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Bravyi and Gosset recently gave classical simulation algorithms for quantum circuits dominated
by Clifford operations. These algorithms scale exponentially with the number of T -gates in the
circuit, but polynomially in the number of qubits and Clifford operations. Here we extend their
algorithm to qudits of odd prime dimension. We generalize their approximate stabilizer rank method
for weak simulation to qudits and obtain the scaling of the approximate stabilizer rank with the
number of single-qudit magic states. We also relate the canonical form of qudit stabilizer states to
Gauss sum evaluations and give an O(n3) algorithm for calculating the inner product of two n-qudit
stabilizer states.

I. INTRODUCTION

With the prospect of noisy intermediate scale quantum
(NISQ) computers with 50− 100 qubits appearing in the
next decade [4, 30], determining the minimal classical
cost of simulation of quantum computers has received
much recent attention [5, 8, 18, 29, 35].

The Gottesman-Knill theorem shows that Clifford cir-
cuits are efficiently classically simulatable [1]. Adding
any non-Clifford gate creates a universal gate set [42].
One such choice for a non-Clifford gate is the T gate:
T |j〉 = eijπ/4 |j〉 , j ∈ {0, 1} [6]. Bravyi and Gosset gave
a classical algorithm for simulation of quantum circuits
that scales exponentially with the number of T -gates in
the circuit but polynomially with the number of qubits
and Clifford gates [8]. This algorithm was further devel-
oped in [7].

What is supplied by the addition of T -gates to a
Clifford circuit? The fault tolerant implementation of
Clifford+T circuits substitutes magic states for each T
gate [9, 40]. Colloquially, T gates add “magic” to a Clif-
ford circuit. Magic is supplied by contextuality, a long-
standing source of puzzles and paradoxes in the founda-
tions of quantum mechanics [23].

The relationship of magic to contextuality also pro-
vides a connection to quasiprobability representations of
quantum mechanics [13, 36]. Specifically, positivity of a
quasiprobability representation is equivalent to the ab-
sence of contextuality, and such positive states, opera-
tions and measurements admit efficient classical simu-
lation in some cases [28, 38]. Classical statistical the-
ories with an imposed uncertainty principle can repro-
duce these positive quasiprobabilistic theories for Gaus-
sian states and qudits with d > 2 [3, 37].

Pashayan et al. gave an algorithm allowing a posi-
tive quasiprobability description to include some negativ-
ity [34]. Comparing the algorithms of Bravyi and Gosset
and Pashayan should shed more light on the relation-
ship between magic, contextuality and negativity [8, 34].
However quasiprobability representations for qubits are
distinct from their d-dimensional cousins [24–26]. The
desire to understand the relationship between magic, con-
textuality and negativity therefore motivates extension of

the algorithm of Bravyi and Gosset to qudits with dimen-
sion greater than two. In the present paper we extend the
algorithm of Bravyi and Gosset to qudits of odd prime
dimension.

The structure of the paper is as follows. In Sections II
and III, we briefly introduce the necessary background.
In Section IV we give the nonorthogonal decomposition
of the magic state, and in Section V we give results on ap-
proximate stabilizer rank and weak simulation algorithm
for qudits. We close the paper by briefly comparing our
algorithm to that of [34].

II. QUDIT PAULI GROUP AND CLIFFORD
GATES

The Pauli and Clifford groups were first generalized
beyond qubits by Gottesman [16]. Assuming henceforth
that d is an odd prime, we define the Heisenberg-Weyl
operators:

D~x = τxzXxZz, (1)

where X |j〉 = |j ⊕ 1〉, where ⊕ denotes addition modulo
d, Z |j〉 = ωj |j〉, ~x = (x, z), where x and z are integers

modulo d, ω = exp(2πi/d) and τ = e(d+1)πi/d = ω2−1

.
The Heisenberg-Weyl operators form a group whose
product rule follows from the Heisenberg-Weyl commu-
tation relation ωXZ = ZX:

D~x1
D~x2

= τ 〈~x1·~x2〉D~x1+~x2
(2)

where 〈~x1 ·~x2〉 is the symplectic inner product: 〈~x1 ·~x2〉 =
z1x2 − x1z2.

The generators of the Clifford group on qudits are
P , H and CNOT , where P |j〉 = ωj(j−1)/2 |j〉, H |j〉 =
d−1/2

∑
k ω

jk |k〉 and CNOT |j, k〉 = |j, k ⊕ j〉. We can
also write any single qudit Clifford unitary as CF,~χ =
D~χUF , where ~χ = (x, z) and F is a 2 × 2 matrix with
entries modulo d. We will make particular use of ma-

trices Cγ,~χ = D~χUγ for Uγ |k〉 = τγk
2 |k〉. The order of

Cγ,~χ is d. The Clifford group is reviewed in more detail
in Appendix A.
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Qudit stabilizer states can be prepared from a logical
basis state by a qudit Clifford circuit. The Gottesmann-
Knill theorem generalizes to qudits and qudit stabilizer
computations allow efficient classical simulation [16]. Qu-
dit stabilizer states possess canonical forms in the logical
basis just as in the qubit case [12, 19, 31].

The remaining generalization we require is an efficient
classical algorithm for obtaining the inner product of two
stabilizer states. This is required by the algorithm of
Bravyi and Gosset and the qubit case was given in [8].
We give an O(n3) algorithm for the inner product of
two n-qudit stabilizer states based on Gauss sums in Ap-
pendix F.

The qudit T -gate was defined in [11, 22] as a diagonal
gate UT that maps Pauli operators to Clifford operators.
Its action is specified by the image of X = D(1,0) under
UT . Magic states are then eigenvectors of this image. Let
the eigenstate of X with eigenvalue ωk be |+k〉, then the
magic states are UT |+k〉. This approach is that taken by
Howard in [22].

The image of X under UT can be written (up to a
phase) as C = XP γZξ for γ, ξ integers modulo d. The
effect of nonzero ξ is simply to reorder the eigenvectors
and hence we can choose ξ = 0. Similarly, the eigenvec-
tors for γ > 1 and γ = 1 are related by application of
P γ−1, a Clifford operator. We can therefore specialize to
the case γ = 1 and ξ = 0, and the gate with action:

Cd = MdXM
†
d =

{
e2πi/9XP. d = 3.

ω−3̄XP. d > 3.
(3)

where 3̄ indicates the multiplicative inverse of 3 modulo
d. This is the gate defined by Campbell et al. in [11].
The qudit magic states are reviewed in more detail in
Appendix B.

The definition of magic states allows one to replace a
Clifford+T circuit with a Clifford circuit with injected
magic states [9, 40]. This construction was extended to
qudits in [22] and we review it in Appendix D. In Sec-
tion III we will review the Bravyi-Gosset algorithm for
qubits which we will generalize to qudits.

III. THE BRAVYI-GOSSET ALGORITHM

Bravyi and Gosset gave algorithms for both weak and
strong simulation in [7, 8]. A strong simulation out-
puts the probability of measuring output x from a given
Clifford+T circuit. A weak simulation algorithm gener-
ates samples from the probability distribution over out-
puts of a given Clifford+T circuit. Here we review the
weak simulation algorithm. A brief summary of relevant
features of the strong simulation algorithm is given in
Appendix C.

The key advantage of weak simulation is that one
can sample from a P̃out(x) that is close enough to the
actual Pout(x). Bravyi and Gosset devised a method
to approximate the t-qubit magic state |A⊗t〉, where

|A〉 = 2−1/2(|0〉 + eiπ/4 |1〉, with a superposition of < 2t

stabilizer states.
The approximate stabilizer rank χ′ is defined as the

minimal stabilizer rank (defined in [10] and reviewed in
Appendix C) of a state |ψ〉 that satisfies |〈ψ|A⊗t〉| ≥ 1−δ.
A close approximation to the tensor product of magic
states means a close approximation to the action of a
Clifford+T circuit realized by magic state injection [8].

Therefore, P̃out(x) will be close enough to Pout(x) if δ is
small enough.

The sampling procedure given by Bravyi and Gosset
relies on standard computations of stabilizers. The ex-
tension of such computations to d > 2 have long been
well understood [16]. We will therefore refer the reader
to [8] for details of these procedures which, mutatis mu-
tandis, can be applied in the qudit case, and focus on the
approximate stabilizer rank.

We begin by reviewing the approximate stabilizer rank
construction from [8]. From the magic state |A〉 defined
above one can construct the equivalent magic state:

|H〉 = e−πi/8PH |A〉 = cos(π/8) |0〉+ sin(π/8) |1〉 . (4)

The state |H〉 can be decomposed into a sum of non-
orthogonal stabilizer states as follows:

|H〉 =
1

2 cosπ/8
(
∣∣0̃〉+

∣∣1̃〉) (5)

where
∣∣0̃〉 = |0〉 and

∣∣1̃〉 = 1√
2
(|0〉+ |1〉). Then |H⊗t〉 can

be rewritten as∣∣H⊗t〉 =
1

(2 cos(π/8))t

∑
x∈Ft2

|x̃〉 (6)

The weak simulation algorithm reduces the number of
stabilizer states required by approximating |H⊗t〉. This
approximation |H⊗t∗〉 is constructed by taking a sub-
space L of F t2:∣∣H⊗t∗〉 =

1

(2 cos(π/8))t

∑
x∈L
|x̃〉 (7)

The stabilizer rank of this approximation state is the
number of elements in L, which is 2k. The random sub-
space L is chosen so that |H⊗t∗〉 satisfies:〈

H⊗t∗
∣∣H⊗t〉 ≤ 1− δ. (8)

It is useful to discuss the subspaces of F t2 in the lan-
guage of d-ary linear codes. L is a k-dimensional bi-
nary linear code which can be specified by k generators
of length t. These generators can be written in a stan-
dard form as a k× t matrix {1k|G} where 1k is the k× k
identity matrix and G is a k × (t− k) matrix. Sampling
random subspaces of F t2 is therefore equivalent to sam-
pling matrices G.

The algorithm of Bravyi and Gosset achieves an im-
proved scaling of cos(π/8)

−2t ' 20.23t for weak simula-
tion over 20.47t for strong simulation. In section IV and
V, we will see more details of how to bound the scaling
while we extend this approximate rank and weak simu-
lation scheme to qudits.
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IV. NONORTHOGONAL DECOMPOSITIONS
OF QUDIT MAGIC STATES

The qudit magic state we want to decompose is an
eigenvalue one eigenstate of the Clifford operator Cd as
defined by eq. (3). We choose a stabilizer state

∣∣0̃〉
with non-zero inner product with the magic state and
act on it with powers of Cd to obtain d stabilizer states
{
∣∣j̃〉 = Cjd

∣∣0̃〉 , j = 0, ..., d− 1}. We know these stabilizer
states are distinct because if any pair were equal then the
original state

∣∣0̃〉 would be an eigenstate of the Clifford
operator and hence a magic state. The sum of these d
states form a decomposition of the magic state (up to a
possible global phase). Because Cd has order d this state
is by construction an eigenvalue one eigenstate of Cd.

The d stabilizer states in the decomposition form an
orbit around the magic state. This construction was dis-
cussed previously in [20]. There are d(d+ 1) single-qudit
stabilizer states [39], partitioned into d + 1 orbits, each
orbit giving a decomposition of the magic state. Every
state in each orbit has the same overlap with the magic
state: 〈

j̃
∣∣Md

〉
=
〈
j̃
∣∣C†dCd |Md〉 =

〈
j̃ + 1

∣∣∣Md

〉
(9)

where the qudit magic state is |Md〉 = Md |+〉. This
property is a generalization of

〈
0̃
∣∣H〉 =

〈
1̃
∣∣H〉 = cosπ/8

for the qubit case. The overlaps of the elements of the
nonorthogonal basis are given by:

∣∣〈0̃∣∣j̃〉∣∣ = 1√
d

for all

js, i.e.: ∣∣∣〈j̃∣∣∣k̃〉∣∣∣2 =
1 + (d− 1)δj,k

d
. (10)

This expression is that for states in a SIC-POVM, and
the construction here is similar to the generation of such
states from a fiducial state [14, 41]. Here we only obtain
d states, however. See Appendix G for the evaluation of

the phase of
〈
j̃
∣∣∣k̃〉.

The states |+p〉 = Zp |+〉 are representatives of the d
orbits, each of which generated by Cd. This is because
Cad |+p〉 6= |+q〉 for any a, p, q, which follows simply from
the action of Cd in the logical basis. Cd applies phases
quadratic in j to |j〉 followed by a shift. This cannot be
equal to a state generated from |+〉 by any power of Z,
which can only apply phases linear in j to |j〉.

From the orbit representatives we can determine the
inner product of the states in the orbit with the magic
state. This is given by:

α = 〈+|Z−p |Md〉 = 〈+|Z−pMd |+〉 =
1

d
Tr(Z−pMd).

(11)
This is a cubic gauss sum which can be written:

α =
ω

1
d (d4)−p

d

d−1∑
l=0

ω6̄l(l2+ψ(p,d)) d > 3. (12)

For the d = 3 case, the magnitude and phase of this cu-
bic Gauss sum, and φ(p, d), are computed in Appendix E.

The sum is real, although not necessarily positive. Al-
though we do not obtain a closed form for this sum, we
can compute the integer value of p which maximizes its
absolute value for a given d. These values are tabulated
for small d in Table I.

The complete form of the nonorthogonal decomposi-
tion is:

|Md〉 = ±ω
1
d (d4)−p

d|α|
∑
j

Cjd
∣∣0̃〉 . (13)

which is the generalization of eq. (5) to arbitrary d.

V. WEAK SIMULATION AND APPROXIMATE
STABILIZER RANK

In order to get an approximation for |M⊗t〉, we can
follow the method of Bravyi and Gosset for the qubit
case, taking a k-dimensional subspace of F td:∣∣M⊗t∗〉 = |L〉 =

1√
dkZ(L)

∑
x∈L

∣∣∣~̃x〉 (14)

Here we label the state by L ⊂ F td, a k dimensional
code subspace of F td and Z(L) is a normalization factor.
Comparison with eq. (13) shows that Z(Fd) = d|α|2. We
require:

∣∣〈L∣∣M⊗t〉∣∣2 =
dk|α|2t

Z(L)
≥ 1− δ (15)

for a given δ, where the first equality follows from eq. (9)
and where:

Z(L) =
∑
~x∈L

〈
0̃⊗t
∣∣C~x ∣∣0̃⊗t〉 (16)

for C~x = Cx1 ⊗ Cx2 ...⊗ Cxt , xi ∈ Fd.
Selection of the subspace L depends on two factors.

First, we choose the dimension of L by setting k:

k = d1− 2t logd |α| − logd δe. (17)

Note that the maximum precision that can be required
from the method for given t is obtained by setting k = t,
so that δmax = 2−t(1+2 logd |α|)+1.

Next we find an L for which Z(L) is not too large.
The probability of obtaining a small enough Z(L) can be
analyzed as in [8] by evaluating the expectation value of
Z(L) over all possible L ∈ F td:

E(Z(L)) = 1 +
∑

~x∈Ftd/{0}

〈
~̃0t
∣∣∣C~x ∣∣∣~̃0t〉E(IL(~x))

= 1 +
(dk − 1)

(dt − 1)
(Z(Fd)

t − 1)

= (1 +
dk − 1

dt − 1
(dt|α|2t − 1))

≤ (1 + dk|α|2t)

(18)
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Here IL(~x) is a indicator function, i.e., it is equal to 1
when x ∈ L and 0 otherwise. The second equal sign
stands because the expectation value of IL(x) for a fixed

x is dk−1
dt−1 and∑

x∈Ftd/{0}

〈
~̃0t
∣∣∣C~x ∣∣∣~̃0t〉 =

∑
x∈Ftd

〈
~̃0
∣∣∣C~x ∣∣∣~̃0〉− 1

=

(〈
0̃
∣∣ d−1∑
x=0

Cx
∣∣0̃〉)t − 1.

(19)

From eq. (17) we have dk|α|2t = O(1) so E(Z(L)) =
O(1). Therefore from Markov’s inequality we obtain

Prob

[
Z(L) ≤ (1 + dk|α|2t)(1 + δ)

]
> 1− E(Z(L))

(1 + dk|α|2t)(1 + δ)
≥ 1− 1

1 + δ
> δ.

(20)

Randomly choosing δ−1 subspaces gives an L such that:

Z(L) ≤ (1 + dk|α|2t)(1 + δ) (21)

and hence satisfying eq.(15), with high probability.
The upper bound for the approximate stabilizer rank

of a t-qudit magic state given by the above method is:

χ′(t) = dk = O(δ−1|α|−2t
). (22)

In the qubit case an explicit sum formula was given for
Z(L) with 2k terms, and hence the cost of evaluating
Z(L) is O(2k). What is the cost of evaluating Z(L) for
arbitrary d? In Appendix G we give an explicit formula
for Z(L) as a sum of products, and hence the cost of
evaluating Z(L) for arbitrary d is O(dk+1).

d Md p |α(d)| |α(d)| dκt

2 diag(1, eiπ/4) 0 cosπ/8 0.92388 20.23t

3 diag(e2πi/9, 1, e−2πi/9) 0 1+2 cos(2π/9)
3

0.84403 30.32t

5 diag(ω−2, ω, ω−1, ω−2, ω−1) 4 3+2 cos(2π/5)
5

0.723607 50.41t

7 diag(ω3, ω−2, 1, ω3, ω1, ω2, 1) 3 1+6 cos(2π/7)
7

0.677277 70.40t

Table I. The matrices Md, optimal value of p and approximate
stabilizer rank scaling comparison for d = 2, 3, 5, 7. Here κ =
−2 logd α so that dκt = α−2t. Here the ω for d = 5 and d = 7

rows are e2πi/5 and e2πi/7 respectively.

VI. DISCUSSION

The motivation to study the qudit generalizations
of stabilizer rank algorithms such as those in [7, 8] is
to enable comparison with other simulation algorithms.
In [34], the authors apply Monte Carlo sampling on tra-
jectories of the quasiprobability representation to esti-
mate the probability of a measurement outcome. They

find the hardness of this strong simulation depends on
the total negativity (Negativity of the inputs, gates and
measurements) of the circuit. Specifically the cost of the
algorithm scales with the square of the total negativity.

For Clifford+T circuits that are gadgetized so that the
circuit is realized by Clifford gates with magic state injec-
tion, the negativity of the circuit only comes from the an-
cilla inputs of magic states. If we apply the method of [34]
to the gadgetized circuit with an input of t-qutrit magic
states, the cost scales as 30.84t. This result is obtained by
calculating the negativity of a single-qutrit magic state.

In the present paper, we obtain a scaling of 30.32t

for weak simulation of qutrit Clifford+T circuits. This
shows that weak simulation using the approximate rank
method has superior scaling to strong simulation using
the method of [34]. A stabilizer rank based strong simu-
lation algorithm for qudits would require new results on
exact stabilizer rank of qudit magic states, a topic for
future work. Recent progress in extending the qubit case
has been reported in [7], and improvements to Pashayan’s
algorithm using a discrete systems generalization of the
stationary phase approximation were given in [27].

It should be noted that one should not think of weak
simulation as easy and strong simulation as hard. The
difficulty of weak and strong simulation is a property of
the distribution being sampled or computed. In some
cases, such as quantum supremacy, we expect the diffi-
culty of weak and strong simulation to coincide [5].

If we consider negativity and stabilizer rank as two
measures of quantumness, we can see that they differ.
Bravyi et al. [10] conjectured that the magic state has the
smallest stabilizer rank out of the non-stabilizer states.
However, the quasi-probability of the magic state has the
largest negativity. In fact, Howard and Campbell also no-
ticed this disagreement between stabilizer rank and ro-
bustness of magic [21]. It is worth noting the differences
between stabilizer rank and approximate stabilizer rank.
Namely, the approximate stabilizer rank seems to agree
with other measures of quantumness such as negativity
or robustness of magic in that it reaches a maxima at the
magic state and a minima on stabilizer states. The ex-
act stabilizer rank does not share these properties. This
makes the investigation of the difference between exact
and approximate stabilizer rank interesting.
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Appendix A: The Qudit Clifford Group

We recall that d is an odd prime. In a d dimensional
system the Pauli operators X and Z are defined as:

X =
∑
j∈Fd

|j ⊕ 1〉 〈j| Z =
∑
j∈Fd

ωj |j〉 〈j| , (A1)

where ω = exp(2πi/d). These operators obey the
Heisenberg-Weyl commutation relation:

ωXZ = ZX. (A2)

In d dimensions the Weyl-Heisenberg displacement op-
erators are defined by:

D~x = τxzXxZz, (A3)

where ~x = (x, z),τ = e(d+1)πi/d = ω2−1

. The qubit Pauli
operators are recovered from this expression for d = 2,
with D(1,0) = X, D(0,1) = Z and D(1,1) = −Y . The
Heisenberg-Weyl operators form a group with multipli-
cation rule:

D~x1
D~x2

= τ 〈~x1·~x2〉D~x1+~x2
(A4)

where 〈~x1 · ~x2〉 is the symplectic inner product:

〈~x1 · ~x2〉 = z1x2 − x1z2 (A5)

For d > 2 the Weyl-Heisenberg operators are unitary but
not generally Hermitian.

In the qubit case, the Clifford gates map Pauli opera-
tors to Pauli operators. In the qudit case Clifford gates
map Weyl-Heisenberg operators to one another. The
generators of the Clifford group are defined so that the
Hadamard gate maps X → Z and the phase gate maps
X → XZ. The generators of the single-qubit Clifford
group are:

H =
1√
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)
. (A6)

The d-dimensional Clifford operators are generated by:

P =
∑
j∈Fd

ωj(j−1)/2 |j〉 〈j| H =
∑
j,k

ωjk |j〉 〈k| /
√
d,

(A7)
and:

CNOT =
∑
j

|j〉 〈j| ⊗Xj . (A8)

The single-qudit Clifford group is isomorphic to the
semidirect product group of SL(2, Zd) [43] and (Zd)

2 [2,
41].

We can represent the Clifford group using a 2×2 matrix
F and a 2 vector ~χ, both with entries in Zd:

C =
{
C(F |~χ)|F ∈ SL(2, Zd), ~χ ∈ Zd2

}
(A9)

Specifically, a Clifford unitary is given as follows:

C(F |~χ) = D~χUF , (A10)

Where if:

F =

[
α β
γ δ

]
, ~χ =

[
x
z

]
, (A11)

then:

UF =
1√
d

d−1∑
j,k=0

τβ
−1(αk2−2jk+δj2) |j〉 〈k| , (A12)

if β 6= 0 and

UF =

d−1∑
k=0

ταγk
2

|αk〉 〈k| . (A13)

if β = 0 [41].
The multiplication rule is:

C(F1|~χ1)C(F2|~χ2) = τ 〈~χ1·F ~χ2〉C(F1F2|~χ1+F1~χ2). (A14)

The action of the Clifford operators on the Heisenberg-
Weyl operators in this representation can be given as
follows:

C(F |~χ)D~xC
†
(F |~χ) = ω~χ·~xDF~x (A15)
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In particular we are interested in Clifford operations
defined by matrices of the form:

Fγ =

[
1 0
γ 1

]
(A16)

and we introduce the notation:

Cγ,~χ = C[
1 0
γ 1

]
,

[
x
z

] (A17)

for ~χ = (x, z)T . From Table I in Zhu [41] the order of
any element Cγ,~χ is d. Clearly X, P and Z are order d.
For d = 2 H is order 2 and for d > 2 H is order 4.

The generators H and P are given by:

FH =

(
0 d− 1
1 0

)
, ~χH = (0, 0)T (A18)

which follows from HXH† = Z and HZH† = X−1 and:

FP =

(
1 0
1 1

)
, ~χP = (0, (d− 1)/2, )T . (A19)

These expressions for H and P allow us to construct the
F and ~χ for any single qudit Clifford operation expressed
as a word on the generators H and P .

Appendix B: Qudit Magic states and T gates

To go beyond Clifford group computation it is useful to
introduce the Clifford hierarchy, which classifies unitary
operators by their action on the Pauli group. The Clifford
hierarchy was defined by Gottesman and Chuang in [17]:

C(k + 1) =
{
U |UPU ∈ C(k), P ∈ P

}
(k ≥ 0). (B1)

The first level of the Clifford hierarchy is the Pauli group
C(1) = P. The Clifford group is the second level of the hi-
erarchy, unitary operators that map the Pauli group to it-
self. Note that elements of the Pauli group are themselves
elements of the first level of the Clifford hierarchy. The
third level of the Clifford hierarchy are operators that
map Pauli operators to Clifford operators. The qubit
T gate is such an operator because TXT † = PHP 2H,
a non-Pauli element of the second level of the Clifford
hierarchy.

Bravyi and Kitaev first proposed qubit magic states in
[9]. They define magic states as the image of |H〉 and |T 〉
under single-qubit Clifford gates, where |H〉 is defined by
eqn. 4 and |T 〉 by

|T 〉 = cosβ |0〉+ sinβeiπ/4 |1〉 , (B2)

for cos(2β) = 1√
3
. |H〉 is the eigenstate of the Hadamard

gate H and |T 〉 is the eigenstate of the product of
Hadamard and Phase gate PH.

Any magic state is equivalent as a resource to any other
state obtainable from it by a Clifford operation. We can

define magic states more generally as the eigenstates of
Clifford operations and obtain them as follows. Taking
any H-type magic state |H〉, we have

UHU†U |H〉 = UH |H〉 = λU |H〉 (B3)

where λ is the eigenvalue of H and U is a Clifford gate.
This means that U |H〉 is the eigenstate of a new Clif-
ford operator UHU†. The same is true for T -type magic
states.

Campbell et al. [11] used this relationship between
magic states and eigenvectors of Clifford operators to ex-
tend the definition of magic states to qudits [11]. Con-
currently, equivalent extensions were obtained by Howard
and Vala [22].

1. Qudit T gates

Campbell et al. [11] define sets of gatesMm
d containing

all gates M with the following properties:

1. M is diagonal

2. Mdm = 1

3. detM = 1 so that M ∈ SU(d)

4. M is in the third but not the second level of the
Clifford hierarchy.

Amongst this set of gates is the canonical Md gate

Md =
∑
j

exp(i2λjπ/d
m) |j〉 〈j| (B4)

Which is defined so that it maps the X operator to a
Clifford operator proportional to XP :

Cd = MdXM
†
d =

{
e2πi/9XP d = 3,

ω−3̄XP d > 3.
(B5)

Here 3̄ is the multiplicative inverse of 3 modulo d. This
Clifford operator has order d.

This condition, and the condition detM = 1, gives the
following form for the λj (See Appendix A of [11]):

λj = dm−2

[
d

(
j

3

)
− j
(
d

3

)
+

(
d+ 1

4

)]
. (B6)

The parameter m determines the order dm of the opera-
tor M . For d = 3 the form above is valid when m ≥ 2.
For d > 3 it is valid when m ≥ 1.

By definition M maps X, a generalized Pauli operator,
to a non-Pauli Clifford operator and so is in the third,
but not the second, level of the Clifford hierarchy. We
can therefore think of M as a generalized T gate.

From the definition of the matrix M in (B4), we have
for d = 3 and m = 2:

M3 = diag
(
ei2π/9, 1, e−i2π/9

)
, (B7)
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and

M5 = diag
(
e−

4πi
5 , e

2πi
5 , e−

2πi
5 , e−

4πi
5 , e−

2πi
5

)
, (B8)

for d = 5 and m = 1 where ω = e2πi/5. The qudit version
of the T gate M , is further generalized in [22], which we
will discuss below.

The T gate is also sometimes called the π/8 gate be-
cause

T = e−iπ/8
(
eiπ/8 0

0 e−iπ/8

)
. (B9)

Vala and Howard developed the qudit versions of this
gate concurrently with Campbell et al’s development of
qudit magic states [11, 22]. The results are equivalent
and we give the details of the relationship between them
here.

Vala and Howard parameterize the set of diagonal
gates on a single qudit as follows:

Uv = U(v0, v1, ..., vp−1) =

d−1∑
j=0

ωvk |k〉 〈k| (vk ∈ Zd).

(B10)
All diagonal gates fix D(0,1) and so their action is com-

pletely determined by UvD(1,0)U
†
v = UvXU

†
v . This par-

allels the development of Campbell et al. who considered
the action of their canonical gate M on the operator X
and insisted that the result of that action was ∝ XP .

Vala and Howard proceed more generally, computing
the action of these diagonal matrices:

UvD(x|z)U
†
v = D(x|z)

∑
k

ω(vk+1−vk) |k〉 〈k| . (B11)

Given Uv is diagonal, only UvD(1|0)Uv
† is nontrivial.

Vala and Howard then consider the case that Uv is in
the third level of the Clifford hierarchy so that the image
of X can be written (c.f. eq (18) in [22]):

UvXUv
† = ωε

′
Cγ′,(1,z′)T . (B12)

where ε′, γ′, z′ ∈ Zd. The right hand side here is the most
general form allowed because eqn. (B11) implies that the
image of X must be X times a diagonal Clifford operator,
and the most general form of a diagonal Clifford operator
has ~χ = (0, 1) and β = 0, α = 1. Combining equation
(B11) and (B12), one obtains (c.f. eq. (19) in [22]):

X
∑
k

ω(vk+x−vk) |k〉 〈k| = ωε
′
Cγ,(1,z′)T . (B13)

Vala and Howard then solve for Uv with these 3 pa-
rameters.

vk = 1̄2k{γ′ + k[6z′ + (2k − 3)γ′]}+ kε′, (B14)

This analysis is equivalent to that performed in Campbell
et al. [11], Appendix A.

The d = 3 case as usual presents some special difficul-
ties. In the Campbell analysis one must choose m = 2
for λ as there are no Clifford operators with m = 1,
d = 3 [11].

The set of operators Uv for d = 3 is given by:

Uv =

2∑
k=0

ξvk |k〉 〈k| . (B15)

where ξ = e2πi/9. The vk are given by:

v = (v0, v1, v2) = (0, 6z′+2γ′+3ε′, 6z′+γ′+6ε′), (B16)

where all operations can be taken modulo 9. The de-
terminant of Uv for d = 3 can be computed from this
definition:

detUv = e
2πi
9

∑
k=02vk = e

2πi
3 (z′+γ′)

showing that Uv is not in SU(3) for d = 3.
We can relate the diagonal operators Uv defined by

Vala and Howard and the operators M defined by Camp-
bell et. al as follows. Writing:

M =

d−1∑
k=0

exp

(
2πi

dm
λk

)
|k〉 〈k| =

d−1∑
k=0

ωλk/d
m−1

|k〉 〈k|

(B17)
and:

Uv =

d−1∑
k=0

ωvk |k〉 〈k| (B18)

we wish to compare:

λk
dm−1

=
1

d

[
d

(
k

3

)
− k
(
d

3

)
+

(
d+ 1

4

)]
(B19)

and

vk = 1̄2k{γ′ + k[6z′ + (2k − 3)γ′]}+ kε′. (B20)

These are both cubic in k so we can find the particular
Uv that corresponds to M by equating the coefficients.
We begin by setting k = 0 to find the constant term. We
immediately obtain:

v0 = 0,
λ0

d
=

1

d

(
d+ 1

4

)
(B21)

We conclude that Uv and M will only be equivalent up
to a global phase determined by this convention.

Equating the cubic terms yields γ′ = 1. Equating the
quadratic terms gives

z′ − γ′

2
= d− 1 (B22)

so that z′ = (d− 1)/2. Finally, equating the linear terms
gives:

ε′ = 1̄2(6d− 2d2 − 1). (B23)
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We may therefore relate Uv(z
′, γ′, ε′) and M for arbitrary

d > 3 as follows:

Md = ω
1
d (d+1

4 )Uv((d− 1)/2, 1, 1̄2(6d− 2d2 − 1)) (B24)

The first two cases of this equivalence are for d = 5 amd
d = 7 and, up to a global phase, are as given in equations
(70) and (71) of [22].

The case of d = 3 is distinct (1̄2 does not exist modulo
3.) but from the definition of Uv for d = 3 given in
eqn. B15 and eqn. B16 we have:

M3 = e
2πi
9 Uv(1, 1, 0) (B25)

This is, up to a global phase, as given in eqn. (69) of [22].

2. Qudit Magic states

The gates M also allow us to find eigenstates of CM as
follows. Define the state |Mk〉 = M |+k〉, where |+k〉 is
the eigenstate of X with eigenvalue ωk. We can calculate:

CM |Mk〉 ∝MXM† |Mk〉
= MXM†M |+k〉
= ωkM |+k〉
= ωk |Mk〉

(B26)

Given eq.(B12), Vala and Howard recovered the defi-
nition of the magic states of Campbell and showed that
these magic states Uv |+〉 are eigenstates of Cγ′,(1,z′)T

with eigenvalue ω−ε
′
:

Cγ′,(1,z′)TUv |+〉 = ω−ε
′
UvD(1|0)Uv

†Uv |+〉

= ω−ε
′
UvD(1|0) |+〉 = ω−ε

′
Uv |+〉

(B27)

Appendix C: Strong Simulation for qubits.

We review here the strong simulation algorithm given
by Bravyi and Gosset in [8].

Figure 1. Gadget to implement a T -gate using an ancilla
magic state |A〉 as defined in [40]. Using this gadget, universal
quantum computation (UQC) can be achieved using a Clifford
circuit with injected magic states.

Let t be the number of T gates in the n-qubit quantum
circuit we wish to classically simulate. The first step is
to replace every T gate in the circuit by Clifford gates

and an ancilla input of a magic state |A〉, defined in [9]
as:

|A〉 =
1√
2

(|0〉+ eiπ/4 |1〉). (C1)

This is accomplished using the gadget shown in Fig-
ure 1 [40]. The number of ancilla qubits is t. We con-
sider an initial state |0⊗n〉 for the Clifford+T circuit and
|0⊗n〉 ⊗ |A⊗t〉 for the gadgetized circuit.

At the end of the computation we will measure w of the
n qubits in the logical basis. This measurement with out-
come x (where x is a bitstring of length w), postselected
to the case where all ancilla measurements have result 0,
is represented by a projector Π(x) = |x〉 〈x|⊗1⊗|0t〉 〈0t|.
The strong simulation algorithm classically computes the
probability of this measurement outcome after acting
with a Clifford circuit V , which is our original (non-
Clifford) circuit with all T -gates replaced by the gadget
of Figure 1. Therefore we can express the probability of
obtaining output x as:

P (x) = 2t
〈
0nAt

∣∣V †ΠV ∣∣0nAt〉 . (C2)

The factor of 2t here compensates for the fact that we
postselected on the measurement outcomes of the t an-
cilla qubits.

We define a t-qubit projection operator ΠG =
〈0n|V †ΠV |0n〉. This projector maps states onto a stabi-
lizer subspace. Then eq.(C2) becomes

P (x) = 2t
〈
0nAt

∣∣V †ΠV ∣∣0nAt〉 = 2−u
〈
At
∣∣ΠG

∣∣At〉 .
(C3)

where u is an integer that depends on the number of
qubits we are measuring out of n and the dimension of
the stabilizer subspace ΠG is mapping onto.

If we can expand |At〉 into a sum of stabilizer states,
then we can express P (x) as a sum of inner products of
t-qubit stabilizer states, which can be computed in O(t3)
time ([1, 8, 10, 15]). The fewer stabilizer states in the
expansion of |At〉, the more efficient the algorithm is.
Stabilizer rank is defined as the minimal number of

stabilizer states needed to write a pure state as a lin-
ear combination of stabilizer states. The value of χ(t) is
trivially upper bounded by 2t because logical basis states
are stabilizer states, and χ(t) is also believed to be lower
bounded by an exponential in t. For practical purposes
we can achieve progress through a series of constructive
upper bounds.

In [10], Bravyi et al. found a stabilizer rank upper
bound by obtaining χA(6) ≤ 7 for

∣∣A6
〉

and dividing the
t-qubit state into a product of 6-qubit states. Therefore,
χA(t) has a upper bound 7t/6 ' 20.47t.

If we denote the stabilizer rank for the tensor product
of t single-qubit magic states |At〉 as χA(t), the cost of
classically computing P (x) by taking inner products as

described above is O(t3χA(t)
2
).

The quadratic dependence on stabilizer rank can be
improved by a Monte Carlo method, developed by Bravyi
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and Gosset, to approximate the norm of a tensor product
of magic states projected on a stabilizer subspace:

|
〈
At
∣∣ΠG

∣∣At〉 | = ∥∥ΠG

∣∣At〉∥∥2
= ‖ψ‖2 (C4)

therefore enabling one to calculate P (x) with cost
O(t3χA(t)), linear in stabilizer rank. This concludes our
summary of the strong simulation algorithm of Bravyi
and Gosset.

Appendix D: Qudit T gate Gadget

We also require a gadget that substitutes a qudit T-
gate by an injected qudit magic state and Clifford gates.
The qudit gadget was introduced by Howard and Vala
and is shown in Figure 2.

Howard and Vala also generalized the qubit T-gate
gadget to qudits for their magic state construction [22].
We reproduce their gadget here in the interest of making
the paper self contained.

In order to project a qudit state onto the eigenstate of
operator P with eigenvalue ωk, the projection operator
can be written as:

Π(P |k) =
1

d
(I + ω−kP + ω−2kP 2 + ...+ ω−(d−1)kP d−1)

(D1)
By analogy with the qubit case, we need a gadget that

allows us to implement qudit Uv gate by injecting magic
states. It’s straightforward to check that the following
performs this task:

CSUM−1 ·Π(0,0|1,d−1)[0](|ψ〉 |ψUv 〉) = Uv |ψ〉 |0〉 (D2)

for a given arbitrary state |ψ〉, where |ψUv 〉 = Uv |+〉 is
the magic state and Π is a rank-p projector defined by

Π(0,0|1,d−1)[0] =
1

d
[I+Z⊗Z−1+...+(Z⊗Z−1)d−1] (D3)

Figure 2. Gadget for qudit Uv gate.

This projection is equivalent to measuring the Z⊗Z−1

observable to get eigenvalue 1. If we get eigenvalue ωk,
we perform a X−k on the first qudit state to recover it
back to the 1-eigenspace. In fact, this gadget works for
implementing any diagonal gate U by injecting the state
U |+〉.

Appendix E: Magnitude and phase of magic state
inner product with orbit representatives of

nonorthogonal decompositions

Here we compute equation 12. We begin with d = 3.
In this case we need only tabulate the inner product for
three values of p:

〈+|Z−p |M3〉 = 〈+|Z−pM3 |+〉

=
1

d
Tr(Z−pM3)

=
1

d

(
e2πi/9 + e−2πip/3 + e2πi/3(2p− 1

3 )
)
.

(E1)

Giving:

〈+|Z0 |M3〉 =
1

3

(
1 + 2 cos

(
2π

9

))
〈+|Z−1 |M3〉 =

1

3
e
iπ
3

(
2 cos

(π
9

)
− 1
)

〈+|Z−2 |M3〉 =
1

3
e

2iπ
3

(
1 + 2 cos

(
4π

9

))
.

(E2)

The largest magnitude overlap is obtained for p = 0.
Now we consider general prime d > 3. Given the ex-

pression for Md we can write:

〈+|Z−p |Md〉 =
ω

1
d (d+1

4 )

d

d−1∑
j=0

ωφ(j) (E3)

where φ(j) is a cubic in j given by:

φ(j) =

(
j

3

)
− j

d

(
d

3

)
− pj. (E4)

The evaluation of cubic gauss sums is not as straight-
forward as for quadratic gauss sums. However, we can
obtain a closed form for the phase of the sum, up to a
sign, by depressing the cubic to remove the quadratic
term. In this case this is particularly simple:

φ′(j) = φ(j + 1)

=

(
j + 1

3

)
− j + 1

d

(
d

3

)
− pj − p

= 6̄j
(
j2 − 1− (d− 1)(d− 2)− 6p

)
− 1

d

(
d

3

)
− p

= 6̄j
(
j2 − ψ(d, p)

)
− 1

d

(
d

3

)
− p,

(E5)

where:

ψ(d, p) = d2 − 3d+ 3 + 6p. (E6)

Then:

〈+|Z−p |Md〉 =
ω

1
d (d+1

4 )− 1
d (d3)−p

d

d−1∑
j=0

ω6̄j(j2−ψ(d,p))

(E7)
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The magnitude of this expression can be determined
from the sum, which is real:

S =
1

d

d−1∑
j=0

ω6̄j(j2−ψ(d,p))

=
1

d
+

1

d

(d−1)/2∑
j=1

ω6̄j(j2−ψ(d,p)) +
1

d

d−1∑
j=(d+1)/2

ω6̄j(j2−ψ(d,p))

=
1

d
+

1

d

(d−1)/2∑
j=1

(
ω6̄j(j2−ψ(d,p)) + ω6̄(d−j)((d−j)2−ψ(d,p))

)

=
1

d
+

1

d

(d−1)/2∑
j=1

(
ω6̄j(j2−ψ(d,p)) + ω−6̄j(j2−ψ(d,p))

)

=
1

d
+

2

d

(d−1)/2∑
j=1

cos
2π

d
6̄j
(
j2 − ψ(d, p)

)
(E8)

While this shows that the sum is real, it does not guar-
antee that it is positive, and hence the phase of the inner
product, up to a sign, is given by:

ω
1
d (d+1

4 )− 1
d (d3)−p = ω

1
d (d4)−p. (E9)

Appendix F: Canonical forms for Qudit stabilizer
states and inner product algorithm

A qubit stabilizer state can be written as the following
canonical form [12, 31]:

|ψ〉 = 2−m/2
∑
x∈A

(−1)q(x)il(x) |x〉 , (F1)

where l(x) is a linear form and q(x) takes the quadratic
form q(x) =

∑
i 6=j qijxixj + cixi. qijs, cis are con-

stants in Z2. A is an affine space defined as A =
{Gu+ h|u ∈ Z2

m, h ∈ Z2
n}, with G being a n×m matrix

with entries in Z2.
To prove this canonical form holds true for all qubit

stabilizer states, one only need to make sure that every
state in this form is the eigenstate of a stabilizer operator,
as shown in [12]. It also suffices to verify that any of the
{H,P,CNOT} gates preserves the form, only changing
the coefficients of q(x), l(x) and affine space A. This
proof is given in [31].

The normal form was generalized to arbitrary dimen-
sions in [19]. The stabilizer canonical form for qudits
is:

|ψ〉 ∝
∑
u∈Zkd

ωqd(u)+qn(u) |Gu+ h〉 . (F2)

where qn(u) =
∑
i 6=j qijuiuj , qd(u) =

∑k
i=1 qi

ui(ui−1)
2 +

liui, qij , qi, li ∈ Zd. The state has support in an k-
dimensional affine space

~x = Gu+h = span(g1, ...gk)⊕h = u1g
1⊕u2g

2...⊕ukgk⊕h.
(F3)

G is an n × k matrix and has each of its columns be-
ing g1, ..., gk with binary entries, while h is a n × 1 vec-
tor that has entries in Zd. The division of the phase
into two quadratic terms reflects the action of the phase
and Hadamard gates, respectively. States of this form
were shown to be the +1 eigenstate of some Pauli (Weyl-
Heisenberg) operator in [19].

This quadratic form on the exponent can also be rep-
resented in matrix form:

qd(u) + qn(u) = 2−1uTQu+ Lu. (F4)

where 2−1 is taken modulo d. Here Q is a k × k matrix
with its diagonal terms being qi and off-diagonal terms
being qij and L is a 1×n matrix where each term corre-
sponds to li − qi.

We will give a new proof that this form is preserved un-
der Clifford operations using the properties of quadratic
Gauss sums. We give this proof in order to develop the
techniques we will use in the inner product algorithm for
qudit stabilizer states.

We consider the single qudit case first. We will prove
that the form:

1√
d

∑
j∈Zmd

ωf
(j−1)j

2 +gj |j + y〉 , (F5)

is preserved under the action of the single-qudit Clifford
generators where f and g belong to Zd, y is a shift vector
that also belongs to Zd. We are studying single-qudit
case here so m is either 0 or 1. When m = 0, this is
simply a computational basis state.

Acting with diagonal Clifford gates on (F5) such as
P or Z will only change the coefficients f and g in this
expression. Similarly, acting with powers of the X gate
will only shift y, again preserving the quadratic form of
the exponents.

It only remains to check the Hadamard gate:

H
1√
d

∑
j∈Zmd

ω
fj(j−1)

2 +gj |j + y〉

=
1

d

∑
k

ωyk
( ∑
j∈Zmd

ω
fj(j−1)

2 +(k+g)j

)
|k〉

(F6)

If m = 0, the quantity in the parentheses is simply a
phase factor without the sum. Then this form reverts to
(F5) with f = 0 mod d. If m = 1, we recognize the
quantity in the parentheses as a Gauss sum. There are
again two cases. If f = 0 mod d, then we have∑

j∈Zd

ω(k+g)j = dδk+g,0 (F7)

Then (F6) reverts to (F5) as m = 0 case, i.e., a compu-
tational basis state.

If f 6= 0 mod d, to compute this Gauss sum, we first
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complete the square:∑
j

ω
fj(j−1)

2 +(k+g)j =
∑
j

ω
f
2 (j2−j+2(k+g)jf̄)

= ω−2̄f(f̄(k+g)−2̄)2 ∑
j

ω2̄f(j−2̄+(k+g)f̄)2

= ω−2̄f(f̄(k+g)−2̄)2 ∑
n

e2πi2̄fn2/d

(F8)

where 2̄, f̄ meaning that 22̄ ≡ 1 mod d and ff̄ ≡ 1 mod d.
The value of this Gauss sum is well known:∑

n

e2πi2̄fn2/d =

{
( 2̄f
d )
√
d, d ≡ 1(mod 4)

i( 2̄f
d )
√
d, d ≡ 3(mod 4),

(F9)

where ( 2̄f
d ) is the Legendre symbol.

Hence:∑
j

ω
fj(j−1)

2 +(k+g)j ∝ ω
−f̄k(k−1)

2 −2̄((2g+1)f̄−1)k (F10)

The new coefficients −f̄ and −2̄((2g + 1)f̄ − 1) here
are still in Zd. This means that the general form∑
k ω

f
(k−1)k

2 +gk |k〉 of single-qudit stabilizer states is pre-
served under the action of any Clifford operations.

For multi-qudit states, we have the same affine space
property as the qubit case except that the additions are
modulo d. Before we give the proof, we need to show that
quadratic form given in terms of the basis vectors of the
affine space ~u and the qudit vectors itself ~x are equivalent.
Changing the arguments only changes the coefficients of
the quadratic form. Given eq.(F4), we further assume

the quadratic and linear matrices in terms of x being Q̃
and L̃:

ωx
T Q̃x+L̃x = ω(uTGT+hT )Q̃(Gu+h)+L̃(Gu+h)

∝ ωu
TGT Q̃Gu+(2hT Q̃G+L̃G)u

(F11)

From this equation, we can see the relationship between
Q, L and Q̃, L̃: Q = GT Q̃G, and L = 2hT Q̃G+ L̃G.

Now we use Van den Nest’s method [31] to prove that
the canonical form (F2) is preserved under the action of
CSUM , P and H. The CSUMi→j gate shifts the affine
space by mapping |a〉 |b〉 to |a〉 |a⊕ b〉, without changing
the phases. As in the qubit case, we only need to add
the ith column of the matrix G to the jth column:

CSUM
∑
u∈Zmd

ωqd(u)+qn(u) |Gu+ h〉

=
∑
u∈Zmd

ωqd(u)+qn(u) |G′u+ h〉 .
(F12)

G′ differs from G by gj → gi ⊕ gj .
Acting with P on qudit i results in the state:

Pi |ψ〉 ∝
∑
x∈A

ωqn(x)+qd(x)ω
xi(xi−1)

2 |x〉 (F13)

which again leaves the canonical form unchanged.
The Hadamard gate requires some work. Without loss

of generality, we assume that H acts on the first qudit:

H1 |ψ〉 ∝
d−1∑
v=0

∑
u

ωqn(u)+qd(u)+v(ḡ1u+h1)
∣∣v, Ḡu+ h̄

〉
(F14)

where g̃1
T is the first row of G and Ḡ is the rest of it.

If Ḡ is still full rank after taking out g̃1
T , we obtain the

new G′ to be: (
1 ~0T

~0 Ḡ

)
(F15)

Therefore we havem+1 basis vectors now, and v becomes
the new u1. The term v(ḡ1u + t1) in the phase can be
absorbed in the quadratic form qn(u). So this is of the
canonical form (F2).

If Ḡ is rank m − 1 after taking out g̃1
T , then the

columns of Ḡ are not linearly independent. In this case
one of the uis is redundant and we want it to be summed
out in order to get back to the canonical form. With-
out loss of generality, let’s assume that u1 =

∑m
i=2 riḡi,

therefore Ḡu + h̄ =
∑m
i=2(ui + ri)ḡi + h̄. If we denote

u′i ≡ ui + ri for i = 2 to m (ū) and u′1 ≡ v, qn(ū) and
qd(ū) can be written in terms of ū′ with different coef-
ficients from qn and qd, say q′n(ū′) and q′d(ū

′), together
with some constant factor which can be neglected. Then
eq.(F14) becomes:

H1 |ψ〉 ∝
d−1∑
v=0

∑
u

ωqn(u)+qd(u)+v(g̃1
Tu+h1)

∣∣v, Ḡu+ h̄
〉

∝
d−1∑
v=0

∑
u′2,...u

′
m

∑
u1

ωqn(u)+qd(u)+v(g̃1
Tu+h1)

∣∣∣∣∣v,
m∑
i=2

u′iḡi + h̄

〉

=
∑

u′1,u
′
2,...u

′
m

ωq
′
n(ū′)+q′d(ū′)+u′1(

∑m
i=2 g1i(u

′
i−ri)+h̄1)

(∑
u1

ωqn(u1)+qd(u1)+vg11u1

) ∣∣∣∣∣v,
m∑
i=2

u′iḡi + h̄

〉
(F16)

Here the parenthesis contains the Gauss sum we com-
puted earlier. Then we can drop the prime for the us and
absorb the result of the Gauss sum and u′1(

∑m
i=2 g1i(u

′
i−

ri) + h̄1) into the q′n and q′d functions. Finally we arrive
at the same form but with different coefficients. Hence,
the canonical form is preserved under the action of all
Clifford gates.

We now use this canonical form and the Gauss sum
techniques to provide an O(n3) algorithm for the compu-
tation of the inner products of two qudit stabilizer states.

1. The inner product of two qudit stabilizer states

The inner product between two qubit stabilizer states
can be computed efficiently inO(n3) ([1, 8, 10, 15]). How-
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ever, a corresponding algorithm for qudits has not yet
been given, although most aspects of the theory of sta-
bilizer states have been generalized [16, 19]. We will
now describe a O(n3) algorithm that computes the inner
product of two qudit stabilizer states based on the Gauss
sum techniques we discussed in the previous section.

As discussed above, the quadratic form in terms of the
basis vector of the affine space ~u and the qudit vector
itself ~x are equivalent. Therefore eq. (F2) is equivalent
to the following:

|ψ〉 ∝
∑
x∈A

ωq̃n(x)+q̃d(x) |x〉 (F17)

where A is the affine space defined by Gu+h in eq.(F3).
Assume we have two qudit stabilizer states |ψ1〉 and

|ψ2〉, which take the above form (F17) with subindices 1
and 2:

〈ψ2|ψ1〉 = d−(k1+k2)/2
∑
x1∈A1

∑
x2∈A2

ωq̃1(x1)−q̃2(x2) 〈x2|x1〉

= d−(k1+k2)/2
∑

x∈A1∩A2

ωq̃1(x)−q̃2(x)

= d−(k1+k2)/2
∑

x∈A1∩A2

ωq̃(x)

= d−(k1+k2)/2
∑
u∈Fkd

ωq(u)

(F18)

where q̃1 = ˜q1d + ˜q1n, q̃2 = ˜q2d + ˜q2n, q̃ = q̃1− q̃2, k is the
dimension of A1 ∩A2 and q is the quadratic form in the
new basis of A1 ∩ A2. The new basis of the affine space
A1 ∩ A2, as well as the new quadratic form associated
with it, can be calculated with the same method used by
Bravyi and Gosset in Appendix B, C for qubits [8], with
cost O(n3).

What remains in eq.(F18) is a Gauss sum, which we
again rewrite in the following form:∑

u∈Fkd

ωu
TQu+Lu (F19)

where the exponent is given by eq. (F4). We can diago-
nalize Q and factor this sum into a product of k Gauss
sums over Fd. We obtain a transformation matrix P that
gives:

PTQP = Λ, (F20)

where Λ is the diagonal matrix with entries (λ1, ..., λk).
Then if we further define u = Pu′, we obtain∑
u∈Fkd

ωu
TQu+Lu =

∑
u′∈Fkd

ωu
′TPTQPu′+LPu′

=
∑
u′∈Fkd

ωu
′TΛu′+LPu′

=

k∏
i=1

∑
ui∈Fd

ωλiu
′2
i +l′iu

′
i ,

(F21)

where l′i =
∑
j pjilj . This is a product of k Gauss sums,

as given in eq. (F8, F9, F10).
Each Gauss sum only takes O(1) time, so the prod-

uct of k of them takes time O(k). The scaling of this
algorithm is determined by the complexity of Gaussian
elimination, O(k3) because Q has rank k. Therefore, to-
gether with the first step to obtain A1∩A2, the algorithm
takes O(n3) time overall in the worst case.

Appendix G: Evaluation of Z(L)

The quantity Z)(L) is given by eq. (16):

Z(L) =
∑
x∈L

〈
0̃t
∣∣C~x ∣∣0̃t〉

=
∑
x∈L

t∏
l=1

〈
0̃
∣∣Cxl ∣∣0̃〉

=
∑
x∈L

t∏
l=1

〈
0̃
∣∣x̃l〉

(G1)

We can see that this quantity is a function of the values〈
0̃
∣∣1̃〉,...,〈0̃

∣∣∣ ˜d− 1
〉

. We label the phase of
〈
0̃
∣∣j̃〉 by βj

for all j, where β0 = 1. Using eqn. (10) Z(L) can be
rewritten in the following form:

Z(L) =
∑
x∈L

t∏
l=1

〈
0̃
∣∣x̃l〉

=
∑
x∈L

t∏
l=1

βxl

√
1 + (d− 1)δ0,xl

d

=
∑
x∈L

Πt
l=1βxl

d(t−|x|)/2

=
∑
x∈L

Πd−1
j=1β

|x|j
j

d(t−|x|)/2

(G2)

where |x| is the Hamming weight of codeword x in code
L, i.e. the number of nonzero elements in the codeword.
|x|j means the number of digits in string x that equals
to j. If we regard L as a linear code, then the qubit case
Z(L) is exactly the weight enumerator of the code. In
the qudit case, Z(L) depends on the Hamming weight as
well as the βjs. Now let’s calculate an explicit expression
for the βjs.

For the d = 3 case, we specifically obtain β1 = eπi/18

and β2 = e−πi/18. For d > 3 case, we assume our initial
stabilizer state

∣∣0̃〉 = Zp |+〉. And

βj =
√
d
〈
0̃
∣∣j̃〉 =

√
d
〈
0̃
∣∣Cj ∣∣0̃〉 (G3)

where the C for Campbell’s choice of |Md〉 is simply

ω−3̄XP according to eq.(3) and subsection C of section
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IV. We can calculate (XP )j as

(XP )j =
∑
k

ω
∑j−1
l=0 (k+l

2 ) |k + j〉 〈k|

= ω6̄(j3−3j2+2j)
∑
k

ω2̄(jk2+(j2−2j)k) |k + j〉 〈k| .

(G4)

Therefore we can rewrite Cj as

Cj = ω−3̄j(XP )j

= ω6̄(j3−3j2)
∑
k

ω2̄(jk2+(j2−2j)k) |k + j〉 〈k| . (G5)

Then we can calculate βj as

βj =
√
d 〈+|Z−aCjZa |+〉

=
ω6̄(j3−3j2)

√
d

〈k′′|
∑
k′′

ω−pk
′′∑

k

ω2̄(jk2+(j2−2j)k) |k + j〉

〈k|
∑
k′

ωpk
′
|k′〉

=
ω6̄(j3−3j2−6pj)

√
d

∑
k

ω2̄(jk2+(j2−2j)k)

(G6)

This is a quadratic Gauss sum times a phase. Using
eq.(F8) and (F9) for f = j and k + g = 2̄(j2 − j), we
obtain:

∑
k

ω2̄(jk2+(j2−2j)k) =

{
ω−2̄3j(j−2)2

( 2j
d )

ω−2̄3j(j−2)2

i( 2j
d ).

(G7)

The final expression of βj in terms of p is:

βj =

{
ω6̄j3−2̄j2−pjω−2̄3j(j−2)2

( 2j
d )

ω6̄j3−2̄j2−pjω−2̄3j(j−2)2

i( 2j
d )

=

{
ω(6̄−2̄3)j3−(p+2̄)j( 2j

d ), d ≡ 1(mod 4)

ω(6̄−2̄3)j3−(p+2̄)ji( 2j
d ), d ≡ 3(mod 4)

(G8)

where again ( 2̄j
d ) is the Legendre symbol.


