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Dark and grey soliton-like states are shown to emerge from numerically constructed superpositions of
translationally-invariant eigenstates of the interacting Bose gas in a toroidal trap. The exact quantum many-
body dynamics reveals a density depression with ballistic spreading that is absent in classical solitons. A simple
theory based on finite-size bound states of holes with quantum-mechanical center-of-mass motion quantitatively
explains the time-evolution and predicts quantum effects that could be observed in ultra-cold gas experiments.
The soliton phase step is found relevant for explaining finite size effects in numerical simulations. An invariant
fundamental soliton width is shown to deviate from the Gross-Pitaevskii predictions in the interacting regime
and vanishes in the Tonks-Girardeau limit.

I. INTRODUCTION

Dark solitons [1] are ubiquitous features of superfluids and
have been observed frequently in ultra-cold atomic gas ex-
periments [2–9]. The characteristic localised density depres-
sion is stabilised by the competing effects of hydrostatic pres-
sure and the stiffness of the superfluid phase. While exper-
iments to date could be well explained by classical theory,
there has been much debate about quantum effects [9–12].
Quantum features of dark solitons are expected to be par-
ticularly relevant under reduced dimensionality, where quan-
tum fluctuations destroy long-range coherence of the super-
fluid phase. While theoretical works on the one-dimensional
Bose gas have predicted effects like greying of the dark soliton
[11–15], and have pointed to a connection of dark solitons to
quantum-many-body eigenstates of the Bethe-ansatz solvable
Lieb-Liniger model [10, 16–24], the full picture connecting
the physical effects with the exact eigenstates is still missing.

Specifically, Ref. [17] showed that the dispersion rela-
tion of yrast states (eigenstates with lowest energy at given
momentum) in the Lieb-Liniger model asymptotically ap-
proaches that of dark solitons in the Gross-Pitaveskii (GP) or
classical nonlinear Schrödinger equation in the high-density
limit. However, in contrast to the translationally-invariant
yrast states of constant particle density, classical dark soli-
tons have a localised density dip that propagates with constant
velocity. On the other hand, numerical simulations of single-
shot measurements of particle position in the yrast states show
localised voids appearing at random positions [22, 25]. Super-
positions of yrast states were further shown to exhibit trans-
lational symmetry breaking under weak interactions [19, 20],
and localised density depressions at finite interactions that de-
cay during time evolution [23, 24]. However, control over
soliton parameters, the classical limit, or quantitative under-
standing of beyond mean-field effects were not achieved.

The situation is better understood for bright solitons, where
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quantum effects were observed in optics experiments [26, 27]
and a full quantum theory was developed by constructing
quantum soliton states as superpositions of translationally in-
variant eigenstates of an interacting boson model [28–31].

In this work we bridge the gap in the quantum theory of
dark solitons by constructing quantum many-body states that
most-closely resemble classical dark solitons from superpo-
sitions of yrast eigenstates, and quantifying their properties.
We simulate the full quantum dynamics making use of exact
solutions from the Bethe ansatz. While the behavior of clas-
sical dark solitons is recovered in the high density limit, we
observe ballistic spreading in the crossover to the low-density,
strongly-correlated limit, known as the Tonks-Girardeau gas.
Modeling the quantum dark soliton as a finite-size quantum
mechanical quasiparticle (inspired by Ref. [32]), we identify
the velocity, a soliton mass, and a fundamental soliton width
as characteristic parameters for the dynamics of the simulated
density depletion. These parameters can be obtained from the
yrast dispersion relation with finite size corrections, attaining
excellent agreement with the numerical simulations. The par-
ticle number depletion and a quantity interpreted as the soliton
phase step play important roles in the finite size corrections
and can also be computed from the dispersion relation.

II. YRAST STATES IN THE LIEB-LINIGER MODEL

We model a gas of N bosonic atoms with mass m in a
tightly-confining toroidal trap of circumferenceL by the Lieb-
Liniger model [33, 34] with repulsive interactions c > 0 [35]

Ĥ = − ~2

2m

N∑
i=1

∂2

∂x2i
+

~2c
m

∑
i<j

δ(xi − xj). (1)

The eigenstates ofH can be constructed with the Bethe ansatz
from the set of N rapidities {kj}, which in turn is fully deter-
mined byN quantum numbers Ij through the Bethe equations

kj +
1

L

∑
l

2 arctan
kj − kl
c

=
2π

L
Ij , (2)

where the Ij(+ 1
2 ) take integer values for odd (even) N [36].

While the momentum P = ~
∑

j kj = 2π~/L
∑

j Ij is al-
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ready determined by the quantum numbers Ij , the energyE =
~2/2m

∑
j k

2
j depends on the interaction strength through the

rapidities. Of particular relevance are yrast states denoted by
|P, yr〉, which are the eigenstates of lowest energy EN

P for
given P and N . They are found from otherwise contiguous
sets of Ij with a gap of up to one quantum number.

III. QUANTUM DARK SOLITONS

We construct initial states as Gaussian superpositions of
yrast eigenstates centered around P0 with width ∆P :

|P0〉 =
∑
q

CP0
q |q, yr〉, (3)

CP0
q =Ae−

(q−P0)2

4∆P2 +i
qX0
~ , (4)

where X0 is a displacement. The time evolution is given
by |P0(t)〉 = exp(−iĤt/~)|P0〉. As the main observ-
able, we construct the single-particle density n(x, t) =
〈P0(t)|ρ̂(x)|P0(t)〉 as

n(x, t) =
∑
p,q

CP0∗
q CP0

p 〈q, yr|ρ̂(0)|p, yr〉

× exp[i(p− q)x/~− i(Ep − Eq)t/~], (5)

where the density form factor 〈q, yr|ρ̂(0)|p, yr〉 is calculated
from the rapidities {kj} using formulas derived from the al-
gebraic Bethe ansatz [23, 37–40]. Density profiles of equal-
weight superpositions over all yrast states were previously
shown to produce localised but rapidly dispersing depressions
translating at different velocities from those of fitted GP dark
soliton profiles [23, 24].
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FIG. 1. Time evolution of the quantum dark soliton (3) constructed as
a superposition of yrast eigenstates of the Lieb-Liniger model with
N = 100 particles at the intermediate interaction strength γ = 1,
where γ = c/n0 and n0 = N/L. The superposition is prepared
with ∆P = 0.11π~n0 and P0 = 0.64π~n0. The solid line tracks
the minimum of the dip and the dashed lines on either side of it are
displaced by half of the soliton’s width, i.e. by±∆X/2 [see Eq. (6)].

Figure 1 shows the time evolution of the density profile with
initial state (3). Numerical simulations with varying parame-
ters consistently show a smooth and localised density dip that
propagates at constant velocity vs withX(t) = X0−vstwhile
the width ∆X increases over time. Here,X ≡ xmeasures the
position, and the variance

∆X2 = x2 − x2 (6)

the width. The average A =
∫
Añ dx/Nd is evaluated with

respect to the density deviation ñ = n(x) − nbg from the
constant background nbg, where Nd =

∫
ñ dx is the particle

number depletion. In our time-dependent simulations, Nd re-
mains approximately constant over time. Motion at constant
velocity and Nd with expanding width (i.e. “greying of the
dark soliton”) are exactly as expected for quantum dark soli-
tons [11, 13, 14, 41, 42].

IV. THEORY OF QUANTUM DARK SOLITONS

We aim to formulate a quantitative theory of the observed
propagation at constant velocity vs and the spreading of the
soliton width. In analogy to the case of bright quantum soli-
tons [29, 30], which consist of finite-size bound states of
bosons with a quantum mechanical center-of-mass motion,
we assume that the variance of the solitonic dip in the single-
particle density of a Gaussian superposition state, ∆X2, can
be decomposed as

∆X2(t) = σfs
2 + σ2

CoM(t), (7)

where σfs2 is the variance of the fundamental soliton, which is
constant in time and independent of the superposition param-
eters ∆P and X0 [43]. The center-of-mass variance σ2

CoM(t)
follows the time evolution of a Gaussian wave-packet in the
single-particle Schrödinger equation, given by

σ2
CoM(t) = σ2

0

[
1 +

(
~t

2Mσ2
0

)2
]
, (8)

where

σ2
0 =

~2

4∆P 2
(9)

is the initial variance of the Gaussian wave-packet density in
real space and M is a mass parameter. The quadratic-in-time
growth of the variance is characteristic of ballistic motion and
is faster than diffusion [44]. The same effect is expected for
bright solitons [29–31].

The three constant parameters – the soliton velocity vs, fun-
damental width σfs, and mass M – completely characterise
the motion of the first and second moment of the quantum
dark soliton according to Eqs. (7) – (9). We have performed
extensive quantum simulations of the density profile with Eq.
(5) and found excellent agreement with this model for a wide
range of parameters, as shown in Fig. 2 (as long as L� ∆X
and ∆P � π~n0). Interpreting quantum dark solitons as
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quasi-particles in Landau’s sense [32], it is not surprising that
the soliton velocity observed in simulations agrees with the
group velocity dE/dP and the mass parameter M with the
inertial mass (d2E/dP 2)−1 of the yrast dispersion relation.
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FIG. 2. Width ∆X of the density depression from simulations (sym-
bols) compared with fits of Eq. (7) (lines). (a) Ballistic growth of
∆X in time for γ = 1 with σfs and M fitted. (b) Initial variance
∆X2 at t = 0 vs. ∆P−2 used for extracting σfs

2 as the intercept.
Interaction strengths γ = 0.1, 1, 10 are shown by red dashed, blue
continuous and black dotted lines, respectively. Panels (c), (d), (e)
show linear fits of ∆X2 vs. t2 used to extract M for γ = 0.1, 1, 10,
respectively, with ∆P = 0.045π~n0. All panels used P0 = π~n0

and N = 100. The expected quadratic dependence of the variance
on 1/∆P and t is evident in all parameter regimes.

V. YRAST DISPERSION RELATION

The yrast excitation energy EN
P − EN

0 becomes a contin-
uous function E∞s (P ) of momentum in the thermodynamic
limit where N,L → ∞ while n0 = N/L remains constant.
The continuous dispersion relation can be obtained by solving
Fredholm integral equations [34] and is useful for obtaining
various relevant properties for the quasiparticle description
as derivatives, e.g. the quasiparticle velocity vs = dE∞s /dP
and inertial mass m−1I = d2E∞s /dP 2, pertaining to an infi-
nite system. In order to obtain quantitative agreement with
our numerical simulations, finite-size corrections need to be
applied. The leading 1/L correction terms is found from a
conceptually-simple argument assuming that yrast states are
associated with (soliton-like) quasiparticles with two features,
in particular: (a) A particle number depletion Nd arising from
a density dip that is localised on a scale that is small com-
pared to the box size L, which leads to an elevated back-
ground density nbg = n0 − Nd/L > n0, and (b) a nominal
“phase step” ∆φ that leads to a backflow current with veloc-
ity vcf = ~∆φ/mL. This background current corresponds
to a linear phase gradient that connects the phase step at the
soliton across the periodic boundary conditions. The soliton
moving on the background experiences a Galilean boost. The
finite system dispersion relation to leading order O(L−1) is

then obtained from

EN
P − EN

0 ≈ EN
s (P ) ≡

E∞s (P ) + Psvcf +
1

2
Nmv2cf −

N2
d

2L

dµ

dn0
, (10)

where Ps = Ndmvs is the physical momentum of the mov-
ing density depletion and the last term is a correction of the
ground state energy due to the localised particle depletion ob-
tained from a Taylor expansion of the equation of state. All
quantities on the right hand side of Eq. (10) are evaluated in
the thermodynamic limit at the background density nbg.
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FIG. 3. (a) Dispersion relation of yrast states of the Lieb-Liniger
model. Symbols show the excitation energies EN

P − EN
0 for N =

100 vs. momentum. Thick lines show the approximate formulae for
the finite system (10) and thin lines show the dispersion relations
E∞s (P ) in the thermodynamic limit [34] for comparison. The inter-
action strengths are γ = 0.1 (dashed red line & red circles), γ = 1
(full blue line & blue circles), and γ = 10 (dash-dotted black line
& black circles); the same colour code is used in the bottom panels.
Bottom panels: particle number depletion (c) and phase step (d) with
finite size corrections for N = 100.

The Galilean boost demands that P = Ps +Nmvcf , which
can be used to determine the backflow velocity vcf , and hence
the phase step ∆φ, once the particle number depletion Nd

is known. The latter can be computed from the dispersion
relation as [45, 46]

Nd = −
(

1− v2s
v2c

)−1(
∂E∞s
∂µ

+
vsP

mv2c

)
, (11)

where the derivative has to be taken at constant P and c, vc
is the speed of sound defined by mv2c = n0 dµ/dn0, and
µ = lim

N→∞
dEN

0 /dN is the chemical potential of the ground

state. Equation (11) was derived under similar assumptions
to (a) and (b). For GP dark solitons in an infinite box the as-
sumptions hold and Eq. (11) becomes exact. The dispersion
relation is show in Fig. 3 (a). Both Nd and ∆φ are shown in
the bottom panels of Fig. 3. Finite size corrections to these
quantities simply amount to solving the thermodynamic limit
Bethe ansatz equations and evaluating Nd and ∆φ at the ele-
vated background density nbg.

Even though the assumptions of a localised density dip
(a) and a phase step responsible for a superfluid current (b)
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are not obviously satisfied for type-II Lieb-Liniger states, we
find that, as for GP dark solitons, the continuous approxi-
mation of the dispersion relation is excellent in all interac-
tion regimes as long as σfs � L [47] (see Fig. 3). In the
Tonks-Girardeau limit of γ → ∞ the approximation (10)
becomes exact with Nd = −1, ∆φ = π and EN

s (P ) =
[−P 2 + 2PpF(1 + N−1)]/2m, where pF = πn0~ is the
Fermi momentum. This approximation works very well in all
regimes, which implies that the concepts of a phase step and
global backflow current are useful despite the fact that global
phase coherence is not expected due to strong fluctuations in
1D leading to algebraic off-diagonal long-range order.
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FIG. 4. Length scales of the quantum dark soliton. (a) Fundamental
soliton width σfs and minimum center-of-mass wave-packet width
σ0,min ≈ 0.8n−1

0 vs. coupling strength γ = c/n0 for P0 = π~n0.
Limiting analytical approximations: σfs/ξ → π/

√
6 from GP the-

ory for γ � 1 and Eq. (12) for γ � 1 (black dashed lines). Ma-
genta dashed lines: σ0,min/ξ with ξ ∼ 1/(n0

√
2γ) for γ � 1

and ξ ∼ n−1
0 π−1(1 + 8/3γ) for γ � 1. (b) Numerical data for

σfs
2 (multiplied by c2N2

d ) vs. the particle number depletionNd from
Eq. (11) (with finite size corrections). Data from different momenta
and coupling strengths collapse onto the same curve and deviate from
the result σ2

GP (dashed line) for the classical dark soliton only near
the Tonks-Girardeau limit where Nd → −1. The width σfs was
extracted from simulation data with N = 100.

VI. LENGTH SCALES

In contrast to a classical soliton, which propagates with
constant shape, the density profile of the quantum dark soli-
ton changes in time. According to Eqs. (7) & (8) the strongest
localization occurs at t = 0 and is determined by the funda-
mental soliton width σfs together with the length scale of the
Gaussian wave packet σ0. The choice of the latter is limited
by the requirement of ∆P fitting in to the fundamental mo-
mentum interval [0, 2π~n0]. We estimate the minimal value
σ0,min conservatively from Eq. (9) with ∆P . π~n0/5. Fig-
ure 4 (a) shows the two length scales σfs and σ0,min crossing

over at intermediate interactions, with the size of the quantum
dark soliton limited by the larger length scale.

The fundamental soliton width σfs is an interesting non-
trivial quantity that we extract from numerical simulations
by fitting [see Fig. 2 (b)]. For small γ our data agree very
well with the dark soliton width computed from the GP equa-
tion according to Eq. (6), σGP = πξ/

√
6(1− v2s /v2c ), where

ξ = ~/
√

2mµ, while for large γ the fundamental soliton
width σfs/ξ tends to zero. Close inspection reveals that

σfs/ξ ≈ 2/
√
γ for γ � 1 (12)

fits the numerical data very well [see Fig. 4 (a)]. The vanish-
ing of σfs demonstrates that the fundamental soliton changes
from a macroscopic object in the Bogoliubov regime, where
it coincides with the GP dark soliton, to a single-particle hole
without an intrinsic length scale in the Tonks-Girardeau limit.

It is tempting to interpret the quantum dark soliton as a
bound state of |Nd| holes (a fractional number) in analogy to
quantum bright solitons, which are bound states of N bosons
[29], where the fundamental soliton width is a length scale
of the multi-particle bound state [30]. Indeed, the length
scale σGP for the GP dark soliton can be re-expressed as
σGP = π/(

√
3c|NGP

d |), where the velocity-dependence is
fully subsumed in the particle number depletion NGP

d . Plot-
ting numerical data for σfs vs. Nd in Fig. 4 demonstrates that
data taken at different interaction strengths γ = c/n0 and mo-
menta P0 falls onto a single curve within numerical accuracy,
which means that σfs also appears to depend directly only on
Nd and c. Significant deviations from the GP formula are
observed only close to Nd = −1, which corresponds to the
strongly correlated Tonks-Girardeau limit.

Interpreting the quantum soliton as a bound state of holes
with quantum-mechanical center-of-mass motion is consistent
with lattice simulations at small γ [15]. These showed that
imprinted dark solitons display an innate soliton profile with
constant length scale in single-shot images, while the single-
particle density displays a spreading and weakening depres-
sion over time due to a growing uncertainty over the soliton
position. Our results quantify these effects and suggest that
the same physical picture is relevant far into the strongly cor-
related regime.

Classical solitons emerge in our theory in the Bogoliubov
limit γ → 0, where σfs → πξ/

√
6 = π/

√
12γn0 and M →

2mNd → −4m
√

1− v2s /v2c/
√
γ become macroscopic. Con-

structing a wave packet with ε ≡ ∆P/2πn0~ � 1, we find
that the initial soliton can be well localised (σ0 � σfs) when
ε2 � 3γ/4π4 and remains so (σ2

CoM − σ2
0 � σfs

2) for a time
t �

√
1− v2s /v2cm/(

√
6γε~n20). We have further verified

that numerical density profiles at γ = 0.01 are nearly indis-
tinguishable from GP solitons at the same momentum P0.

VII. CONCLUSIONS

The yrast states of the Lieb-Liniger model are strongly cor-
related, fragmented [19, 48], and contain relevant informa-
tion about the solitonic dip in high order correlation functions
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[22]. In this situation it may seem remarkable and surpris-
ing that solitonic physics can be extracted from the single-
particle density of superposition states and easily quantified
by the hypothesized equations (7) – (9). On the other hand
it is known from the theory of quantum bright solitons, that
wave-packet superpositions of fragmented and translationally
invariant eigenstates can achieve almost unit condensate frac-
tion [31]. Such states are only weakly correlated and closely
resemble bright solitons of typical ultra-cold gas experiments
(e.g. Ref. [49]). While our computational approach does not
provide access to the condensate fraction, there is nevertheless
good reason to believe that the initial superposition states of
our simulations [Eq. (3)] for small γ are weakly correlated as
well and closely resemble the quantum states prepared in dark
soliton experiments with Bose-Einstein condensates, e.g. in
Refs. [3, 5, 6]. A suitable preparation protocol for quantum
dark solitons is thus to prepare a dark soliton in the small γ
regime, e.g. by standard phase imprinting [2, 3], possibly en-
hanced by density engineering [50], and then ramp the cou-
pling strength γ to the desired value by means of a Feshbach
or confinement-induced resonance [51].

We have prepared the candidate quantum dark soliton of
Eq. (3) as a Gaussian superposition of yrast states, and the
properties of Gaussian wave packets have led us to hypoth-
esise the equations for the width of the density feature (7)
– (9). Given that these equations are well supported by nu-
merical evidence, we may hope that they can eventually be
proven within the framework of the Bethe ansatz, and vali-
dated by experiments. While the Gaussian profile of Eq. (4)
was a somewhat arbitrary choice, it seems reasonable to ex-
pect that Eqs. (7) – (9) are only true for Gaussian profiles, and
that an uncertainty relation of the form

∆P
√

∆X2 − σfs2 ≤
~
2
, (13)

holds for arbitrary superpositions in analogy to the well-

known position–momentum uncertainty for point particles. In
this more general context, ∆X and ∆P represent measurable
quantities while σfs is an intrinsic property of the dominant
yrast state. The Gaussian profile at t = 0 then realises equal-
ity in the relation (13) as a minimum uncertainty wave packet.
The Gaussian superposition thus presents an “optimal quan-
tum dark soliton” by obeying Eqs. (7) – (9). The proper-
ties of quantum states constructed using Bogoliubov theory
in Ref. [11] correspond to optimal quantum dark solitons in
this sense, while the equal-weight superposition of all yrast
states in the interval q ∈ [0, 2πn0~) of Ref. [24] falls outside
of this framework.

The significance of the results presented here goes beyond
the specific exactly-solvable model. The emerging picture of
quasiparticle dynamics of yrast excitations in a strongly cor-
related quantum fluid is so simple and intuitive that we may
expect it to be valid for non-integrable systems as well, e.g. ul-
tracold atoms with dipolar interactions, electrons in quantum
wires, or Josephson vortices in coupled Bose gases [52]. By
simple extension, our framework allows for the study of soli-
ton collisions, the results of which are left for a future publi-
cation.
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