ
√
σ′
∥∥

1
= tr

√√
σσ′
√
σ , (A4)

and the purified distance between quantum states is defined as P (σ, σ′) :=
√

1− F (σ, σ′)2. Then the purified distance
between channels is defined as

P (ΨA→B ,Ψ
′
A→B) := P (ΨAB ,Ψ

′
AB) . (A5)
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a. Diamond distance

We first introduce the familiar diamond distance. The diamond distance from the real or actual implementation
ΛA→B to the ideal or target implementation Λideal is denoted as

f�(ΛA→B) =
1

2
‖ΛA→B − Λideal

A→B‖�. (A6)

This function f� : C (HA → HB)→ [0, 1] (or equivalently from C (HAB)) can be cast as a semidefinite program [45]

Primal problem

maximize:
〈
dAΛAB − dAΛideal

AB ,W
〉

subject to: W ≤ 1B ⊗ ρ,
W ≥ 0,

ρ ∈ D(X ).

Dual problem

minimize: ‖trB(Z)‖∞
subject to: Z ≥ dAΛAB − dAΛideal

AB ,

Z ≥ 0.

b. Entanglement fidelity

The entanglement fidelity is another measure of how close a given channel is to the identity channel. More specifically,
it measures how well a channel preserves the maximally entangled state.

The entanglement fidelity of a channel ΛA→B with B ' A is defined as

Fe(Λ) = F 2(ΛĀ→B(Φ̂AĀ), Φ̂AB) , (A7)

recalling that |Φ̂〉AĀ is the normalized maximally entangled state between the systems A and Ā.
Because ΛAB = ΛĀ→B(Φ̂AĀ) is the normalized Choi state corresponding to the channel ΛA→B, the entanglement

fidelity of the channel ΛA→B is in fact exactly the fidelity of the corresponding normalized Choi state to the maximally
entangled state:

Fe(Λ) = F 2(ΛAB , Φ̂AB) . (A8)

c. Worst-case entanglement fidelity

The worst-case entanglement fidelity is a better measure of the reliability of the channel to simulate the identity
channel, if we have to worry about any possible input state being fed into the channel. In effect, the worst-case
entanglement fidelity measures how well the channel preserves any given state on a system and any purification. It is
defined as

Fworst(ΛA→B) = inf
σAĀ

F 2(ΛĀ→B(σAĀ), σAB) , (A9)

where the optimization ranges over all bipartite quantum states σAB defined over the input Ā and a reference system
A ' Ā. The optimization variable, which appears in both slots of the fidelity F , may be restricted to pure states
without loss of generality.

Now we show that the worst-case entanglement fidelity can be computed by evaluating a simple semidefinite program.
That a semidefinite program formulation of the worst-case entanglement fidelity can be used in the context of quantum
error correction to find suitable recovery procedures for fixed input were put forth in refs. [46, 47]. We build upon
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those constructions to optimize over the input state, while in our case the problem is simplified as there is no recovery
operation. Using our notation, we write

Fworst(ΛA→B) = inf
|φ〉AĀ

F 2(ΛĀ→B(φAĀ), φAB) = inf
TA: tr(TT †)=1

tr(ΛĀ→B(TAΦ̃AĀT
†
A) TA Φ̃ABT

†
A) , (A10)

where we have defined the non-normalized maximally entangled state |Φ̃〉AB = d
1/2
A |Φ̂〉AB . The last equality comes

from the fact that any bipartite pure state |φ〉AĀ can be parametrized by a complex matrix TA satisfying tr(TAT
†
A) = 1

via |φ〉AĀ = TA |Φ̃〉AĀ, with moreover trĀ(φAĀ) = TAT
†
A (indeed, choose TA with matrix elements 〈i |T |j〉A = 〈i, j |φ〉).

Then, with T ′A := T †A, and noting that all T ′AT
′†
A with tr(T ′AT

′†
A ) = 1 can be written as a density matrix ρA = T ′AT

′†
A ,

we have

(A10) = inf
T ′A: tr(T ′†T ′)=1

tr(T ′A T
′†
A ΛĀ→B(Φ̃AĀ)T ′A T

′†
A Φ̃AB)

= inf
ρA>0: tr(ρA)=1

〈Φ̃ |AB ρA ΛĀ→B(Φ̃AĀ) ρA |Φ̃〉AB . (A11)

This is a minimization over a positive semidefinite quadratic form in ρA |Φ̃〉AB , so it is (quite surprisingly) a convex
optimization in terms of ρA. We know that positive semidefinite quadratic optimizations may be written as semidefinite
programs. Indeed, for any positive semidefinite matrix Q = MM†, we have that 〈ψ |Q |ψ〉 6 µ if and only if[

1 M†|ψ〉
〈ψ |M µ

]
> 0. So, finally, we may write the worst-case entanglement fidelity as a semidefinite program in terms

of the real variable µ and the positive semidefinite variable ρA > 0:

Fworst(ΛA→B) = minimize: µ ,

subject to: tr(ρA) = 1

 1 M†ABρA |Φ̃〉AB

〈Φ̃ |AB ρAMAB µ


 > 0

(A12)

where MAB is a factorization of the nonnormalized Choi matrix of the process, satisfying

MABM
†
AB = dAΛAB = ΛĀ→B(Φ̃AĀ) . (A13)

The factorization can be obtained using a Cholseky or LDLT factorization, for instance; or more generally by computing
any matrix square root. The unitary freedom of the matrix square root decomposition (i.e., the freedom of redefining
M →MU) is irrelevant here.

2. Haar induced measures

Later, we will base our confidence region estimators on the following two “uniform” measures. They are both
measures induced by the unique Haar measure on the unitary group U(H) acting on some Hilbert space.
The first measure is defined on the set of mixed quantum states [48]. Since any density matrix has a (nonunique)

purification, the space D(HAB) admits a purification space Pure(HABA′B′) whose elements are rank one density
operators on HABA′B′ with A′B′ being an isomorphic copy of AB. The Haar measure dUABA′B′ then induces a
measure on Pure(HABA′B′) via the relation |ψ〉〈ψ | = U |ψ0〉〈ψ0 |U† for an arbitrary pure state |ψ0〉, which induces a
measure dσAB on D(HAB) by partial tracing.

The second measure is defined on the set of quantum processs, or equivalently on the set of bipartite Choi states. Let

PC =
{
|Ψ〉 ∈ HABA′B′ : trBA′B′(|Ψ〉〈Ψ |) = d−1

A 1A
}

(A14)

be the set of purifications of arbitrary Choi states. Without loss of generality, let us define a fixed reference pure state
in PC

|Ψ0〉 :=
1

dA

dA∑

i=1

|i〉A|vi〉BA′B′ (A15)
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with {|vi〉BA′B′} some fixed orthonormal set of vectors. Then for all |Ψ〉 ∈ PC , there exists a unitary UBA′B′
such that |Ψ〉 = 1A ⊗ UBA′B′ |Ψ0〉. This relation transfer the unique Haar measure dUBA′B′ on the unitary group
U(HBA′B′) to a measure on PC which we will denote as dν(|Ψ〉). Again, by partial tracing the system A′B′, this
measure induces the measure dν(ΨAB) on Choi states C (HAB) (also denoted as dν(ΛAB) by changing the dummy
variable). Finally, taking the inverse of the Choi-Jamiolkowski isomorphism gives the induced measure dν(ΨA→B) (or
in a different notation dν(ΛA→B)) on channel space C (HA → HB) which is the starting point of the channel space
sampling method.

The relation between these measures will be discussed in Appendix G when we compare the two region estimators.

3. The i.i.d. hypothesis

In this paper, we work under the assumption of i.i.d. (independent and identically distributed) channels. This means
any time we use the experimental device, it is assumed that one and the same transformation ΛA→B has been applied.
Experimentally, this assumption is well justified if the same experimental conditions can be reproduced because the
abstract channel is a function of the working parameters of the physical device. The i.i.d. hypothesis also gives a clear
operational meaning to the question: to which object does the tomographic statement apply? It is one and the same
ΛA→B which does not vary from past to future uses.

Even though we work under the i.i.d. assumption, we note that this can be weakened to permutation invariant
through the use of the quantum de Finetti theorem for channels [49].

Before proceeding further, we give a clarifying remark about our notation. We usually consider n uses of a channel Λ.
Under the i.i.d. assumption we can describe this situation by tensor product construction giving a composite channel
Λ⊗n acting on the composite Hilbert space H⊗nA and transform the system to H⊗nB . As usual, by measurement on H⊗nB
and by knowing the input state on H⊗nA we can perform tomography of the unknown channel. Our convention has been
to denote a measurement on H⊗nB by a POVM {E} with E standing for both the labels of the various outcomes and
the actual operators/matrices. This captures both i.i.d. measurements and entangled measurements in the following
sense. Suppose n = 2 and we perform X and Z on each subsystem. This can be equivalently described by two POVMs
{|+x〉〈+x |, |−x〉〈−x |} and {|+z〉〈+z |, |−z〉〈−z |}, and then by tensor product construction combined into a single
POVM on the composite Hilbert space. However, this is not the only measurement that one can do: one can perform
the Bell measurement projecting into the four maximally entangled states. Our description and notation is flexible for
arbitrary measurement one can perform.

Appendix B: The bipartite-state sampling method

This method requires experimentalists to work in the ancilla-assisted scheme (see Fig. 2(b)): we select a full Schmidt
rank entangled state ψAP , a collection of bipartite measurements E(`) with corresponding effects E(`)

k , and assume
the experiment can implement the channel Λ⊗ I, where I is the identity map. Again, the collection of measurement
should be informationally complete if one wishes to infer full information about the channel. We assume knowledge of
the state preparations and measurements in the form of matrices in the computational basis. This means the pure
entangled state has the form

|ψ〉AP =
∑

i

si|i〉A|i〉P =
√
dAψ

1/2
A |Φ̂〉AP =

√
dAψ

1/2
P |Φ̂〉AP , (B1)

where ψA, ψP are the respective reduced states on A and P of |ψAP 〉〈ψAP | and |Φ̂〉AP the maximally entangled state
on HAP . Note that not all pure state on AP has this form, but we assume it without loss of generality by redefining
|Φ̂〉AP if necessary.

The tomography procedure proceeds according to Algorithm 1. In each round, we prepare |ψ〉AP and we apply the
unknown channel ΛA→B ⊗IP→P . We then perform a measurement on the bipartite output system BP using a setting
of our choice, yielding an outcome POVM effect E(`)

k . The dataset stores all the outcomes of different rounds.
In other words, the ancilla-assisted scheme actually realizes the (theoretical) Choi-Jamiołkowski isomorphism in the

laboratory under the assumption of the input state and the channel.
The likelihood function for this scheme is given by

LAA(Λ|E) =
∏

k,`

[
tr(ΛA→B(ψAP )E

(`)
k )
]nk,`

, (B2)
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where nk,` is the number of times the POVM effect E(`)
k appears in the dataset E. Since

ΛA→B(ψAP ) = dAψ
1/2
P ΛBP ψ

1/2
P (B3)

where ΛBP is the corresponding Choi state, we have

LAA(Λ|E) =
∏

k,`

[
dAtr(ΛBP ψ

1/2
P E

(`)
k ψ

1/2
P )

]nk,`
= dnAtr

(
Λ⊗nBP

⊗

k,`

ψ
1/2
P E

(`)
k ψ

1/2
P

)
, (B4)

where
⊗

k,` ranges over the observed dataset E
Since quantum processs correspond to bipartite quantum states via the Choi-Jamiolkowski isomophism, we can

generalize quantum state tomography methods to quantum processs. Here, we directly apply the existing procedure of
Faist and Renner [22] designed for quantum states to infer information about quantum processs. The main result
in this section is Theorem 3. We first recall the procedure of constructing confidence region estimators for quantum
states, phrased in terms of bipartite states in anticipation with the connection to quantum processs.

1. Christandl-Renner confidence regions

Given access to n copies of an unknown state ρAB , we can perform a (joint or collective) POVM measurement on
ρ⊗nAB and upon receiving the dataset E, the Christandl-Renner procedure outputs a distribution

dµE(σAB) := c−1
E tr(σ⊗nABE)dσAB (B5)

where cE =
∫

tr(σ⊗nABE)dσAB and dσAB is the uniform distribution on bipartite density matrices. Confidence regions
for the unknown ρAB can be constructed from dµE(σAB) as the following proposition asserts.

Theorem (1 of main text). Let n be the number of systems measured by a POVM during tomography and 1− ε be the
desired confidence level. For each effect E in the POVM, let SµE ⊆ D(HAB) be a set of states such that

∫

SµE

dµE(σAB) ≥ 1− ε

2
s−1

2n,d2
AB

, (B6)

where sn,d =
(
n+d−1
d−1

)
≤ (n+ 1)d−1 and let SδµE be the enlargement of SµE defined as

SδµE := {σAB : ∃σ′ ∈ SµE withP (σ, σ′) ≤ δ} . (B7)

Then the mapping E 7→ SδµE is a confidence region estimator for the unknown ρAB with confidence level 1− ε if

δ2 =
2

n

(
ln

2

ε
+ 2 ln s2n,d2

AB

)
. (B8)

In other words, for any ρAB ∈ D(HAB),

Pr
E

[ρAB ∈ SδµE ] ≥ 1− ε , (B9)

where the probability is taken over the random dataset E with distribution tr(ρ⊗nABE).

2. Mapping channel tomography to bipartite-state tomography

Consider the ancilla-assisted scheme. In order to learn what the channel ΛA→B is, we may carry out the experiment
as described in Algorithm 1, and use the outcome measurements to perform full tomography on the output state
ρBP := ΛA→B(ψAP ). We may then ask, what does this tell us about the unknown channel ΛA→B?

Observe that if we knew the output state ρBP exactly (limit of infinite data) and assume the input state ψAP has full
rank, then we could read out the true channel: its Choi state is simply given as ΛBP = d−1

A ρ
−1/2
P ρBP ρ

−1/2
P . Indeed,

we have

ρBP := ΛA→B(ψAP ) = dAψ
1/2
P ΛA→B(Φ̂AP )ψ

1/2
P = dAρ

1/2
P ΛBP ρ

1/2
P (B10)
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since under the assumption that P has undergone identity transformation it follows ψP = ρP . Note that this is the
same trick used in Appendix A1 c to derive the semidefinite program.

Thanks to this observation, we may use the quantum state tomography method of Ref. [22] to construct confidence
regions on the space of quantum processs ΛA→B , as well as on a figure-of-merit such as the diamond norm to an ideal
channel.
To do so, we ignore the knowledge of the exact input state ψA, but we assume the global state |ψAP 〉 has full

Schmidt rank (i.e. forgetting the Schmidt coefficients). Upon observing the dataset E, the classical data processing
returns a bipartite state region SδµE , which contains information about the pair (ΛA→B , ψA) [50]. The interpretation
of SδµE is given by Theorem 1, and together with the observation above (see Eq. (B10)) we have

Pr
E

[
dAρ

1/2
P ΛBP ρ

1/2
P ∈ SδµE

]
≥ 1− ε , (B11)

where the probability is taken over all possible dataset E with distribution tr((ρ
1/2
P ΛBP ρ

1/2
P )⊗nE). To recover

information about the channel Λ, for each ρBP ∈ SδµE we apply the (completely positive) transformation T defined as

T : End(HAB)→ End(HAB)

ρBP 7→ d−1
A ρ
−1/2
P ρBP ρ

−1/2
P . (B12)

Observe that T maps any ρBP with full rank marginal ρP to a Choi state. Also, the set SδµE only contains ρBP with
full rank marginal ρP because we only sample according to the uniform measure dσAB (i.e. the set of rank-deficient
ρBP has measure zero). This means the image of SδµE under T will be a set of Choi matrices which can be interpreted
via Choi-Jamiolkowski as a region of quantum processs (completely positive and trace-preserving maps). We conclude

Pr
E

[
ΛBP ∈ T (SδµE )

]
≥ 1− ε , (B13)

which implies T (SδµE ) are confidence regions for quantum processs.

3. Regions for figures-of-merit

The confidence region on channel space constructed in the last section contains full information on the unknown
channel. But if one is only interested in a property of the channel, for instance how close is it to an ideal process, then
obtaining confidence region for a given figure-of-merit suffices. We now present how one can do this using pushforward
of measures.

Given a figure-of-merit for quantum processs fchannel (defined on channel space), we associate a function f defined
on the set of bipartite states as

f(ρBP ) := fchannel(J
−1(d−1

A ρ
−1/2
P ρBP ρ

−1/2
P )), (B14)

which is just fchannel acting on the channel J−1(d−1
A ρ
−1/2
P ρBP ρ

−1/2
P ) obtained from ρBP via the mapping T . This

allows us to directly use the tools of Ref. [22] to obtain confidence intervals for the figure-of-merit f which will yield
the same result as fchannel. Explicitly, for any v ∈ R

µ(v) =

∫
dµE(σAB) δ(f(σAB)− v) (B15)

is the probability density of the pushforward of dµE(σAB) along f . This density provides confidence region for a
figure-of-merit as certified by the following proposition.

Theorem 3. Let µE be given as in (B5), and let µ(v) be defined as in (B15). Then for any threshold value vthres > 0,
the region

Rvthres,δ = {ρAB : f(ρAB) 6 vthres +O(δ)} (B16)

of states representing channels at least vthres +O(δ)-close to the reference channel, is a confidence region of confidence
level 1− ε where

ε = poly(n)

[
1−

∫ vthres

0

µ(v) dv

]
. (B17)
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In summary, for ancilla-assisted tomography scheme, determining the histogram µ(v) in (B15) gives us all the nec-
essary information to construct confidence regions of any confidence level in terms of the figure-of-merit fchannel(ΛA→B).

Diamond distance to ideal and worst-case entanglement fidelity:
The methodology outlined in the previous paragraphs can be specialized to the diamond distance to an ideal reference

channel Λideal
B→P . Here we take

fchannel(ΛB→P ) = f�(ΛB→P ) =
1

2
‖ΛB→P − Λideal

B→P ‖� (B18)

to be the desired figure-of-merit on channel space. This induces a figure-of-merit in the space of bipartite quantum
states

f(ρBP ) =
1

2
max

{〈
ρ
−1/2
P ρBP ρ

−1/2
P − dAΛideal

BP ,W
〉

: W ≤ 1B ⊗ ρ̄,W ≥ 0, ρ̄ ∈ D(X )
}
. (B19)

One is left to perform a numerical computation of µ(v) for the above function f , as explained in details in Ref. [22].

Appendix C: The channel-space sampling method

This method applies to either the ancilla-assisted scheme explained in the previous Appendix, or the prepare-and-
measure scheme where no entanglement is required. In the prepare-measure scheme (see Fig. 2(a)), we select a
collection of input states σj , and select a collection of measurements E(`) = {E(`)

k }. This set of state preparation and
measurement (SPAM) should be informationally complete if one wish to fully reconstruct the unknown channel. The
SPAM is represented as certain set of matrices in the computational basis {|i〉 : i = 0, ..., dA − 1}.

The data collection procedure goes as follows: in each round, we choose an input state σj , we choose a measurement
` on output, we send σj through the channel, and record the measurement outcome k on the output. The dataset E
consists of all pairs (σj , E

(`)
k ) chosen and observed for each round.

Typically one can choose the states j in order, i.e., first perform measurements on σ1, then on σ2, etc. The choice of
the output measurement setting ` is allowed to depend on j. Since we are under i.i.d. channel assumption, at each
round it is the same unknown channel Λ which is applied, and that previous outcomes have no influence on new rounds.
The likelihood function for a dataset E in this scenario is defined using the matrix representations of the SPAM

according to Born’s rule

LPM(Λ|E) =
∏

j,k,`

[
tr(Λ(σj)E

(`)
k )
]nj,k,`

, (C1)

where nj,k,` is the number of times the given pair (σj , E
(`)
k ) appears in the dataset E. Using (A3), we rewrite the

likelihood function as

LPM(Λ|E) =
∏

j,k,`

[
dAtr(ΛAB (σjA)ᵀ ⊗ E(`)

k )
]nj,k,`

= dnAtr

(
Λ⊗nAB

⊗

j,k,`

(σjA)ᵀ ⊗ E(`)
k

)
, (C2)

where
⊗

j,k,` ranges over the observed dataset E.
The method in the previous section maps a channel tomography problem into a (constrained) bipartite-state

tomography problem. One may ask if this is the only solution. In this section, we provide an alternative construction
natively on the channel space. This has consequence on the numerical implementation: we no longer need to samples
from bipartite-state space. Instead, we can directly sample “random channels” which leads to improved numerical
efficiency. The main results in this section are Theorems 2 and 4.

1. Regions on channel space

Inspired by the Christandl-Renner construction [21], we define the following confidence region estimator for quantum
processs. Our confidence region is constructed from the probability measure on the space of quantum processs
C (HA → HB)

dνE(Λ) := c′−1
E L(Λ|E)dν(Λ) (C3)
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where L(Λ|E) is either prepare-measure or ancilla assisted likelihood and c′E =
∫
L(Λ|E)dν(Λ) serves as a normalizing

constant and dν(Λ) is the induced measure on C (HA → HB) defined in Appendix A2.
The main result in this Section is

Theorem (2 of maintext). Let n be the number of channel uses during tomography and 1− ε be the desired confidence
level. For each dataset E, let RνE ⊆ C (HA → HB) be a set of channels such that

∫

RνE

dνE(Λ) ≥ 1− ε

2
s−2

2n,d2
AB

, (C4)

where sn,d =
(
n+d−1
d−1

)
≤ (n+ 1)d−1 and let RδνE be the enlargement

RδνE := {Λ ∈ C (HA → HB) : ∃Λ′ ∈ RνE
with P (Λ,Λ′) ≤ δ} . (C5)

Then the mapping E 7→ RδνE is a confidence region estimator for the unknown ΛA→B with confidence level 1− ε if

δ2 =
2

n

(
ln

2

ε
+ 3 ln s2n,d2

AB

)
. (C6)

In other words, for all channel Λ ∈ C (HA → HB)

Pr
E

[ΛA→B ∈ RδνE ] ≥ 1− ε , (C7)

where the probability is over the random dataset E with distribution Pr(E|Λ) = L(Λ|E).

Before starting the proof, we will need the following results.

Proposition 1. For any channel ΛA→B, if |Λ〉 ∈ HABA′B′ is a purification of its Choi state then

|Λ〉〈Λ |⊗n ≤ s2
n,d2

AB

∫

PC

dν(|Ψ〉) |Ψ〉〈Ψ |⊗n = s2
n,d2

AB

∫
dU U⊗nBA′B′ |Ψ0〉〈Ψ0 |⊗nU†⊗nBA′B′ (C8)

where sn,d :=
(
n+d−1
d−1

)
.

Proof. The main idea of this proof is to discretize the Haar integral using Caratheodory’s theorem, and dominate the
left hand side by a trivial operator inequality.

By definition, the operator
∫

PC

dν(|Ψ〉) |Ψ〉〈Ψ |⊗n (C9)

lies in the convex hull of the set {|Ψ〉〈Ψ |⊗n : |Ψ〉 ∈PC }, whose linear span (in the ambient space End(H⊗nABA′B′))
has dimension D. By Caratheodory’s theorem, there exists a convex combination (qi, |Ψi〉〈Ψi |⊗n) with size at most
D + 1 such that

∫

PC

dν(|Ψ〉) |Ψ〉〈Ψ |⊗n =

D+1∑

i=1

qi|Ψi〉〈Ψi |⊗n . (C10)

Among the probability weights qi there exists a largest element denoted qmax and its associated purified Choi state
|Ψmax〉〈Ψmax |, from which we split off this term in the finite sum as

D+1∑

i=1

qi|Ψi〉〈Ψi |⊗n = qmax|Ψmax〉〈Ψmax |⊗n +
∑

i 6=max

qi|Ψi〉〈Ψi |⊗n . (C11)

By left-invariance of the measure dν(|Ψ〉) and the (unitary) structure of the set PC , we can without loss of generality
assume that Ψmax = Λ. More precisely, let WBA′B′ be a unitary transformation bringing |Ψmax〉 to |Λ〉, we have
(leaving the system label BA′B′ implicit)

W⊗n
(∫

PC

dν(|Ψ〉) |Ψ〉〈Ψ |⊗n
)
W †⊗n = qmaxW

⊗n|Ψmax〉〈Ψmax |⊗nW †⊗n +
∑

i6=max

qiW
⊗n|Ψi〉〈Ψi |⊗nW †⊗n . (C12)
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Using linearity of integration and translational invariance of the integrating measure, this equation simplifies to
∫

PC

dν(|Ψ〉) |Ψ〉〈Ψ |⊗n = qmax|Λ〉〈Λ |⊗n +
∑

i 6=max

qi|Ψ′i〉〈Ψ′i |⊗n , (C13)

where |Ψ′i〉 is some other vector in PC .
Now since all operators in the convex combination are positive-semidefinite, we obtain

∫

PC

dν(|Ψ〉) |Ψ〉〈Ψ |⊗n ≥ qmax|Λ〉〈Λ |⊗n . (C14)

By the property of the maximum weight qmax, namely qmax ≥ 1/(D + 1), we get

|Λ〉〈Λ |⊗n ≤ (D + 1)

∫

PC

dν(|Ψ〉) |Ψ〉〈Ψ |⊗n . (C15)

Finally, span{|Ψ〉〈Ψ |⊗n : |Ψ〉 ∈PC } ⊆ span{|Ψ〉〈Ψ |⊗n : |Ψ〉 ∈ HABA′B′} and the latter is identified as a subspace
of End(Symn(HABA′B′)), the operator space on the symmetric subspace of H⊗nABA′B′ . Together with the constraint
that trace is 1, we have D ≤ s2

n,dABA′B′
− 1 where the dimension of the symmetric subspace is sn,d :=

(
n+d−1
d−1

)
. This

completes the proof of the operator inequality.

Proof of Theorem 2. Our proof technique follows closely that of [21], with the main technical difficulty being incorpo-
rating the a priori constraint trB(ΛAB) = 1A/dA. This allows the reduction of numerical sampling from bipartite-state
space to channel space.
For any region estimator, our construction E 7→ RδνE in particular, the failure probability of the reconstruction

typically depends on the underlying unknown channel

Pfail(ΛA→B) = Pr
E

[ΛA→B /∈ RδνE ] :=
∑

E

Pr(E|Λ)χ(ΛA→B ;RδνE ) , (C16)

where Pr(E|Λ) is the probability of obtaining dataset E, and χ(ΛA→B;RδνE ) is the indicator function of the set
RδνE := C (HA → HB) \RδνE (i.e. the complement set). Recall that

Pr(E|Λ) =





dnAtr

(
Λ⊗nAB

⊗
j,k,`(σ

j
A)ᵀ ⊗ E(`)

k

)
in prepare-and-measure scheme

dnAtr

(
Λ⊗nBP

⊗
k,` ψ

1/2
P E

(`)
k ψ

1/2
P

)
in ancilla-assisted scheme

(C17)

Our goal will be bounding this failure probability independently of ΛA→B by using the operator inequality we have
just developed.

Before starting the actual calculations, observe that Pr(E|Λ) for both schemes are functions of the type tr(Λ⊗n⊗· · · )
where ⊗ · · · is the operator constructed from the observed dataset E from information about the state preparation
and measurement schemes. In the following, we do not utilise the exact form of ⊗ · · · for each schemes and thus the
calculation works for both schemes. We choose to put ⊗ · · · as the operator corresponding to the prepare-and-measure
scheme for concreteness.

Via the Choi-Jamiolkowski isomorphism, the failure probability reads

Pfail(ΛAB) = Pr
E

[ΛAB /∈ RδνE ] :=
∑

E

dnAtr[Λ⊗nAB ρ
ᵀ
An ⊗ EBn ]χ(ΛAB ;RδνE ) , (C18)

where we have abused the notation RδνE to mean both the set in channel space C (HA → HB) and in Choi state space
C (HAB). This can be rewritten in terms of an arbitrary purification of the Choi state ΛAB

Pfail(ΛAB) =
∑

E

dnAtr[|Λ〉〈Λ |⊗nABA′B′ ρᵀAn ⊗ EBn ]χ(|Λ〉ABA′B′ ;QδνE ) , (C19)

where QδνE := tr−1
A′B′(R

δ
νE ) contains all the purifications of matrices in RδνE . In the following, we will bound (C19)

independent of |Λ〉 ∈PC .
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We first analyze the indicator function of the set QδνE , which is by definition

χ(|Λ〉ABA′B′ ;QδνE ) =

{
1 if |Λ〉ABA′B′ ∈ QδνE
0 otherwise .

(C20)

Without the knowledge of |Λ〉ABA′B′ , the condition |Λ〉ABA′B′ ∈ QδνE can only be physically checked by a measurement
POVM with effects T and 1− T acting on the quantum state |Λ〉ABA′B′ . Upon the observation of the effect T , we
decide that |Λ〉ABA′B′ ∈ QδνE and similarly for 1− T . In other words, we are approximating χ(|Λ〉ABA′B′ ;QδνE ) by a
quantum measurement. Here we construct such an approximation using Holevo’s covariant measurement [51].

Let k be the number of copies of |Λ〉 ∈ HABA′B′ used in the approximation, i.e. we are given |Λ〉〈Λ |⊗k. If we ignore
the fact that |Λ〉 ∈PC , we can use the Holevo’s continuous POVM {sk,d2

AB
|φ〉〈φ |⊗kdφ} to distinguish |Λ〉 ∈ HABA′B′

among the set of pure states. Here, dφ is the uniform spherical measure on the set of pure states of HABA′B′ and
sk,d2

AB
is the dimension of the symmetric subspace of H⊗kABA′B′ . Coarse graining this measurement, we can distinguish

|Λ〉ABA′B′ ∈ QδνE versus |Λ〉ABA′B′ ∈ QδνE by the following POVM with two effects (analogous to Ref. [21])

T
Q
δ/2
νE

:= sk,d2
AB

∫

Q
δ/2
νE

|φ〉〈φ |⊗kdφ , and 1− T
Q
δ/2
νE

. (C21)

We now check that this POVM indeed approximates χ(|Λ〉;QδνE ). For all |Λ〉 ∈ QδνE , using the definition of χ(|Λ〉;QδνE )

χ(|Λ〉;QδνE )− tr(|Λ〉〈Λ |⊗kT
Q
δ/2
νE

) = 1− sk,d2
AB

∫

Q
δ/2
νE

tr(|Λ〉〈Λ |⊗k|φ〉〈φ |⊗k)dφ . (C22)

Since |Λ〉〈Λ |⊗k is supported on the symmetric subspace, we reinterpret the constant 1 above as

1 = tr

(
|Λ〉〈Λ |⊗ksk,d2

AB

∫
|φ〉〈φ |⊗kdφ

)
, (C23)

which implies for all |Λ〉 ∈ QδνE

χ(|Λ〉;QδνE )− tr(|Λ〉〈Λ |⊗kT
Q
δ/2
νE

) = sk,d2
AB

(∫
tr(|Λ〉〈Λ |⊗k|φ〉〈φ |⊗k)dφ−

∫

Q
δ/2
νE

tr(|Λ〉〈Λ |⊗k|φ〉〈φ |⊗k)dφ

)
(C24)

= sk,d2
AB

∫

Q
δ/2
νE

tr(|Λ〉〈Λ ||φ〉〈φ |)kdφ (C25)

≤ sk,d2
AB

max
|φ〉∈Qδ/2

νE

F (ΛAB , trA′B′ |φ〉〈φ |))k . (C26)

By the definition of the sets

Rδ/2νE := {Ψ ∈ C (HAB) : ∃Ψ′ ∈ RνE with P (Ψ,Ψ′) ≤ δ/2} , (C27)

and

RδνE := C (HAB) \ {Ψ ∈ C (HAB) : ∃Ψ′ ∈ RνE with P (Ψ,Ψ′) ≤ δ} , (C28)

we have for ΛAB ∈ RδνE and φAB := trA′B′ |φ〉〈φ | ∈ Rδ/2νE

F (ΛAB , φAB) =
√

1− P (ΛAB , φAB)2 ≤
√

1− (δ/2)2 ≤ e−δ2/2 , (C29)

using the reverse triangle inequality for purified distance. In summary, we obtain the approximation

χ(|Λ〉;QδνE )− tr(|Λ〉〈Λ |⊗kT
Q
δ/2
νE

) ≤ ε1 := sk,d2
AB
e−kδ

2/2 . (C30)

Now we can start bounding the failure probability. Inserting (C30) into (C19), we have an intermediate bound

Pfail(ΛAB) ≤ ε1 +
∑

E

dnAtr[|Λ〉〈Λ |⊗nABA′B′ ρᵀAn ⊗ EBn ]tr[|Λ〉〈Λ |⊗kT
Q
δ/2
νE

] (C31)

= ε1 +
∑

E

dnAtr[|Λ〉〈Λ |⊗(n+k)
ABA′B′ ρ

ᵀ
An ⊗ EBn ⊗ TQδ/2

νE

] . (C32)
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Using the operator inequality in the Proposition 1, namely

|Λ〉〈Λ |⊗(n+k)
ABA′B′ ≤ s2

n+k,d2
AB

∫

PC

dν(|Ψ〉) |Ψ〉〈Ψ |⊗(n+k) , (C33)

we can bound the right hand side independent of the unknown ΛAB as follows

Pfail(ΛAB) ≤ ε1 + s2
n+k,d2

AB

∑

E

∫

PC

dν(|Ψ〉)dnAtr[|Ψ〉〈Ψ |⊗nρᵀAn ⊗ EBn ]tr[|Ψ〉〈Ψ |⊗kT
Q
δ/2
νE

] (C34)

= ε1 + s2
n+k,d2

AB

∑

E

c′E

∫
dνE(Ψ)tr[|Ψ〉〈Ψ |⊗kT

Q
δ/2
νE

] , (C35)

where the last equality follows from the definition of the a posteriori measure dνE(Ψ). For each measurement outcome
E, the integral can split into two parts based on the set RνE from which the kernels are uniformly bounded as follows:

∫

RνE

dνE(Ψ)tr(|Ψ〉〈Ψ |⊗kT
Q
δ/2
νE

) ≤ sk,d2
AB

(1− (δ/2)2)k/2 ≤ sk,d2
AB
e−kδ

2/2 , (C36)

using the definition of T
Q
δ/2
νE

and the fidelity bound F (ΨAB ∈ RνE , φAB ∈ Rδ/2νE ) ≤
√

1− (δ/2)2, and
∫

RνE

dνE(Ψ)tr(|Ψ〉〈Ψ |⊗kT
Q
δ/2
νE

) ≤
∫

RνE

dνE(Ψ) , (C37)

since tr(|Ψ〉〈Ψ |⊗kT
Q
δ/2
νE

) ≤ 1. Choose k = n, the fact that
∑
E c
′
E ≤ 1, and combine all the inequalities together we

have

Pfail(ΛAB) ≤ ε1 + s2
n+k,d2

AB
ε1 + s2

n+k,d2
AB

∑

E

c′E

∫

RνE

dνE(Ψ) (C38)

= sn,d2
AB
e−nδ

2/2 + s2
2n,d2

AB
sn,d2

AB
e−nδ

2/2 + s2
2n,d2

AB

∑

E

c′E

∫

RνE

dνE(Ψ) (C39)

≤ s3
2n,d2

AB
e−nδ

2/2 + s2
2n,d2

AB

∑

E

c′E

∫

RνE

dνE(Ψ) . (C40)

If we choose RνE and δ such that
∫

RνE

dνE(Ψ) ≥ 1− ε

2
s−2

2n,d2
AB

and δ2 =
2

n

(
ln

2

ε
+ 3 ln s2n,d2

AB

)
(C41)

then Pfail(ΛAB) ≤ ε/2 + ε/2 = ε as desired. The proof of the Proposition is complete.

2. Regions for figures-of-merit

The construction of confidence region on channel-space can be pushed-forward to obtain confidence regions for any
figure-of-merit of channels we are interested in. The idea is exactly the same as reference [22] and we include it here
for completeness. Let fchannel : C (HA → HB)→ R be an arbitrary figure-of-merit of channels. The measure dνE(Λ)
can be pushed-forward by fchannel to a measure on R, which can then be represented as a density function h(v) with
respect to the Lebesgue measure of R. Concretely, we have

h(v) =

∫
dνE(Λ)δ(fchannel(Λ)− v), (C42)

where δ(fchannel(Λ)− v) is the Dirac delta measure on R at the point mass v ∈ R. And for some subset of values V ,
the measure of V is given by

∫

f−1
channel(V )

dνE(Λ) =

∫

V

h(v)dv (C43)

where dv is the Lebesgue measure on R. The density h(v) allows us to construct confidence interval for the property
we desired.
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Proposition 2. Let fchannel be a figure-of-merit and choose a confidence level 1− ε. For each dataset E, let VνE ⊆ R
be a region of values such that

∫

VνE

h(v)dv ≥ 1− ε

2
s−2

2n,d2
AB

, (C44)

and let V δνE be defined as

V δνE := {v ∈ R : ∃v′ ∈ VνE with |v − v′| ≤ ωfchannel
(δ)} , (C45)

where ωf (δ) := supP (Λ,Λ′)≤δ |f(Λ) − f(Λ′)|. Then the mapping E 7→ V δνE is a confidence region estimator for the
figure-of-merit fchannel with confidence level 1− ε if

δ2 =
2

n

(
ln

2

ε
+ 3 ln s2n,d2

AB

)
(C46)

In other words, for all channel Λ ∈ C (HA → HB)

Pr
E

[fchannel(Λ) ∈ V δνE ] ≥ 1− ε. (C47)

Proof. It is clear from the fact that as defined, V δνE ⊇ fchannel(f
−1
channel(VνE )δ).

For each figure-of-merit of interest, we can derive a bound on ωf (δ) by simple inequalities for distance measures.
For diamond distance, we have the following result.

Proposition 3. For each dataset E, let γE ∈ [0, 1] be such that
∫ γE

0

h(v)dv ≥ 1− ε

2
s−2

2n,d2
AB

, (C48)

Then the mapping E 7→ [0, γE +d1δ/2] is a confidence region estimator for the diamond distance to ideal with confidence
level 1− ε if

δ2 =
2

n

(
ln

2

ε
+ 3 ln s2n,d2

AB

)
(C49)

In other words, for all channel Λ ∈ C (HA → HB)

Pr
E

[
1

2
||ΛA→B − Λideal

A→B ||� ≤ γE + dAδ/2

]
≥ 1− ε , (C50)

where the probability is over the random dataset E with distribution Pr(E|Λ) = L(Λ|E).

Proof. Continuing from the previous Proposition, we set VE := [0, γE ]; it remains for us to obtain a bound on ωf�(δ).
Using the reverse triangle inequality and SDP reformulation of diamond norm, we have

|f�(Λ)− f�(Λ′)| =
1

2

∣∣||Λ− Λideal||� − ||Λ′ − Λideal||�
∣∣

≤ 1

2
||ΛA→B − Λ′A→B ||� (C51)

≤ 1

2
||dA(ΛAB − Λ′AB)||1 , (C52)

where the last inequality utilises the duality between Schatten 1-norm and Schatten ∞-norm to bound the objective
function of the diamond norm SDP. Since the purified distance dominates the trace distance, we obtain

1

2
||ΛAB − Λ′AB ||1 ≤

1

2
P (ΛAB ,Λ

′
AB) , (C53)

which implies ωf�(δ) ≤ dAδ/2.

For worst-case entanglement fidelity, we have the following result.
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Proposition 4. For each dataset E, let γE ∈ [0, 1] be such that
∫ γE

0

h(v)dv ≥ 1− ε

2
s−2

2n,d2
AB

, (C54)

Then the mapping E 7→ [0, γE − dAδ] is a confidence region estimator for the diamond distance to ideal with confidence
level 1− ε if

δ2 =
2

n

(
ln

2

ε
+ 3 ln s2n,d2

AB

)
(C55)

In other words, for all channel Λ ∈ C (HA → HB)

Pr
E

[Fworst(ΛA→B) ≥ γE − dAδ] ≥ 1− ε , (C56)

where the probability is over the random dataset E with distribution Pr(E|Λ) = L(Λ|E).

Proof. We set VE := [γE , 1]. Let ρA be an optimizer of Fworst(Λ
′), since ρA will give an upper bound on Fworst(Λ) we

have with f = Fworst

|f(Λ)− f(Λ′)| = |Fworst(Λ)− Fworst(Λ
′)| ≤ |〈Φ̃ |ρA(dAΛAB)ρA|Φ̃〉 − 〈Φ̃ |ρA(dAΛ′AB)ρA|Φ̃〉| (C57)

= dA

∣∣∣
〈
ρA|Φ̃〉〈Φ̃ |ρA,ΛAB − Λ′AB

〉∣∣∣ ≤ dA‖ρA|Φ̃〉〈Φ̃ |ρA‖∞‖ΛAB − Λ′AB‖1 ≤ dAδ , (C58)

using Holder inequality for Schatten norms and ‖ΛAB − Λ′AB‖1 ≤ P (ΛAB ,Λ
′
AB).

Appendix D: Metropolis-Hastings algorithm in channel space

The previous two sections describe the construction of confidence region estimators for quantum processes, which
utilize distributions dµE(σ) and dνE(Λ). We now describe how one can numerically estimate such distributions so
that the densities µ(v) and h(v) can be approximated.
The distribution dµE(σ) or the density µ(v) can be estimated by numerically producing a lot of samples. These

can be generated by the Metropolis-Hastings random walk in (bipartite) state space, whose details can be found in
Ref. [22]. Here we only discuss the Metropolis-Hastings random walk in channel space.

Recall that in the channel space method, we need to be able to compute the density h(v) for the given figure-of-merit
fchannel. We do this numerically using Metropolis-Hastings algorithm. The output of this algorithm is a histogram of
the figure-of-merit which approximates the continuous density.

Let us recall the Metropolis-Hasting algorithm for continuous sample space [39]. Let p(x)dx be the target distribution
from which we want to sample, and q(x′|x)dx′ be a proposal distribution, all displayed with respect to the same base
measure dx = dx′. We assume that the proposal density function is symmetric q(x′|x) = q(x|x′). When the process is
at point x, the distribution q(x′|x)dx′ proposes a new point x′. If p(x′)/p(x) ≥ 1 then we jump unconditionally to the
new point x′; otherwise, p(x′)/p(x) < 1 and we jump to x′ only with probability p(x′)/p(x). The points visited in this
fashion, for a large number of iterations, are distributed according to the target distribution. Note that the algorithm
only requires computing the ratio p(x′)/p(x) and thus does not require determining any normalization factor for p(x).

We want to generate samples from the target distribution

dνE(Λ) := c′−1
E L(Λ|E)dν(Λ) (D1)

where L(Λ|E) is the prepare-and-measure or ancilla-assisted likelihood function and dν(Λ) is the induced measure on
channel space. Recalling the definition of dν(Λ), we thus want to sample from

dνE(UBA′B′) = c′−1
E L(UBA′B′ |E)dUBA′B′ , (D2)

with dUBA′B′ the invariant Haar measure. Concretely, in the prepare-and-measure scheme we take

LPM(U |E) = dnAtr

(
(U |Ψ0〉〈Ψ0 |U†)⊗n

⊗

j,k,`

(σjA)ᵀ ⊗ E(`)
k

)
(D3)
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and in ancilla-assisted scheme we take

LAA(U |E) = dnAtr

(
(U |Ψ0〉〈Ψ0 |U†)⊗n

⊗

k,`

ψ
1/2
P E

(`)
k ψ

1/2
P

)
, (D4)

where |Ψ0〉 is the fixed reference state in (A15). This can be done using the Metropolis-Hastings algorithm, by designing
a symmetric proposal distribution over the space of all unitaries UBA′B′ and setting q(U ′BA′B′ |UBA′B′) ∝ L(U ′BA′B′ |E).
To ensure q(U ′|U) = q(U |U ′), let q(W )dW be a distribution on unitaries on BA′B′ such that q(W ) = q(W †). For
each point U , if we define U ′ := WU , then we have a symmetric proposal distribution q(U ′|U) = q(WU |U) = q(W ) =
q(W−1) = q(W−1U ′|U ′) = q(U |U ′), namely q(WU |U)dW where dW is the Haar measure. It remains to fix a q(W )dW
with q(W ) = q(W †). We have implemented two choices:

• “eiH -type jumps”: We pick a random dBA′B′ × dBA′B′ matrix N with each entry independent and normally
distributed complex numbers with standard deviation given by the step size. We then calculate H = N +N†

and set W = eiH , inducing a measure q(W ) dW . Denoting by dN the measure induced on N by this sampling
procedure, observe that dN = d(−N) as the normal distribution is symmetric. Furthermore the Haar measure
is invariant under the adjoint, dW = d(W †), since d(W †) is also unitarily invariant and is thus also the Haar
measure. Hence, q(W ) dW = dN = d(−N) = q(W †) d(W †) = q(W †) dW as required.

• “elementary rotation jumps”: Choose m ∈ {x, y, z} uniformly at random and choose two indices i < j uniformly
at random. Choose sin(α) at random (normally distributed number whose standard deviation is the step size;
truncated to [−1, 1]). Define the unitary W1 as the qubit rotation on the subspace spanned by {|i〉, |j〉} defined
by eiα (~em·~σ) = cos(α)1+ i sin(α) (~em · ~σ), where ~em is the m-th basis vector in 3D and where {σx, σy, σz} are
the Pauli matrices. We see that −α (~em · ~σ) is sampled with the same probability as α (~em · ~σ) and hence for the
same reason as above, q(W ) = q(W †). In order to keep the acceptance ratio at a reasonable rate, we sample
Ninner-iter different instances of W1, and multiply them together to form the sampled W . One should choose
Ninner-iter such that it is possible to keep the acceptance rate around 30%.

Appendix E: Impact of the random walker and empirical fit function

Overall, we have two main methods, bipartite-state and channel-space sampling, for tomography of an unknown
quantum process. In each of these method, there are several options on how to configure the Metropolis-Hastings
random walk: standard or optimized jump distribution for bipartite-state sampling, and eiH or elementary rotation
jump distribution for channel-space sampling. The histogram bins are further subjected to a statistical fit analysis to
the default fit function. Thus, in this section we study the variability of our simulation results, briefly presented in the
main text, in terms of these choices. The main takeaway message is that difference choices lead to very consistent
results although their computational performance (time, memory) may differ significantly.
Let us focus on the two-qubit quantum memory example where a simulated dataset of n = 40500 measurement

outcomes is subjected to different numerical analyses. The running times vary quite significantly. For example,
the bipartite-state method runs for 85 minutes with standard jump distribution and 18 minutes with optimized
jump distribution to compute diamond norm distance. The channel-space method runs for 15 hours with eiH jump
distributions and 2 hours with elementary rotation jump distribution. Despite the difference in running times, the
histograms produced are consistent across different choices (see Fig. 6, left plot).

The histograms can be compactly described by the fit parameters (or equivalently the quantum error bars) associated
with the default fit function. As seen in the main text, the default fit function could yield high goodness-of-fit or small
reduced χ2 values. In the right plot of Fig. 6, we show a situation where the default fit function does not fit well to
simulated data. This leads us to develop a new empirical model

lnµfit,#2(v) = −a2v
2 − a1v +m (ln v)p + c . (E1)

Trying the fit #2 yields better agreement and smaller χ2 values. The main lesson here is that the fit models need to be
treated a bit delicately on a case-by-case basis. Since good fit is usually achieved for region of high probability density,
we expect that this translate to reasonably accurate confidence region computations. However, in a fully paranoid
setting, one might need to be more conservative and use an optimized fit function before computing confidence regions.
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FIG. 6. (Color online) Distribution of the figures-of-merit for the two-qubit noisy quantum memory example in log-scale. This
figure is obtained by all combinations of sampling methods and jump distributions. Left: log-plot of histogram bins with
vertical error bars for diamond norm distance. Bipartite-state methods are plotted as the two right dotted bins (standard as
red/light gray, optimized as blue/dark gray), while channel-space method are two left dotted bins (elr as magenta/light gray,
eiH as green/darker gray). Different jump distributions for each method—bipartite-state and channel-space—give consistent
results. Right: log-plot of worst-case entanglement fidelity and bipartite-state sampling. The default fit model (with legend
fit1) does not match the histogram well, which is fixed by the new fit model (legend fit2). In any case, however, the exponential
decay of the fit function ensures that the quantum error bars provide a meaningful estimation of the estimation error. The
present example is included in our software package [34].

Appendix F: Convergence in number of samples N →∞

We now turn to an example where we clearly observe the convergence of the distributions h(v) and µ(v) around the
known true figure-of-merit. Consider a noisy identity process on a qutrit, of the form

ΛA→B(ρ) = p ρ+ (1− p) d−1
B 1B , (F1)

with p = 0.96 and dB = 3. This gives us a diamond norm to the identity process of

1

2
‖ΛA→B − IA→B‖� = 0.03556 . (F2)

We consider measurements on the input and output systems given by using the Gell-Mann matrices as observables:

λ1 =




0 1 0
1 0 0
0 0 0


 ; λ2 =




0 −i 0
i 0 0
0 0 0


 ; λ3 =




1 0 0
0 −1 0
0 0 0


 ;

λ4 =




0 0 1
0 0 0
1 0 0


 ; λ5 =




0 0 −i
0 0 0
i 0 0


 ; λ6 =




0 0 0
0 0 1
0 1 0


 ;

λ7 =




0 0 0
0 0 −i
0 i 0


 ; λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 .

Each single-system measurement setting has three possible outcomes. For each pair of measurement settings (for the
input and the output system) we simulate N measurement outcomes. We choose N = 106 for our reference experiment,
yielding a total of Ntot = 82 × 106 = 6.4× 107 measurement outcomes. We denote the corresponding frequency vector
by (nRef

jAjB ,`A`B
), where ji labels the measurement setting on system i and `i labels the corresponding measurement

outcome. We group together all the indices into a collective index k, such that nRef
k denotes the number of times the

joint POVM effect E(k)
AB was observed.
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FIG. 7. (Color online) Convergence of quantum error bars to the true value of figure of merit in the limit of many measurements,
for a noisy identity process on a qutrit. Measurements using Gell-Mann matrices as observables on the input and the output
systems were simulated with 106 outcomes per setting, providing the reference experiment (labeled “100%”). Analyses as in
Fig. 4 were then carried out after artificially rescaling the measured frequency counts by various factors (percentage labels),
allowing us to compare regimes with different number of measurements while still keeping the estimated expectation values of
the measured observables constant to facilitate comparison. As the number of measurements increases, the distribution of f�,
the diamond norm to the identity channel, peaks to the known true value of 3.556× 10−2. Data points display the numerical
histogram (bipartite-state sampling method: blue–green; channel-space method: red–yellow) which are fit to our model #1.
Inset: the quantum error bars (v0,∆, γ) obtained from the fit [22] (channel-space method only) are plotted against the number of
measurements relative to the reference experiment; markers represent v0 with an error bar representing [v0− (∆− γ), v0 + ∆ + γ]
for each analysis instance. The dotted line indicates the known true value of f�.

The corresponding analysis is depicted in Fig. 7, as the curve labeled “100%”. Thanks to the large number of
measurements, the distributions h(v) and µ(v) peak sharply around the true value of f�.

We now ask, how would these distributions look if fewer measurements had been taken? Instead of simulating new
outcomes, which would cause the peak to be displaced and would make a comparison more difficult, we artificially
rescale the frequency vector nRef

k by a factor α, i.e., we define nαk = bαnRef
k c, where by bxc we denote the largest

integer less than or equal to x. For instance, we may choose α = 0.01 = 1% to represent an experiment in which
only n ≈ αN = 104 measurements per setting were sampled, instead of N . While this rescaling of the frequency
vector is artificial, the resulting measurement counts are still representative of possible outcomes that one could have
sampled if we had simulated directly only αN outcomes per setting; crucially, doing so facilitates comparisons between
the different settings. The analysis for a selection of values for α (given as percentages) is presented in Fig. 7. The
corresponding peaks are indeed seen to converge towards the true value of f�. For each value of α, we calculate the
corresponding quantum error bars (v0,∆, γ), and plot them against α (Fig. 7, inset). The quantum error bars become
a better and tighter description of the true state as the number of measurements increase, as expected.
The quantum error bar ∆ is the one which is most akin to a “standard deviation,” as in the limit γ → 0 the

fit model (9) becomes a Gaussian. We may investigate the precise scaling of ∆ as a function of the number of
measurements by plotting the magnitude of this quantum error bar against the number of measurements in a log-log
plot (Fig. 8). We indeed observe a scaling close to 1/

√
n, where n ≈ αN is the number of measurements, as expected

from known results in usual quantum tomography. We expect that by improving the measurement settings, for instance
by using adaptive measurements, tighter error bars can be achieved with fewer measurements [13, 52–54].

This depiction allows us again to appreciate the convergence to the true value of f�.

Appendix G: Relations of two methods

In this section, we discuss the theoretical connections between the two methods, specifically the relationship between
the densities µ(v) and h(v). We will use basic notions from measure theory which is available in any standard textbook.
Recall that we use the induced measure dσAB on density matrices D(HAB) in the bipartite-state sampling and

the measure dν(Ψ) on Choi state C (HAB) in the channel space method. It is helpful for the reader to refresh the
definition of these measures in Appendix A2. The following result connect these probability measures; its proof is
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FIG. 8. (Color online) One of the quantum error bars, ∆, is observed to scale approximately as 1/
√
N , where N indicates the

number of measurements, as expected in standard (non-adaptive) quantum tomography. The setting is the same as in Fig. 7.
By choosing more sophisticated measurement operators, for instance by adapting the measurement settings based on earlier
outcomes, the scaling could be improved [13, 52–54].

⇤
 AP

Ej
P

E`
B

(c)

FIG. 9. An intermediate tomographic scheme. Scenario (c) comes from restricting E`
k acting on BP of Fig. 2(b) to be a tensor

product measurement. The measurement Ej
P on half of an entangled state in (c) can be seen as a probabilistic state preparation

similar to Fig. 2(a).

delayed till the end of this Appendix.

Proposition 5. The measure dσAB factors as dσAdν(ΛA→B) in the sense that for all measurable function g(σAB)
∫

dσAB g(σAB) =

∫
dσA

∫
dν(ΛA→B) g(dAσ

1/2
A J(ΛA→B)σ

1/2
A ) (G1)

=

∫
dσA

∫
dν(ΛA→B) g(dAσ

1/2
P J(ΛA→B)σ

1/2
P ) , (G2)

where dσA is the reduced measure of dσAB via partial tracing and dν(ΛA→B) is the uniform measure on channel space
induced by dUBA′B′ and σP = σᵀ

A.

We remark that intuitively this result is clear: the probability measure dσAB can be “conditioned” on different
values of y = trB(σAB) giving rise to conditional probability measures dνy(σAB) and these are recognised as dν(Λ) by
unitary invariance. However, the fact that these events which we are conditioning on has measure zero under dσAB
makes the proof more complicated.
Proposition 5 tells us that integrating over all bipartite states according to the measure dσAB can be done by

separately integrating over all possible input states σA and over all possible channels ΛA→B, by combining them as
σ

1/2
A ΛAB σ

1/2
A where ΛAB = J(ΛA→B). Equivalently, this can be done by separately integrating over all possible

transposed input states σA and over all possible channels ΛA→B as in (G2). We can use this intuition to relate the two
methods presented above.
In order to connect both quantities, we consider the situation depicted in Fig. 9. Assume that for each repetition

j = 1 . . . n the input ρjA is chosen by a measurement on the pure state |ψ〉AP = σ
1/2
A |Φ̂〉 for some given state σA, and

the outcome POVM effect EjP was observed. The measurement on the output state of the channel is chosen from some
collection of measurements acting only on system B only. Assuming that the outcome POVM effect EjB was observed,
the dataset E consists of the pairs (EjP , E

j
B) for all n repetitions.
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Viewing this scenario as an ancilla-assisted scheme (by moving the measurement on P to the end), we can employ
the bipartite-state sampling method and calculate µ(v) by integrating our test function δ(f(ρAB)− v) over the full
bipartite-state space according to (B15) and (B5):

µ(v) = c−1
E

∫
dσAB L1(σAB |E) δ(f(ρAB)− v) , (G3)

where

L1(σAB |E) = tr(σ⊗nAB E) , (G4)

for E = ⊗nj=1E
j
P ⊗ EjB .

On the other hand, we can also view this as a prepare and measure scheme and use the channel space method to
compute, the histogram by (C3) and (C42) as an integration over the space of all channels only,

h(v) = c′−1
E

∫
dν(ΛA→B)L2(Λ|E)δ(fchannel(Λ)− v) , (G5)

where

L2(Λ|E) =

n∏

j=1

tr(ΛA→B(ρjA)EjB) . (G6)

We may rewrite each factor term using the Choi-Jamiolkowski state of the channel as

tr(ΛA→B(ρjA)EjB) = tr(σ
1/2
P ΛPB σ

1/2
P (EjB ⊗ EjP )) (G7)

(where σP = σTA) and thus

L2(Λ|E;σA) = tr((σ
1/2
P ΛPB σ

1/2
P )⊗nE) , (G8)

now defining the same operator E = ⊗nj=1E
j
P ⊗ EjB as before and where σA is fixed.

The similarity of (G3) and (G4) with (G5) and (G8) is now more evident. It is worth giving a precise interpretation
to both L1(σAB |E) and L2(Λ|E;σA). The function L1(σAB |E) is a probability density on the bipartite-state space
with respect to dσAB, describing the Bayesian posterior distribution after observing data E for an agent using the
uniform prior dσAB (and thus ignoring any prior information about what the input state actually is). On the other
hand, L2(Λ|E;σA) is the posterior distribution in the space of all channels, after observing data E for an agent which
is using the prior dν(ΛA→B). Yet, Prop. 5 tells us that the prior dν(ΛA→B) is precisely the same as the prior in the
bipartite-state space corresponding to knowing with certainty that the input state is exactly σA. Indeed, dν(ΛA→B) is
precisely the measure induced by dσ′ABδ(trB(σ′AB)− σA) on ΛA→B = J−1(σ

′−1/2
A σ′ABσ

′−1/2
A ), where δ(trB(σ′AB)− σA)

is a Dirac delta at the point σA. That is, with the shorthand σ′A = trB(σ′AB), we may rewrite (G5) as

h(v) = c′−1
E

∫
dσ′ABδ(σ

′
A − σA)

∫
dν(ΛA→B) · L2(Λ|E;σ′A)δ(fchannel(ΛA→B)− v) . (G9)

Hence, the difference between the bipartite sampling method and the channel-space method, at least in the current
scenario, is exactly the prior information about the input state. In the former, nothing is assumed about the input
state other than what can be inferred directly from the measurement data; in the latter, the exact input state is
assumed with certainty as represented by the first Dirac delta function in (G9).

Finally, we will prove the following result, which is easily seen to imply the Proposition 5.

Proposition 6. There exists an essentially unique family of probability measures dνy(σAB) on D(HAB) indexed by
full rank y ∈ D(HA) such that

∫
dσABg(σAB) =

∫
dσA(y)

∫

tr−1
B (y)

dνy(σAB)g(σAB) , (G10)

where dσA(y) is the reduced measure of dσAB and tr−1
B (y) denotes the preimage of y under partial tracing B. Moreover,

each member dνy(σAB) of the family is supported on tr−1
B (y) and actually isomorphic to dν(Ψ) on C (HA → HB).

These isomorphisms are given by

J−1
y : tr−1

B (y)→ C (HA → HB) (G11)

σAB 7→ J−1
(
d−1
A y−1/2σABy

−1/2
)
. (G12)
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Proof. Again, it will be convenient to work in the purified picture. By definition, dσAB originates from the uniform
spherical measure d|φ〉ABA′B′ induced by the Haar measure dUABA′B′ by the relation |φ〉ABA′B′ = UABA′B′ |Ψ0〉. On
the other hand, dν(Ψ) comes from the Haar measure dUBA′B′ via the relation |Ψ〉 = UBA′B′ |Ψ0〉.

Consider the partial trace trBA′B′ : End(HABA′B′)→ End(HA). Two things happen under this mapping.
First, the measure d|φ〉ABA′B′ admits a pushforward along trBA′B′ denoted as dσA(y) living on space D(HA). Note

that this measure dσA(y) no longer coincides with the Haar induced (or Hilbert-Schmidt induced) uniform measure on
D(HA) (since such measure arises uniquely from the Haar measure dUAA′ acting on HAA′).

Second, the space End(HABA′B′) is partitioned into fibers tr−1
BA′B′(y) over y ∈ End(HA). Observe that one of such

fibers corresponds to the set of purified Choi states PC : take y = 1/dA. Moreover, if y ∈ D(HA) is full rank, then
the fiber over y is isomorphic to PC . Indeed, the bijection is given by

J−1
y : tr−1

BA′B′(y)→PC (G13)

φABA′B′ 7→ d−1
A y−1/2φABA′B′y

−1/2 . (G14)

Note that partial tracing out A′B′ gives Choi-Jamiolkowski isomorphisms identifying tr−1
B (y) ⊆ D(HAB) with the

space of all quantum processs:

J−1
y : tr−1

B (y)→ C (HA → HB) (G15)

σAB 7→ J−1
(
d−1
A y−1/2σABy

−1/2
)
, (G16)

where J−1 is the standard Choi-Jamiolkowski isomophism identifying C (HAB) with C (HA → HB). We stress again
that these are isomorphisms only for full rank y ∈ D(HA).
The probability measure dφABA′B′ then disintegrates [55] into a family of conditional probability measures

dνy(φABA′B′) on each fiber (or preimage over y) tr−1
BA′B′(y) such that

∫
dφABA′B′g(φABA′B′) =

∫
dσA(y)

∫

tr−1

BA′B′ (y)

dνy(φABA′B′)g(φABA′B′) (G17)

for all functions g(φABA′B′). Moreover, the family {dνy(φABA′B′) : y ∈ D(HA)} is dσA(y)-almost everywhere unique
and each member dνy(φABA′B′) is supported on tr−1

BA′B′(y).
Without loss of generality, we only pay attention to full rank y ∈ D(HA) because the set of rank-deficient density

matrices y has measure zero under dφABA′B′ . Here, each fiber tr−1
BA′B′(y) has been identified with the space PC .

Under this identification, we will show that dνy(φABA′B′) is almost everywhere equivalent to with the uniform measure
on channel space dν(Ψ). This follows from unitary invariance of dνy(φABA′B′) and the uniqueness of the Haar measure
dUBA′B′ . Specifically, since d(U†BA′B′φABA′B′UBA′B′) = dφABA′B′ for all UBA′B′ we have by change of variables

∫
dφABA′B′g(φABA′B′) =

∫
d(U†BA′B′φABA′B′UBA′B′)g(φABA′B′) (G18)

=

∫
dφABA′B′g(UBA′B′φABA′B′U

†
BA′B′) (G19)

=

∫
dσA(y)

∫

tr−1

BA′B′ (y)

dνy(φABA′B′)g(UBA′B′φABA′B′U
†
BA′B′) (G20)

=

∫
dσA(y)

∫

tr−1

BA′B′ (y)

dνy(U†BA′B′φABA′B′UBA′B′)g(φABA′B′) (G21)

(G22)

where the last equality follows from the fact that the fiber tr−1
BA′B′(y) is invariant under all UBA′B′ . By uniqueness of

the family, we have

dνy(U†BA′B′φABA′B′UBA′B′) = dνy(φABA′B′) for all UBA′B′ . (G23)

This says that each member dνy(φABA′B′) of the disintegration family is unitary invariant. Due to the uniqueness of
the normalized Haar measure we conclude dνy(φABA′B′) = dν(Ψ). In fact, we obtain correspondences between the
objects

tr−1
BA′B′(y)↔PC (G24)

dνy(φABA′B′)↔ dν(Ψ) (G25)
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induced by J−1
y .

Taking partial trace of system A′B′ yields the statement of the proposition and completes the proof.
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