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We compare the continuous and discrete truncated Wigner approximations – TWA and dTWA,
respectively – of various spin models’ dynamics to exact analytical and numerical solutions. We
account for all components of spin-spin correlations on equal footing, facilitated by a recently in-
troduced geometric correlation matrix visualization (CMV) technique. We find that at modestly
short times, the dominant error in both approximations is to substantially suppress spin correlations
along one direction.

I. INTRODUCTION

The dynamics of quantum matter is linked to sev-
eral important phenomena in physics, such as ther-
malization or lack thereof [1], dynamical phase transi-
tions [2, 3], and universality in out-of-equilibrium dy-
namics [4–9]. Understanding these phenomena is chal-
lenging, partly due to the lack of theoretical tools to
accurately simulate them. There is an urgent need for
such tools because recent experiments have made strides
in measuring out-of-equilibrium dynamics; see, for ex-
ample, Refs. [10–24]. Several numerical methods, such
as exact diagonalization [25–28], time-dependent density
matrix renormalization group [29–33], perturbative and
Keldysh techniques [34–39], kinetic theories and phase
space methods [40–43], and numerical linked-cluster ex-
pansions [20, 21, 44–47], have been used to calculate such
dynamics. But all these methods have limitations, rang-
ing from being restricted to small or low dimensional
systems, to being accurate only for weakly interacting,
close-to-equilibrium, or short-time situations.

In this paper, we compare two popular and related
semiclassical approximations for the dynamics of quan-
tum matter, namely the continuous and discrete trun-
cated Wigner approximations, TWA and dTWA respec-
tively [48–51], with each other and with exact analytical
or numerical solutions. These approximations have been
used frequently in recent years to simulate the dynam-
ics of spin models [43, 51–58], which are some of the
most ubiquitous dynamics probed in experiments [10–
24]. The approximations estimate the quantum expec-
tation of observables as the average over classical tra-
jectories of initial phase space points which are sampled
from the Wigner distribution associated with the initial
state. They are simple to implement, and offer accuracy
consistent with being semiclassical expansions [51–53].

Earlier works [51, 52] have argued that dTWA is a su-
perior approximation to calculate the dynamics of spin-
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spin correlations than TWA, based on specific examples
considered. As an example of a case where dTWA is
superior, Fig. 1(a) shows the dynamics of correlations
of neighboring spins in a 1D Ising chain with no trans-
verse field, obtained from the exact solution, dTWA, and
TWA. (The initial conditions and Hamiltonians are de-
scribed in the figure caption, while the dTWA and TWA
calculations will be explained later). For this case, dTWA
exactly captures the dynamics of a specific component of
spin correlations, while TWA is accurate for this compo-
nent only at relatively short times.

However, we must exercise caution when claiming that
one method is superior to another based on examples like
the ones above, especially because there are nine compo-
nents, 〈Ŝµi Ŝνj 〉 − 〈Ŝµi 〉〈Ŝνj 〉 (µ, ν ∈ {x, y, z}), of spin-spin
correlations to assess. In contrast to Fig. 1(a), Fig. 1(b)
shows that even for the same model, dTWA performs sig-
nificantly worse and is qualitatively wrong when we look
at a different component of the correlations and a differ-
ent initial condition (described in the figure caption). It
is often not obvious which correlations – if any – are the
most important, especially in dynamics far from equilib-
rium. Therefore, a more comprehensive comparison of
the two Wigner approximations is necessary.

The key finding in this paper is that both dTWA and
TWA suppress spin correlations along one direction for
a broad class of spin dynamics. We show strong numer-
ical evidence for this, and then rigorously prove this for
short times. We also find that the accuracy of dTWA ver-
sus TWA is more nuanced than simply one being better
than the other. These insights are not readily apparent
from looking at plots of the nine Cartesian components
of spin-spin correlations. We are able to gain insight into
the workings of TWA and dTWA and isolate the nuanced
differences between them by utilizing the correlation ma-
trix visualization (CMV) technique, which was recently
introduced in Ref. [59] building on geometrical visual-
ization techniques in Refs. [60–79]. CMVs encode all
the information contained in spin-spin correlations into
three-dimensional shapes, and allow us to compare all
components of the spin-spin correlations on equal foot-
ing.

This article is organized as follows. In Sec. II, we in-
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FIG. 1. (Color online) Dynamics of one component of the
spin-spin correlations for the 1D Ising model with no trans-
verse field [whose Hamiltonian is Eq. (10)], obtained from the
exact solution (solid black), dTWA (blue circles), and TWA
(red squares). (a) Cyzij for an initial state with all spins along
x, and (b) Cxxij for an initial state with all spins 45◦ between
x and z. Cµνij is defined in Eq. (8). The black and blue curves
overlap in (a).

troduce TWA and dTWA. In Sec. III, we describe the
tools and metrics that we use to analyze the results of
TWA and dTWA. In Sec. IV A, we compare spin-spin
correlation dynamics for the exact solution, dTWA, and
TWA applied to the Ising model with no transverse field.
In Sec. IV B, we compare spin-spin correlation dynam-
ics calculated with these three methods for the nearest-
neighbor 1D transverse Ising and XX models. In Sec. V,
we present a rigorous mathematical argument for one of
the key findings in Sec. IV, that dTWA and TWA al-
ways suppress spin-spin correlations along one direction
at short times. We distill the lessons of these comparisons
and conclude in Sec. VI.

II. WIGNER APPROXIMATIONS

Wigner approximations approximate dynamics of
quantum systems. The implementation of the technique
has three steps, schematically illustrated in Fig. 2.

In the first step, we sample phase space coordinates
from the Wigner function associated with the initial den-
sity matrix ρ̂(0) = |ψ(0)〉 〈ψ(0)|. The Wigner function,
denoted W (S), is a quasiprobability distribution that
represents ρ̂(0) in an appropriate phase space, with phase
points described by coordinates S. W (S) is defined via

ρ̂ =

∫
dS W (S)Â(S), (1)

where Â is called a phase-point operator, and the integral
runs over all of phase space. The phase space coordinates

that describe motional degrees of freedom are position
and momentum. For spins, the coordinates can be the
spin vector elements (Sx, Sy, Sz). (For spins, the choice
of phase space is not unique, and possible phase spaces
are discussed in Secs. II A and II B). This step in the
algorithm does not contain any approximation, as any
observable in a quantum state can be obtained by aver-
aging over phase space points sampled from the Wigner
distribution for that state.

In the second step, we evolve the sampled initial phase
space points in time according to classical equations for
the spins. The equations of motion for the specific mod-
els we consider [Eqs. (10), (15), and (17)] are given in
Eqs. (11), (16), and (18) respectively. We denote the
classical trajectory of an initial point S by Scl(S, t).

In the third and final step, we calculate the expecta-
tion of an operator Ô at time t by averaging over the
trajectories of the phase points as

〈Ô〉 =

∫
dS wl(Ô,Scl(S, t))W (S). (2)

Here, wl(Ô,S) is the Weyl symbol for Ô at the phase

point S. As examples, wl(Ŝµi ,S) = Sµi and wl(Ŝµi Ŝ
ν
j +

Ŝνj Ŝ
µ
i ,S) = Sµi S

ν
j + Sνi S

µ
j . The procedure to obtain the

Weyl symbol for other observables is more involved [50],
but in this paper, we only need the examples listed here.

The essence of the Wigner approximations lies in the
third step, where we estimate an observable at time
t from the classically evolved trajectories of the initial
phase space points. While this step might be intuitive,
nevertheless the phase points at time t, which are evolved
from the initial phase points, do not sample the Wigner
distribution of the quantum state at t. It is for this rea-
son that, sometimes, Wigner approximations give results
differing from the exact results. The main purpose of this
paper is to explore different cases where the Wigner ap-
proximations give results differing from the exact results,
extract generic trends regarding how they differ, and give
a physical insight for these differences. We focus on spin
models in this paper.

Different Wigner approximations differ in their choice
of phase space. In this article, we focus on two kinds of
approximations with two different kinds of phase spaces:
TWA samples from a finite continuous area of phase
space, and dTWA samples from a discrete set of phase
points. We describe these schemes in Secs.II A and II B.

A. TWA

In (continuous) TWA [50], the initial values of the spins
are allowed to take any value in the continuous phase
space spanning the points (sx, sy, sz)⊗N , where N is the
number of spins. Reference [50] derives the Wigner func-
tion for the state with all the spins pointing along the z
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FIG. 2. (Color online) Illustration of Wigner approximations.
The method consists of three steps: a) randomly sample
points in phase space from the Wigner distribution for the
initial state, b) evolve the phase points classically through
time, and c) calculate the desired observable from the ensem-
ble average of the observable at time t, evaluated from the
time-evolved classical trajectories of the initial phase space
points.

direction to be

W (Stot) ≈
2

πN
exp

(
− (Sxtot)

2 + (Sytot)
2

N/2

)
δ (Sztot −N/2) ,

(3)
where Sµtot =

∑
i S

µ
i . Equation (3) is exact in the limit

N →∞. Then, the Wigner function for a single spin can
be taken to be

W (Si) =
2

π
e−2(S

x
i )

2−2(Syi )
2

δ (Szi − 1/2) . (4)

This is one choice for the single-spin Wigner function that
is consistent with Eq. (3); other choices may be possible
too. When the system has spins all uniformly pointing
along a direction besides z at the initial time, we first
initialize the spins along z by sampling from Eq. (4), and
then rotate all the spins. We always assume that the
spins initially point in the x-z plane.

B. dTWA

In dTWA [51, 52], the initial phase space is chosen to
be a discrete set of points ~α = (~α1, ~α2, ..~αN ), where ~αi is
the 3-component spin vector for the ith spin. As a result,
the continuous integral in Eq. (2) is replaced by the sum

〈O〉 (t) =
∑

~α

wl(Ô, ~αcl(~α, t))W~α, (5)

where ~αcl(~α, t) is the classical trajectory of the initial
phase point ~α.

The discrete locations where the initial points ~αi can lie
are non-unique, and different works in the literature have

made different choices. For example, Ref. [51] describes
the case where the phase space for each spin consists of
eight points given by

S1 =
1

2
(1, 1, 1),

S2 =
1

2
(−1,−1, 1),

S3 =
1

2
(1,−1,−1),

S4 =
1

2
(−1, 1,−1),

S4+r = −Sr (1 ≤ r ≤ 4). (6)

The phase point operators are defined as Â~αi = 1
2 +~αi ·~̂σ,

where ~̂σ = (σ̂x, σ̂y, σ̂z) is the vector of Pauli matrices σ̂µ

(µ = x, y, z). The phase point operator for N spins is

the product Â~α = ΠiÂ~αi . The Wigner function at ~α is

W~α = 1
2N

Tr(ρ̂Â~α). We initialize the spins by sampling
them from the probability distribution |W~α|/

∑
β |W~β |,

and when calculating the dynamics of an operator Ô, we
multiply its Weyl symbol wl(Ô, ~α) by the sign of W~α.

There is flexibility to choose other discrete sets of
points in dTWA. Some of these choices are described in
Ref. [53]. The dynamics of spin systems sampled from
different discrete phase spaces differ, as explored in detail
in Ref. [53]. While the phase spaces chosen in Ref. [53]
and other references work well for the models and initial
conditions studied there, we find that those phase spaces
yield significantly worse results for some of the models
and conditions we consider in this paper. Therefore, we
use only the phase space comprised of the phase points
defined in Eq. (6). For this phase space, the correlations
in dTWA are accurate to linear order O(t), although as
we explain later, differences from the exact dynamics ap-
pear at longer times. We have not explored the question
of finding the optimal phase space that will most accu-
rately approximate the dynamics in our study.

III. GEOMETRIC ANALYSIS OF THE SPIN
CORRELATIONS

The connected correlations between a pair of spins i
and j are

cµνij =
〈
Ŝµi Ŝ

ν
j

〉
−
〈
Ŝµi

〉〈
Ŝνj

〉
, µ, ν ∈ {x, y, z,+,−}, (7)

and their symmetric part is given by

Cµνij =
cµνij + cνµij

2
, (8)

where Ŝ±j =
Ŝxj ±iŜ

y
j

2 . The correlation matrix Cij is a 3×3

matrix with components Cµνij , µ, ν ∈ {x, y, z}.
Reference [59] introduced a geometric tool to visualize

Cij using a three-dimensional contour called a CMV. We
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FIG. 3. (Color online) Typical CMV shapes. The panels show
the CMV for four different cases of the correlation matrix
written beside the CMV. The CMV’s shape is a dumbbell in
(a), a clover in (b), a sphere in (c), and wheel-and-axle in (d).

use this tool to analyze the results of the Wigner approxi-
mations. We define the CMV below, and refer the reader
to Ref. [59] for a detailed understanding of the CMV.

We define a function proportional to a homogeneous
quadratic polynomial,

Qij(r) =
rT · Cij · r
(1 + r2)3/2

, (9)

where r is a three-dimensional vector. The CMV is the
locus of points r where Qij(r) has a constant magnitude,
Qij(r) = ±P . Each sign is assigned a different color. We
shade points where Qij(r) > 0 as red, and points where
Qij(r) < 0 as blue. Denoting the correlation along the

direction n as Cnnij =
〈

( ~̂Si · n)( ~̂Sj · n)
〉
− 〈 ~̂Si · n〉〈 ~̂Sj · n〉,

the points on the CMV along n can be obtained by solv-
ing the equation |Cnnij /P | = (1 + r2)3/2/r2. This equa-
tion has exactly two real solutions for r in the limit that
|Cnnij /P | � 1, and these solutions are r ' |Cnnij /P | and

r '
√
|P/Cnnij |. The size of the CMV along this direction

is the difference between these solutions, which is roughly
|Cnnij /P |. Based on this, we can interpret the size of the
CMV along n as being proportional to Cnnij , and there-
fore the lobes of the CMV point along the eigenvectors
of the matrix Cij .

We characterize spin-spin correlations via four main
features of the CMV. These features are the CMV’s size,
shape, dimensionality, and orientation. The CMV’s size
roughly translates to the magnitude of the eigenvalues of
Cij . The CMV’s shape is related to the ratio of the
three eigenvalues to each other. The shape generally
falls into one of a few categories, depicted in Fig. 3.
When one of the eigenvalues is much larger than the
other two, the CMV has the shape of a dumbbell, as
in Fig. 3(a). When two eigenvalues are comparable, have
opposite signs, and larger than the third, the shape is a
clover, as in Fig. 3(b). When all three eigenvalues are
comparable, then the shape is a sphere or ellipsoid as in

Fig. 3(c) if they have the same sign, and the shape re-
sembles a wheel-and-axle as in Fig. 3(d) if one eigenvalue
has a different sign. The CMV’s dimensionality is con-
tained in the description of its shape, but this feature is
so important in our comparisons that we classify it sep-
arately. A dumbbell-shaped CMV is “one-dimensional”,
a clover-shaped one is “two-dimensional”, and a sphere
is “three-dimensional.” The CMV’s orientation tells us
the directions of the eigenvectors of Cij .

The features described above, despite being qualita-
tive, nevertheless allow us to characterize the differences
between Wigner approximations and the exact dynam-
ics, as well as to identify the missing aspects of Wigner
approximations. For example, we observe distinct and
fairly simple trends such as that dTWA captures the re-
vivals in the size of the CMVs more accurately than TWA
(as already shown in Refs. [51, 52]). Our most novel and
surprising finding is that both dTWA and TWA suppress
correlations along one direction, thereby reducing the di-
mensionality of the CMV. On the other hand, the trends
for the accuracy of TWA and dTWA are less apparent
in the conventional way of plotting all components of the
correlation matrix. Appendix B show the conventional
component-wise analysis of correlations for the dynam-
ics considered in the main text, so a curious reader can
explore these themselves.

IV. RESULTS

In this section, we compare the dynamics of spin-spin
correlations in dTWA, TWA, and the exact solution for
various spin models. Specifically, in Sec. IV A, we present
the spin dynamics in the nearest-neighbor Ising model
with no transverse field, in different dimensions, with
different range of interactions, and from different initial
states. Sec. IV B presents the spin dynamics in the 1D
transverse field nearest-neighbor Ising model, and the 1D
nearest-neighbor XX model.

A. Ising model

First, we consider the Ising model

ĤI = −
∑

i 6=j

JijŜ
z
i Ŝ

z
j (10)

with arbitrary interactions Jij . The time-dependent
equations for the quantum mechanical spin operators are
obtained from Heisenberg’s equation i∂tŜ

µ
i = [Ŝµi , Ĥ],

resulting in

˙̂
Sxi = Ŝyi B̂

z
i ,

˙̂
Syi = −Ŝxi B̂zi , (11)

˙̂
Szi = 0,
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where B̂µi =
∑
j 6=i JijŜ

µ
j . The same equations give the

classical equations of motion for dTWA and TWA as well,
with the quantum mechanical operator Ŝµi replaced by its
classical counterpart Sµi . We initialize the system in the
product state |θθθ. . . 〉 with |θ〉 = cos θ |↑〉+ sin θ |↓〉. We
consider two different representative cases in the follow-
ing sections: θ = π

2 and θ = π
4 .

First, we will analytically solve this model. Equa-
tions (11) are integrable, and the solutions are



Ŝ+
j (t)

Ŝ−j (t)

Ŝzj (t)


 =



e−iB̂

z
j t 0 0

0 eiB̂
z
j t 0

0 0 1






Ŝ+
j (0)

Ŝ−j (0)

Ŝzj (0)


 . (12)

The time-dependence of Ŝxj and Ŝyj can be trivially ob-

tained from Ŝ±j . Note that B̂zj commutes with ĤI ,
and is therefore a constant. Using the relation that
〈Ŝµi (0)Ŝνj (0)〉 = 〈Ŝµi (0)〉〈Ŝνj (0)〉 for i 6= j because the
spins are initially independent, we obtain the solutions

〈Ŝ+
j (t)〉 =


∏

l 6=j

〈e−iJjltŜzl 〉


 〈Ŝ+

j (0)〉,

〈Ŝ+
j (t)Ŝ+

k (t)〉 =


∏

l 6=j,k

〈e−i(Jjl+Jkl)tŜzl 〉


 〈Ŝ+

j (0)e−iJjktŜ
z
j 〉

× 〈e−iJjktŜzk Ŝ+
k (0)〉,

〈Ŝ+
j (t)Ŝ−k (t)〉 =


∏

l 6=j,k

〈e−i(Jjl−Jkl)tŜzl 〉


 〈Ŝ+

j (0)eiJjktŜ
z
j 〉

× 〈e−iJjktŜzk Ŝ−k (0)〉,

〈Ŝ+
j (t)Ŝzk(t)〉 =


∏

l 6=j,k

〈e−iJjltŜzl 〉


 〈Ŝ+

j (0)〉〈e−iJjktŜzk Ŝzk〉,

〈Ŝ−j 〉 =〈Ŝ+
j 〉∗,

〈Ŝ−j (t)Ŝ−k (t)〉 = 〈Ŝ+
j (t)Ŝ+

k (t)〉∗,
〈Ŝ−j (t)Ŝ+

k (t)〉 = 〈Ŝ+
j (t)Ŝ−k (t)〉∗,

〈Ŝ−j (t)Ŝzk(t)〉 = 〈Ŝ+
j (t)Ŝzk(t)〉∗. (13)

The Cartesian components of the magnetization and spin
correlations can be obtained from

〈Ŝxj 〉 = 〈Ŝ+
j 〉+ 〈Ŝ−j 〉

〈Ŝyj 〉 = −i(〈Ŝ+
j 〉 − 〈Ŝ−j 〉)

Cxxjk = C++
jk + C+−

jk + C−+jk + C−−jk ,

Cxyjk = −i(C++
jk − C+−

jk + C−+jk − C−−jk ),

Cyyjk = −(C++
jk − C+−

jk − C−+jk + C−−jk ),

Cxzjk = C+z
jk + C−zjk ,

Cyzjk = −i(C+z
jk − C−zjk ),

Cµνjk = Cνµjk . (14)

All that remains is to evaluate the expectations in
Eq. (13) in the exact solution, dTWA, and TWA. In
dTWA and TWA, 〈. . .〉 should be interpreted as aver-
age over the classical phase space trajectories. Crucially,
the explicit results for Eq. (13) in dTWA and TWA dif-
fer from the exact solution. This is because dTWA and
TWA incorrectly estimate averages for products of spin
operators on the same site at the initial time. It is worth
noting that despite this crucial error, dTWA and TWA
still qualitatively capture a lot of the dynamics of spin
correlations, as we will see shortly. The mismatches with
the exact solution have simple trends, which we explore
in this section. The dynamics in dTWA can be much im-
proved by going to higher order in the BBGKY hierarchy
(which also integrates the Heisenberg equations for prod-

ucts of operators Ŝµi Ŝ
ν
j ), and choosing a different phase

space (see, e.g, Ref. [53]).
We present explicit closed forms of Eq. (13) sep-

arately for the exact solution, dTWA and TWA in
Eqs. (A2), (A3) and (A5) in Appendix A. Closed forms
for the spin correlations in the exact solution have also
been calculated in Refs. [80, 81]. To numerically evalu-
ate Eqs. (A2), (A3) and (A5) for an arbitrary Jij and θ,
we assume a chain with 11 spins and periodic boundaries
in case of 1D models, and a 4 × 4 lattice with periodic
boundary conditions for 2D models.

For the other models we consider in Sec. IV B, the solu-
tions are more complicated although still integrable [82–
84], so we resort to numerically calculating the correla-
tions. We again show that the mismatch between dTWA,
TWA and the exact solution has a simple trend. We also
perturbatively calculate Cµνjk at short times in Sec. V for
arbitrary spin models, and rigorously prove our numeri-
cal observation.

1. Nearest-neighbor 1D Ising model

First, we study the case θ = π/2 and nearest-neighbor
interactions in a 1D chain, Jij = Jδ|i−j|=1. Figure 4
shows the nearest-neighbor spin correlations for the exact
dynamics, dTWA, and TWA. We find that the shape and
orientation of the CMVs are captured well by both TWA
and dTWA, and the size is captured well at short times.
All the CMVs have a clover shape [as in Fig. 3(b)]. All
the CMVs have the right orientation: they all have large
lobes along y + z and y − z.

Despite the similarities listed above, there are two main
differences between the exact solution, dTWA, and TWA.
The first difference is the well-known inability of TWA
to capture the periodic revivals present in the exact solu-
tion and dTWA. In fact, dTWA was invented mainly to
capture these periodic revivals [51, 52]. The second dif-
ference these results reveal is that in dTWA and TWA,
the CMVs are “two-dimensional”, that is, the correla-
tions vanish along the x direction. This can be seen from
looking at the components of the correlations in Eq. (A5).
We will see that these differences are general features of
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spin model dynamics with product state initial condi-
tions.

Our observations in Fig. 4 about the inaccuracies of
dTWA and TWA, especially the missing Cxxij correla-
tion, substantiate our argument that it is important to
look at all components of the correlations while assessing
these approximations. Plotting specific components, as
in Fig. 1(a), may be misleading about the performance
of the approximations. For the model and initial con-
dition considered here, the Cyz component in Fig. 1(a),
which may be viewed as a slice of the CMVs in Fig. 4
along y+z√

2
(because Cyyij and Czzij are zero at all times),

coincidentally happens to be a component which dTWA
captures accurately. These coincidences may not occur
for other models or initial conditions, as we will see in the
following sections, because the direction misrepresented
by the Wigner approximations is often not aligned along
a Cartesian direction. All the nonzero Cartesian compo-
nents of the correlations are plotted in Fig. 12.

2. Dependence on dimension

It is a common expectation that semiclassical approx-
imations perform better in higher dimensions, because
the Wigner function does not spread much with time,
due to small quantum fluctuations [50]. To address this,
we next study the case θ = π/2 and nearest-neighbor
interactions in a 2D lattice, Jij = Jδ|~i−~j|=1.

Figure 5 shows the nearest-neighbor spin correlations
for the exact dynamics, dTWA, and TWA. We find that
the comparison with the exact solution is similar to the
1D case - the shape and orientation of the CMVs are
captured well by both TWA and dTWA, and the size is
captured well at short times. Importantly though, the
differences in the 1D Ising model also persist in the 2D
model: the CMVs in dTWA and TWA are again “two-
dimensional” because the correlations completely vanish
along x, and the CMVs in TWA exponentially shrink
with time. In fact, we rigorously prove in Appendix A
that the CMV is “two-dimensional” in dTWA and TWA
in the nearest-neighbor Ising model in an arbitrary di-
mension and for any arbitrary initial state. Thus, al-
though going to a higher dimension may improve some
aspects of the performance of dTWA or TWA, it does
not necessarily remedy the suppression of one correla-
tion component. Further, we show in Sec. V that the
correlations along the initial Bloch vector in TWA and
dTWA are suppressed even for an arbitrary spin model in
an arbitrary dimension. All the nonzero Cartesian com-
ponents of the correlations for this model are plotted in
Fig. 13.

3. Dependence on range of interaction

It is also commonly expected that semiclassical approx-
imations perform better for models with long-range in-

TWAdTWAExact tJ
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Fig. : 1D Ising model 
n.n int, theta=pi/2

FIG. 4. (Color online) The CMVs for nearest-neighbor spin-
spin correlations at different times in the nearest-neighbor 1D
Ising model in the absence of a transverse field, for the exact
solution (left), dTWA (middle), and TWA (right). At t = 0,
all the spins are aligned along x, i.e. θ = π

2
. An animated

movie showing this dynamics is included in the Supplemen-
tary Information [85].

teractions, again because the Wigner function does not
spread much with time, due to small quantum fluctua-
tions [50]. To address this, we study two cases: first,
Ising interactions decaying as Jij = J

r3ij
in a 1D chain,

which is typical in experiments with particles with a
dipole moment, and second, infinite range Ising inter-
actions Jij = J , as commonly realized in ion trap experi-
ments. In both cases, we consider the initial state to have
θ = π/2. The infinite range Ising model is well-studied
in the literature, and leads to “one-axis twisting” of the
total spin on the Bloch sphere [86, 87]

Figure 6 plots the nearest-neighbor spin correlations
for the exact solution, dTWA and TWA in the 1/r3

Ising model. These CMVs also have clover shapes [as in
Fig. 3(b)], and are still nearly “two-dimensional.” The
component Cxxij is not zero in dTWA and TWA, but is
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TWAdTWAExact tJ
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Fig. : 2D Ising model 
n.n int

FIG. 5. (Color online) The CMVs for nearest-neighbor spin-
spin correlations at different times in the nearest-neighbor 2D
Ising model in the absence of a transverse field, for the exact
solution (left), dTWA (middle), and TWA (right). At t = 0,
all the spins are aligned along x, i.e. θ = π

2
. An animated

movie showing this dynamics is included in the Supplemen-
tary Information [85].

much smaller than it is in the exact solution, as can be
observed from the component-wise plots in Fig. 14. We
will return to a general understanding of this suppression
in Sec. V. The orientation of the CMVs is captured well
by dTWA and TWA, and their size is captured well at
short times.

Figure 7 plots spin-spin correlations for the exact solu-
tion, dTWA and TWA in the infinite range Ising model.
Here, the dTWA and TWA are capable of reproducing
the dynamics at short times. The physical reason for
this is that the correlations rapidly develop on a timescale
tJ ∼ 1/

√
N (with N being the number of spins), which is

faster than the time scale for nearest-neighbor Ising mod-
els, essentially because more terms contribute to the dy-
namics. There is still a small suppression of correlations,
but this suppression is much smaller than the magnitude
of the correlations, because, as we show in Sec. V, the

TWAdTWAExact tJ
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1/r3 int, theta=pi/2

FIG. 6. (Color online) The CMVs for nearest-neighbor spin-
spin correlations at different times in the 1D Ising model in
the absence of a transverse field and 1

r3
Ising interaction, for

the exact solution (left), dTWA (middle), and TWA (right).
At t = 0, all the spins are aligned along x, i.e. θ = π

2
.

An animated movie showing this dynamics is included in the
Supplementary Information [85].

suppression grows on a much slower time scale, tJ ∼ 1.
As a result, TWA and dTWA appear to accurately cap-
ture the initial rapid growth of correlations. TWA and
dTWA will lead to a noticeable suppression of correla-
tions when tJ ∼ 1, as can be observed in the component
wise plots in Fig. 15.

4. Dependence on distance between spins

In the models we study here, correlations in Wigner
approximations generally get more accurate as the dis-
tance between the two spins increases. Here we calculate
the correlations between next-nearest-neighbor spins in
the nearest-neighbor 1D Ising model, with spins initial-
ized to |θ = π/2〉.

Figure 8 shows the next-nearest-neighbor spin correla-
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Fig. : 1D Ising model 
all-to-all int, theta=pi/2

FIG. 7. (Color online) The CMVs for spin-spin correlations
at different times in the infinite range Ising model in the ab-
sence of a transverse field, for the exact solution (left), dTWA
(middle), and TWA (right). At t = 0, all the spins are aligned
along x, i.e. θ = π

2
. An animated movie showing this dynam-

ics is included in the Supplementary Information [85].

tions for the exact dynamics, dTWA, and TWA. In this
case, dTWA agrees perfectly with the exact solution, and
this can also be observed in the component-wise plots in
Fig. 16. The CMVs in the exact solution and dTWA are
“one-dimensional”, while the CMVs in TWA are “two-
dimensional”, with a small Cxxij component that is absent
in the exact solution.

In all nearest-neighbor Ising models in an arbitrary
dimension, and with no transverse field as considered
throughout this section, all components of the correla-
tions between spins with Manhattan distance > 2 are
zero in the exact solution, dTWA and TWA. This can
be easily verified from Eqs. (A2), (A3) and (A5). Cor-
relations between far-away spins are generally not zero
in long-range Ising models, and dTWA and TWA are ex-
pected to perform well in capturing the dynamics of these
long-range correlations as the distance between spins in-

TWAdTWAExact tJ
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Fig. : 1D Ising model 
n.n int, theta=pi/2, 
n.n.n correlation

FIG. 8. (Color online) The CMVs for next-nearest-neighbor
spin-spin correlations at different times in the nearest-
neighbor 1D Ising model in the absence of a transverse field,
for the exact solution (left), dTWA (middle), and TWA
(right). At t = 0, all the spins are aligned along x, i.e. θ = π

2
.

An animated movie showing this dynamics is included in the
Supplementary Information [85].

creases. This will get clearer from our rigorous argu-
ments for the dependence of the suppression with dis-
tance, which we will present in Sec. V.

5. Dependence on initial states

The accuracy and efficiency (i.e. number of samples
required) of Wigner approximations depend strongly on
the initial state. They become less accurate and signif-
icantly more numerically challenging, for initial states
different from θ = π/2 and θ = 0. To demonstrate their
accuracy, we calculate the nearest-neighbor correlations
in the nearest-neighbor 1D Ising model (which is inte-
grable) for |θ = π/4〉.

Figure 9 shows the nearest-neighbor spin correla-
tions in the exact solution, dTWA, and TWA. The
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Fig. : 1D Ising model 
n.n int, theta=pi/4

FIG. 9. (Color online) The CMVs for nearest-neighbor spin-
spin correlations at different times in the nearest-neighbor 1D
Ising model in the absence of a transverse field, for the exact
solution (left), dTWA (middle), and TWA (right). At t = 0,
all the spins are aligned halfway between x and z, i.e. θ = π

4
.

An animated movie showing this dynamics is included in the
Supplementary Information [85].

CMVs in both Wigner approximations are again “two-
dimensional” at all times, as observed in all nearest-
neighbor interaction cases above, and as rigorously
proven in Sec. V for short times and Appendix A for
all times. That is, correlations completely vanish along
one direction. More interestingly, for this case, the sup-
pressed direction rotates with time (for a closed form
expression of the direction of the vanishing correlations,
see Appendix A). Aside from the two-dimensionality, the
shape of the CMVs in the Wigner approximation reason-
ably agree with the exact solution. Again, as expected,
the CMVs in TWA exponentially shrinks in size, while
the CMVs in dTWA and the exact solution undergo pe-
riodic oscillations at a period somewhat longer than the
longest time presented in Fig. 9. Further, there are also
hints that the orientation of the CMVs in TWA is closer
to the exact solution than dTWA’s is. This is to be

TWAdTWAExact tJ

x y

z
0.0

0.7

1.4

2.1

2.8

3.5

Fig. 6 
(lo-res)

FIG. 10. (Color online) The CMVs for nearest-neighbor spin-
spin correlations in a nearest-neighbor 1D transverse Ising
(h = J/3) system at different times, numerically calculated
for the exact solution (left), dTWA (middle), and TWA
(right). At t = 0, all the spins are aligned along x, i.e. θ = π

2
.

An animated movie showing this dynamics is included in the
Supplementary Information [85].

expected from looking at Fig. 1(b), for example, which
showed that even the initial dynamics of Cxxij in dTWA
differed significantly from the exact solution and TWA.
All the nonzero Cartesian components of the correlations
are plotted in Fig. 17.

The real advantage of visualizing the correlations as
CMVs is demonstrated by the dynamics considered here:
Plotting the CMVs clearly show that dTWA and TWA
completely miss correlations along one eigen direction,
a fact which is obscured in the component-wise plots
in Fig. 17 because the misrepresented direction is not
aligned along a Cartesian direction.

For θ /∈ {0, π/2}, we note that dTWA presents a se-
rious numerical obstacle in its implementation: there is
a sign problem. The sign problem is notorious in quan-
tum Monte Carlo algorithms, where it arises in fermionic
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FIG. 11. (Color online) The CMVs for nearest-neighbor spin-
spin correlations in a 1D system with an XX Hamiltonian,
numerically calculated for the exact solution (left), dTWA
(middle), and TWA (right), at different times. At t = 0, all
the spins are aligned along x, i.e. θ = π

2
. An animated movie

showing this dynamics is included in the Supplementary In-
formation [85].

systems as a result of negative wave functions due to
anticommutations. The sign problem arises in dTWA
because the Wigner function is negative at some of the
phase space points. In these cases, one way to sample
the initial points S in phase space is with the weights
|W (S)|∫
dS |W (S)| , and then multiply the Weyl symbol for the

trajectory of S by the sign of W (S).
When the sign problem occurs, a sample size scaling

exponentially with N is required to obtain a precise en-
semble average (i.e with a small sampling error) for any
observable in a system with N spins [88]. While the re-
sults presented in this section were obtained from analyt-
ically integrating Eq. (11), which is equivalent to imple-
menting the Wigner approximations with an infinite sam-
ple size, a numerical implementation of the Wigner ap-
proximations would be computationally expensive. For

example, the sampling error for Cyyij at t = 0 for θ = π/4

and a sample size of 104 is 0.019. This error is compa-
rable to the magnitude of Cyyij during the dynamics, and
therefore we do not get much useful information about
the correlation dynamics. The sampling error for Cyyij
reduces to 0.003 for a larger sample size of 105. This
obstacle is not present for θ = π/2, where the sampling
error for Cyyij for a sample size of 104 is only 0.002. Other
components have similar errors for these sample sizes.

The sign problem in dTWA can be ameliorated by ro-
tating the phase space, such that the Wigner function
is always positive at the initial phase points that are
sampled. However, due to the different alignment be-
tween these points and the distinguished directions in the
Hamiltonian (e.g. the z direction in the Ising model), the
accuracy of the dTWA would need to be re-evaluated.

6. Summary of Ising models

Based on the integrable examples so far, we are able
to observe simple trends regarding Wigner approxima-
tions: (a) for nearest-neighbor Ising models on a chain,
square or cubic lattice, the approximations completely
miss correlations along one direction relative to the ex-
act solution (this fact is true on any bipartite lattice, and
is rigorously proven in Appendix A), (b) for longer-range
Ising models, the approximations suppress correlations in
the same direction as the nearest-neighbor case at short
times, and as expected, (c) correlations in TWA expo-
nentially decay with time. There are also hints that the
correlations are oriented incorrectly in dTWA for initial
states different from |θ = π/2〉. These trends were ele-
gantly captured by plotting CMVs, while they are ob-
scured in the component-wise correlation plots such as
Fig. 1(b) or Fig. 17. TWA and dTWA are more accu-
rate in capturing correlations between spins that are far
away from each other. TWA and dTWA also perform
relatively better for models with long-range interactions,
but their accuracy is limited to shorter times, as can be
observed in the infinite range interaction case. TWA and
dTWA have the same qualitative inaccuracies in nearest-
neighbor models in higher dimensions as they do in 1D.

Next, we apply dTWA and TWA to the nearest-
neighbor 1D transverse Ising model and the nearest-
neighbor 1D XX model. We will find that the discrep-
ancies between the Wigner approximations and the true
dynamics have the same qualitative structure as observed
in the zero-transverse field Ising model.

B. XX and transverse Ising models

For the nearest-neighbor 1D transverse Ising model
given by

ĤT = ĤI − h
∑

i

Ŝxi , (15)
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the time-dependent equations for the spins are

˙̂
Sxi = Ŝyi B̂

z
i

˙̂
Syi = −Ŝxi B̂zi + hŜzi (16)

˙̂
Szi = −hŜyi .

Eqs. (16) are not analytically integrable. We numerically
integrate them on a periodic chain with 11 spins.

Figure 10 depicts the CMVs obtained from a numeri-
cal implementation of exact diagonalization, dTWA, and
TWA, when the system is initialized in θ = π/2, and
evolves under the model with h = J/3. The size, shape,
and orientation of the CMVs in TWA and dTWA all ap-
proximately match with the exact solution, but as in the
h = 0 cases, the CMVs are somewhat “two-dimensional”
in both approximations. That is, the correlation along
the direction perpendicular to the obvious clover shape
is still much smaller in dTWA and TWA than it is in
the exact solution. All the CMVs in these dynamics pre-
cess around the magnetic field. All the nonzero Cartesian
components of the correlations are plotted in Fig. 18.

For the nearest-neighbor 1D XX model given by

ĤXX = −J
∑

i

(Ŝxi Ŝ
x
i+1 + Ŝyi Ŝ

y
i+1) (17)

the time-dependent equations for the spins are

˙̂
Sxi = −Ŝzi B̂yi
˙̂
Syi = Ŝzi B̂

x
i (18)

˙̂
Szi = Ŝxi B̂

y
i − Ŝyi B̂xi .

Eqs. (18) are not analytically solvable either. We numer-
ically integrate them on a periodic chain with 11 spins.

Figure 11 depicts the CMVs obtained from a numeri-
cal implementation of exact diagonalization, dTWA, and
TWA, when the system is initialized in θ = π/2. The size,
shape, and orientation of the CMVs in TWA and dTWA
all approximately match with the exact solution, but the
CMVs are again “two-dimensional” in both approxima-
tions at short times. Interestingly, at longer times, the di-
rection along which the correlations are dominantly sup-
pressed in dTWA and TWA seems to change somewhat
independently of the CMVs’ orientations: the CMVs are
more squished along x for tJ < 2.1, and they are more
squished along z for tJ > 2.1. All the nonzero Cartesian
components of the correlations are plotted in Fig. 19.

V. WHY DO DTWA AND TWA SUPPRESS
CORRELATIONS?

We have observed a suppression of correlations in TWA
and dTWA for the Ising, transverse Ising, and XX mod-
els. For the h = 0 Ising models, where we explicitly
calculated analytical expressions for the correlations, we

attributed the suppression to dTWA and TWA incor-
rectly estimating averages for initial products of spin op-
erators. Here, we present a general argument that shows
that in any spin model for a generic initial product state
|θθ. . . 〉, the spin correlation along the initial spin direc-
tion n = sin θx + cos θz is always suppressed in dTWA
and TWA, at O(t2). That is, we will show that

δCnnij,dTWA(t) = |Cnnij,exact(t)|−|Cnnij,dTWA(t)| = At2+O(t3)
(19)

for A > 0 and similarly for TWA, where Cnnij is the
correlation along the initial spin direction, defined as
Cnnij = n·Cij ·n = sin2 θCxxij +2 sin θ cos θCxzij +cos2 θCzzij .
[Note that there is no error to O(t)].

Our argument makes use of the numerical observation
that Cnnij,exact(t) > 0 and Cnnij,dTWA(t) ≥ 0 at short times.

Therefore, to prove Eq. (19), it suffices to show that
Cnnij,exact(t) > Cnnij,dTWA(t) at O(t2).

We consider a general translationally invariant Hamil-
tonian with two-body interactions,

Ĥ = −
∑

iµ

hµŜµi −
∑

i 6=j

∑

µ

JµijŜ
µ
i Ŝ

µ
j , (20)

and the initial product state |θθ. . . 〉 as stated before.
This covers all the cases we have considered in this paper.

The time-dependent equation for any spin is

˙̂
Sµi = εµναŜνi (hα + B̂αi ) (21)

with ε being the Levi-Civita tensor. We use the Einstein
summation convention for the Greek indices throughout
this section. At short times, Ŝµi (t) is (up to O(t2))

Ŝµi (t) =Ŝµi (0) + t
˙̂
Sµi +

t2

2
¨̂
Sµi

=Ŝµi (0) + tεµναŜνi (0)(hα + B̂αi (0)) +
t2

2
Ŝλi (0)×

(
ενλβεµνα(hβ + B̂βi (0))(hα + B̂αi (0))+

εµλαεανβJαijŜ
ν
j (0)(hβ + B̂βj (0))

)
, (22)

where
¨̂
Sµi is obtained by differentiating Eq. (21).

We substitute Eq. (22) to calculate Cµνij (t) in the exact

solution, TWA and dTWA up to O(t2). We denote

Sµ =
〈
Ŝµi (0)

〉
,

C
µν
2 =

〈
Ŝµi (0)Ŝνi (0)

〉
,

C
µνλ
3 =

〈
Ŝµi (0)Ŝνi (0)Ŝλi (0)

〉
, (23)

and use the relations

S
µ
exact = S

µ
dTWA = S

µ
TWA,

C
µν
2,exact =

1

4
δµν +

i

2
Sαεµνα,

C
µν
2,TWA = C

µν
2,dTWA =

1

4
δµν . (24)
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We reemphasize that C2,exact is the quantum expecta-
tion of operators, while C2,dTWA and C2,TWA are averages
over classical trajectories. C3 can be written similarly as
Eq. (24), but there are more cases to write, so we do not
present them here.

It is straightforward to show that Cµνij (t) in the exact
solution, TWA and dTWA are identical to each other
at O(1) and O(t). Further, it can be verified, although
somewhat tediously, that the difference between the ex-
act solution and the Wigner methods arises at O(t2), and
that the only terms that evaluate to different results are

C
′µν
ij (t) = t2εµµ

′αJαijJ
β
ij

(
ενν
′βC

µ′β
2 Cαν

′

2

+
1

2
εµ
′λβSλ(Cβαν3 + C

νβα
3 ) +

1

2
εαλβCµ

′β
2 (Cλν2 + Cνλ2 )

)
.

(25)

The difference between TWA or dTWA and the exact
solution can then be evaluated using Eq. (24), yielding

δCxxij,dTWA(t) =
t2

4

(
(Sx)2((Jyij)

2 + (Jzij)
2)− (Sy)2JxijJ

y
ij

− (Sz)2JxijJ
z
ij

)
,

δCxyij,dTWA(t) =
t2

4

(
SxSyJzij(J

z
ij − 2(Sz)2(Jxij + Jyij))

)
.

(26)

The other components can be found by cyclic per-
mutation, and δCij,TWA(t) can be similarly obtained
from Eq. (24). Specifically, setting (Sx, Sy, Sz) =
1
2 (sin θ, 0, cos θ),

δCnnij,dTWA(t) =
t2

16
(Jyij)

2 +
t2

16
(Jxij cos2 θ − Jzij sin2 θ)2,

δCnnij,TWA(t) =
t2

16
(Jyij)

2 +
t2

16
(Jxij cos2 θ + Jzij sin2 θ)2,

(27)

which are both nonnegative. This proves that TWA
and dTWA always suppress correlations along the initial
spin direction at short times, for arbitrary spin models.
Our results in this section, which identify the error in
TWA and dTWA [Eq. (27)] and their source [Eq. (24)],
could potentially open avenues to modify the semiclassi-
cal equations to develop more accurate approximations.

VI. CONCLUSIONS

We have demonstrated that the accuracy of Wigner
approximations is more nuanced than previously be-
lieved, and uncovered properties seemingly intrinsic to
both TWA and dTWA, namely that they incorrectly pre-
dict suppressed correlations along one direction. We pre-
sented a rigorous perturbative argument to explain the
suppressed correlations at short times. The suppressed
correlations are often difficult to catch in conventional

Model Size Revivals Shape 3D-ness Orient.

1D n.n Ising X dTWA X × X

2D n.n Ising X dTWA X × X

1D 1
r3

Ising X dTWA X × X

Infinite range Ising X dTWA X × X

n.n Ising
∣∣θ = π

4

〉
X dTWA X × TWA

n.n Ising, C〈〈ij〉〉 X dTWA X N.A. X

TIM X N.A. X × X

XX X N.A. X × X

TABLE I. A summary of dTWA’s and TWA’s abilities in cap-
turing different aspects of spin-spin correlation dynamics in
a variety of spin models. We categorize their ability to cor-
rectly capture the overall size of CMVs at short times, revival
of CMVs at longer times (if applicable), the rough shape up to
any suppressed correlations, their 3D-ness at short times (i.e.
whether dTWA and TWA capture the three-dimensionality
of CMVs present in the exact solution), and orientation of
CMVs. Any text in the cells means that only the indicated
method reasonably captures that category. dTWA and TWA
never have three-dimensional CMVs at short times, because
one correlation component is suppressed in all the cases.

component-wise plots due to the number and complex-
ity of the correlations, and often a misalignment of the
suppressed correlation with any Cartesian directions. We
also found hints that the orientation of the correlations at
short times, at least when the spins do not initially point
along a special direction of the Hamiltonian, is sometimes
more accurate in TWA than dTWA. We have systemat-
ically explored the performance of dTWA and TWA by
changing various parameters, including the dimension of
the model, the range of interactions, the distance be-
tween the correlated spins, the initial state, as well as
adding external fields to the model, and find that the
major source of error in all cases is suppressed correla-
tions along one direction. This observation persists even
in cases where semiclassical approximation are expected
to work well, such as higher dimensions and long-ranged
interactions, as well as other non-integrable models (such
as the 2D TIM with short- and long-range interactions)
that we have studied but not shown in this paper. We
have condensed these observations into Table I. Under-
standing the capabilities of TWA and dTWA that we
have developed in this paper will better enable practi-
tioners to choose the approximations that are most suited
to capture the features they are interested in.
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Appendix A: Analytical solutions for dynamics in
the Ising model

Here, we use Eq. (13) to obtain closed form solutions
for spin correlations in the exact solution, dTWA, and
TWA.

1. Exact solution

To simplify and evaluate Eqs. (13) for the exact solu-
tion, we use the identity that

eiJŜ
z
j t = cos

Jt

2
+ 2iŜzj sin

Jt

2
. (A1)

Further, for an initial state |θθ. . . 〉, we use the relations〈
~̂
Si

〉
= 1

2 (sin θ, 0, cos θ). Finally, we use the group oper-

ations Ŝµj Ŝ
ν
j = iεµνλŜ

λ
k . Although familiar, it is impor-

tant to emphasize these group operations in the exact
solution, because they are not true in dTWA and TWA.

Equations (13) yield

〈Ŝ+
j (t)〉exact =

1

4
sin θ

∏

l 6=j

(
cos

Jjlt

2
− i cos θ sin

Jjlt

2

)

〈Ŝzj (t)〉exact =
1

2
cos θ

〈Ŝ+
j (t)Ŝ+

k (t)〉exact =
1

16
sin2 θ

∏

l 6=j,k

(
cos

(Jjl + Jkl)t

2
− i cos θ sin

(Jjl + Jkl)t

2

)

〈Ŝ+
j (t)Ŝ−k (t)〉exact =

1

16
sin2 θ

∏

l 6=j,k

(
cos

(Jjl − Jkl)t
2

− i cos θ sin
(Jjl − Jkl)t

2

)

〈Ŝ+
j (t)Ŝzk(t)〉exact =

1

8
sin θ

(
cos θ cos

Jjkt

2
− i sin

Jjkt

2

) ∏

l 6=j,k

(
cos

Jjlt

2
− i cos θ sin

Jjlt

2

)
(A2)

The special cases given in the text - 1D Ising model with nearest-neighbor and long-range interactions, 2D nearest-
neighbor Ising model, 1D Ising model with θ = π/2 and π/4 - can all be evaluated by a directed substitution of the
appropriate Jij and θ. These closed forms were also given in Refs. [80, 81].

2. dTWA

In dTWA, the initial spin coordinates are Sµj = ± 1
2 . Therefore, we again have the identity eiJS

z
j t = cos Jt2 +

2iSzj sin Jt
2 . However, we don’t have the group operations of (Sx, Sy, Sz). In fact, for the choice of phase space in this

paper, 〈Sµj (0)Sνj (0)〉 = 1
4 (1 − δµν), where δ is the Kronecker delta, and 〈. . . 〉 refers to the average over the sampled

phase points. Using these facts, Eqs. (13) yield

〈S+
j (t)〉dTWA = 〈Ŝ+

j (t)〉exact
〈Szj (t)〉dTWA = 〈Ŝzj (t)〉exact

〈S+
j (t)S+

k (t)〉dTWA = 〈Ŝ+
j (t)Ŝ+

k (t)〉exact cos2
Jjkt

2

〈S+
j (t)S−k (t)〉dTWA = 〈Ŝ+

j (t)Ŝ−k (t)〉exact cos2
Jjkt

2

〈S+
j (t)Szk(t)〉dTWA = 〈Ŝ+

j (t)Ŝzk(t)〉exact (A3)
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We find that the magnetization in dTWA agrees with the exact solution at all times. However, only the correlation
components Cµzjk and Czµjk (µ ∈ {x, y, z}) match with the exact solution, while the components on the x-y plane
generally agree only at short times.

Two aspects of dTWA are immediately clear from the solutions in Eq. (A3). The first is why dTWA performs
better in long-range Ising models. The difference between the exact solution [Eq. (A2)] and dTWA [Eq. (A3)] is
significant only at t ∼ 1/Jjk, while the time scale on which correlations initially develop is much faster for long-ranged
interactions; for example, for the infinite-range Ising model, correlations develop and the Bloch vector shrinks roughly
on a time scale t ∼ 1/(J

√
N), where N is the total number of spins. Consequently, the discrepancy between the exact

solution and dTWA is largest for nearest-neighbor models.
The second aspect that can be observed from Eq. (A3) is the dimensionality of the CMVs. For example, it can be

verified that in a simple toy system with only two spins, the matrix C12 always has an eigenvector along the direction
of (sin θ, 0, cos θ cos Jt2 ) with zero eigenvalue, and therefore its CMV is always “two-dimensional.” A similar statement
holds true for the nearest-neighbor Ising model in an arbitrary dimension. For the 1D Ising model, the Cij matrix for

nearest-neighbors i and j has an eigenvector along
(
1,− cos θ tan Jt

2 , cot θ(1− sin2 θ sin2 Jt
2 )
)

with a zero eigenvalue,
and therefore this CMV is “two-dimensional” as well. In the 2D Ising model, the nearest-neighbor Cij matrix has

an eigenvector along
(
tan θ(cos2 Jt2 − 3 cos2 θ sin2 Jt

2 ),− sin θ tan Jt
2 (1 + 2 cos Jt+ sin2 Jt

2 sin2 θ), (1− sin2 θ sin2 Jt
2 )3
)

with a zero eigenvalue. The next-nearest-neighbor Cij matrix has a zero eigenvalue along z. In contrast, the CMVs
for nearest-neighbor correlations in the exact solution are all generally “three-dimensional.”

3. TWA

In TWA, the initial phase points for the state |θ〉 are obtained by rotating the phase points sampled from the
Wigner distribution associated with the state

∣∣π
2

〉
. Thus,

~Si(0) =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ






Xi/2

Yi/2

1/2


 =

1

2
(sin θ +Xi cos θ, Yi, cos θ −Xi sin θ)

T
, (A4)

where Xi and Yi are Gaussian random variables with mean 0 and variance 1. Simplifications for eiJS
zt or the group

operations of (Sx, Sy, Sz) don’t apply here. Therefore, the results in TWA differ from dTWA and the exact solution.
Equation (13) yields

〈Ŝ+
j (t)〉TWA =

1

4
sin θ

∏

l 6=j

e−J
2
jlt

2 sin2 θ/8

〈Ŝzj (t)〉TWA =
1

2
cos θ

〈Ŝ+
j (t)Ŝ+

k (t)〉TWA =
1

16
sin2 θ

(
1 + i

Jjkt cos θ

2

)2

e−
J2
jkt

2 sin2 θ

4 −iJjkt cos θ
∏

l 6=j,k

e−
(Jjl+Jkl)

2t2 sin2 θ

8 −i
(Jjl+Jkl)t cos θ

2

〈Ŝ+
j (t)Ŝ−k (t)〉TWA =

1

16
sin2 θ

(
1 +

J2
jkt

2 cos2 θ

4

)
e−

J2
jkt

2 sin2 θ

4 −iJjkt cos θ
∏

l 6=j,k

e−
(Jjl−Jkl)

2t2 sin2 θ

8 −i
(Jjl−Jkl)t cos θ

2

〈Ŝ+
j (t)Ŝzk(t)〉TWA =

1

8
sin θ

(
cos θ − i sin2 θ

Jjkt

2

) ∏

l 6=j,k

e−
J2
jlt

2 sin2 θ

8 −i
Jjlt cos θ

2 (A5)

The magnetization and correlation reasonably (but not exactly) agree with the exact solution at short times, and
exponentially decay to zero.

Again, two aspects of TWA are immediately clear from Eq. (A5). The first is that in long-range Ising models and

in higher dimensions, the exponential decay ∼ e−NJ
2t2 of the correlations in TWA closely mimics the ∼ cosN Jt

2
decay of the correlations in dTWA and exact solution at short times. The second aspect that can be observed is the
dimensionality of the CMVs. For a toy system with only two spins, the correlation matrix C12 always has an eigenvector

along
(

cos(Jt2 cos θ),− sin(Jt2 cos θ), cot θe−J
2t2 sin2 θ/8

)
with a zero eigenvalue, and therefore its CMV is always “two-

dimensional.” For the nearest-neighbor 1D Ising model, the nearest-neighbor Cij matrix always has an eigenvector

along
(

cos(Jt cos θ),− sin(Jt cos θ), cot θe−J
2t2 sin2 θ/4

)
with zero eigenvalue. In the nearest-neighbor 2D Ising model,
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the nearest-neighbor Cij matrix always has an eigenvector along
(

cos(2Jt cos θ),− sin(2Jt cos θ), cot θe−J
2t2 sin2 θ/2

)

with zero eigenvalue. In contrast, the CMVs for nearest-neighbor correlations in the exact solution are all generally
“three-dimensional.”
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FIG. 12. Nearest-neighbor spin correlations for a 1D peri-
odic chain of spins with the nearest-neighbor Ising interac-
tion, and initialized to

∣∣θ = π
2

〉
. Top two panels: the non-zero

components of Cij . Bottom two panels: Eigenvalues of Cij ,
and the matrix norm of the difference in correlation matrices,
||δCij || = ||Cij,exact−Cij,approx||. Black curve: exact solution,
blue circles: dTWA, red squares: TWA.
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FIG. 13. Nearest-neighbor spin correlations for a 2D square
lattice of spins with the nearest-neighbor Ising interaction,
and initialized to

∣∣θ = π
2

〉
. Top two panels: the non-zero

components of Cij . Bottom two panels: Eigenvalues of Cij ,
and the matrix norm of the difference in correlation matrices,
||δCij || = ||Cij,exact−Cij,approx||. Black curve: exact solution,
blue circles: dTWA, red squares: TWA.

Appendix B: Component-wise plots of spin
correlations

The main text compared TWA and dTWA with the
exact solution using CMVs, and several clear observa-
tions stood out. For example, the CMVs in the Wigner
approximations were “two-dimensional”, vanishing com-
pletely in one direction for nearest-neighbor Ising mod-
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FIG. 14. Nearest-neighbor spin correlations for a 1D peri-
odic chain of spins with a long-range Ising interaction decay-
ing with distance as 1/r3, and initialized to

∣∣θ = π
2

〉
. Top

two and middle left panels: the non-zero components of
Cij . Middle right panel: Eigenvalues of Cij . Bottom panel:
the matrix norm of the difference in correlation matrices,
||δCij || = ||Cij,exact − Cij,approx||. Black curve: exact solu-
tion, blue circles: dTWA, red squares: TWA

els with no transverse field, and suppressed in all cases
(although for infinite-range interactions, the suppression
becomes less pronounced as N →∞). Moreover, for the
initial state |θ = π/4〉, there were hints that orientation
of the CMV was accurate only up to moderate times in
dTWA. The CMVs in TWA exponentially shrunk with
time for Ising models, as expected.

This Appendix presents the same comparisons by con-
ventional means, plotting each Cartesian component sep-
arately. Although this is the same information as pre-
sented in the main text, it is sometimes less clear from
these component-wise plots, or sometimes even com-
pletely obscured, what information the Wigner approx-
imations correctly capture or miss – specifically, simple
trends such as the correlations along one direction be-
ing suppressed in all the Wigner approximations. We
also plot the eigenvalues of Cij to directly show that the
correlations are suppressed along one direction in dTWA
and TWA.

Figure 12 plots all the nonzero Cartesian components
of the nearest-neighbor spin correlations, and their eigen-
values, for a system initialized in |θ = π/2〉 and evolv-
ing under the 1D Ising model with no transverse field.
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FIG. 15. Spin-spin correlations for a systems of spins with
infinite range Ising interaction, and initialized to

∣∣θ = π
2

〉
.

Top two and middle left panels: the non-zero components
of Cij . Middle right panel: Eigenvalues of Cij . Bottom
panel: the matrix norm of the difference in correlation ma-
trices, ||δCij || = ||Cij,exact − Cij,approx||. Black curve: exact
solution, blue circles: dTWA, red squares: TWA.
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FIG. 16. Next-nearest-neighbor spin correlations for a 1D
periodic chain of spins with the nearest-neighbor Ising inter-
action, and initialized to

∣∣θ = π
2

〉
and interacting with the

nearest-neighbor Ising interaction. Top two panels: the non-
zero components of Cij . Bottom panels: Eigenvalues of Cij
and the matrix norm of the difference in correlation matrices,
||δCij || = ||Cij,exact−Cij,approx||. Black curve: exact solution,
blue circles: dTWA, red squares: TWA.

Figures 13 and 14 plots the nonzero components for the
same initial state, and evolving under the 2D Ising model
with no transverse field and the long-range 1/r3 1D Ising
model respectively. For these cases, the figures clearly
show that dTWA and TWA suppress the correlations
along x, because the suppressed component happens to
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FIG. 17. Nearest-neighbor spin correlations for a 1D peri-
odic chain of spins with the nearest-neighbor Ising interaction,
and initialized to

∣∣θ = π
4

〉
and interacting with the nearest-

neighbor Ising interaction. First five panels: the non-zero
components of Cij . Sixth panel: Eigenvalues of Cij . Bottom
panel: the matrix norm of the difference in correlation ma-
trices, ||δCij || = ||Cij,exact − Cij,approx||. Black curve: exact
solution, blue circles: dTWA, red squares: TWA.

be along a Cartesian direction. The last panel in each
figure, which shows the eigenvalues of Cij , also shows
that the correlations are suppressed completely for the
nearest-neighbor Ising models and partially for the long-
range model. The inset shows the matrix norm of the
difference in correlation matrices, ||δCij || = ||Cexact −
CdTWA|| and ||δCij || = ||Cexact − CTWA||, another in-
dicator of the difference between dTWA, TWA and the
exact solution.

Figure 15 plots the nonzero Cartesian components of
the spin-spin correlations, and their eigenvalues, for the
same initial state, and evolving under the infinite range
Ising model. The correlations build up rapidly at short
times on account of the infinite range of the interaction,
and dTWA and TWA agree well with the exact solution
at short times. But, dTWA and TWA do not capture
any of the dynamics at longer times tJ ∼ π. The last
panel in Fig. 15 shows that dTWA and TWA obtain the
eigenvalues of Cij reasonably well.

Figure 16 plots the nonzero components of the next-
nearest neighbor correlation, and their eigenvalues, for
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FIG. 18. Nearest-neighbor spin correlations for a 1D periodic
chain of spins initialized to

∣∣θ = π
2

〉
and interacting with a

nearest-neighbor transverse Ising model with h = J/3. Top
two rows: the non-zero components of Cij . Bottom row:
Eigenvalues of Cij , and the matrix norm of the difference in
correlation matrices, ||δCij || = ||Cij,exact − Cij,approx||. Black
curve: exact solution, blue circles: dTWA, red squares: TWA.

the same initial state, and evolving under the nearest-
neighbor 1D Ising model. While there is only nonzero
component for the exact solution and dTWA (which
captures the exact solution accurately), there are two
nonzero components in TWA. TWA overestimates one of
the components, and therefore one of the eigenvalues, of
Cij .

Figure 17 plots the nonzero Cartesian components of
the nearest-neighbor spin correlations, and their eigen-
values, for the initial state |θ = π/4〉 evolving under
the nearest-neighbor 1D Ising model with no transverse
field. In contrast to all the cases above, where the sup-
pressed correlations in dTWA and TWA could be clearly
observed in the component-wise plots, is non-trivial in
this case to deduce that the correlations are suppressed
along one direction from looking at the component-wise
plots. The fact that correlations are completely sup-
pressed along one direction is noticeable only by plotting
the eigenvalues of Cij in the last panel, and even this
panel isn’t helpful in arriving at a physical explanation

for where and why the correlation is suppressed. On the
other hand, the CMVs in Fig. 9 immediately shows that
dTWA and TWA again completely suppress correlations
along one direction, that this direction is aligned with the
spins at short times, and that the suppressed direction
then precesses with time, all of which is obscured by the
component-wise plots.

Figure 18 plots all the nonzero Cartesian components
of the nearest-neighbor spin correlations, and their eigen-

● ● ● ●
●

●

●

●
●

● ●

■ ■ ■ ■
■

■

■

■
■

■ ■

1 2 3 4
-0.1

0.

0.1

Jt

C
ijx
x

●
●

●

●

● ● ● ● ● ● ●

■
■

■

■

■ ■ ■ ■ ■ ■ ■

1 2 3 4
-0.1

0.

0.1

Jt

C
ijy
y

●

●

● ● ● ● ● ●
●

● ●

■

■

■ ■ ■ ■ ■ ■ ■ ■ ■

1 2 3 4
-0.1

0.

0.1

Jt

C
ijy
z

●
●

● ● ● ● ● ● ● ● ●
■

■
■ ■ ■ ■ ■ ■ ■ ■ ■

1 2 3 4
-0.1

0.

0.1

Jt

C
ijzz

●

●
● ●

●
● ● ● ●

● ●
● ● ● ●

●
●

●

●
● ● ●

●

●

●

●
● ● ● ● ● ● ●

■

■
■ ■

■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■

■
■

■
■

■ ■ ■

■

■

■

■
■ ■ ■ ■ ■ ■ ■

1 2 3 4

-0.1

0.

0.1

Jt

ei
g
s(
C
)

●

●

●

●
●

●

●
● ●

● ●

■

■

■

■

■

■

■

■ ■
■ ■

1 2 3 4
0

0.05

Jt

||
δ
C
||

FIG. 19. Nearest-neighbor spin correlations for a 1D peri-
odic chain of spins initialized to

∣∣θ = π
2

〉
and interacting with

the nearest-neighbor XX model. Top two rows: the non-
zero components of Cij . Bottom row: Eigenvalues of Cij ,
and the matrix norm of the difference in correlation matrices,
||δCij || = ||Cij,exact−Cij,approx||. Black curve: exact solution,
blue circles: dTWA, red squares: TWA.

values, for the initial state |θ = π/2〉 evolving under the
1D transverse Ising model with h = J/3. The panels
show that the dominant error in dTWA and TWA is
again to partially suppress the correlations along x. The
correlations also precess about x, a fact which is not vis-
ible from Fig. 18, but is immediately apparent in Fig. 10.
Figure 19 plots all the nonzero Cartesian components of
the nearest-neighbor spin correlations, and their eigen-
values, for the initial state |θ = π/2〉 evolving under the
1D XX model. The correlations in dTWA and TWA are
suppressed along x for tJ . 2, and along z for tJ & 2.
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[4] M. Prüfer, P. Kunkel, H. Strobel, S. Lannig, D. Linne-
mann, C.-M. Schmied, J. Berges, T. Gasenzer, and M. K.
Oberthaler, Nature 563, 217 (2018).

[5] T. Langen, R. Geiger, and J. Schmiedmayer, Ann. Rev.
Cond. Mat. Phys. 6, 201 (2015).



18

[6] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalat-
tore, Rev. Mod. Phys. 83, 863 (2011).

[7] A. Lamacraft and J. Moore, in Ultracold Bosonic and
Fermionic Gases, Volume 5 (Contemporary Concepts of
Condensed Matter Science) (Elsevier, Oxford, UK, 2012).

[8] E. Altman, arXiv preprint arXiv:1512.00870 (2015).
[9] T. Giamarchi, A. J. Millis, O. Parcollet, H. Saleur,

and L. F. Cugliandolo, Chapter 1 of Strongly Interact-
ing Quantum Systems out of Equilibrium: Lecture Notes
of the Les Houches Summer School: Volume 99, August
2012, Vol. 99 (Oxford University Press, 2016).

[10] K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. E. Ed-
wards, J. K. Freericks, G.-D. Lin, L.-M. Duan, and
C. Monroe, Nature (London) 465, 590 (2010).

[11] R. Islam, C. Senko, W. C. Campbell, S. Korenblit,
J. Smith, A. Lee, E. Edwards, C.-C. J. Wang, J. K. Fre-
ericks, and C. Monroe, Science 340, 583 (2013).

[12] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J.
Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J.
Bollinger, Nature 484, 489 (2012).

[13] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall,
A. M. Rey, M. Foss-Feig, and J. J. Bollinger, Science
352, 1297 (2016).

[14] A. De Paz, A. Sharma, A. Chotia, E. Marechal, J. H.
Huckans, P. Pedri, L. Santos, O. Gorceix, L. Vernac, and
B. Laburthe-Tolra, Phys. Rev. Lett. 111, 185305 (2013).

[15] A. de Paz, P. Pedri, A. Sharma, M. Efremov, B. Naylor,
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[57] S. Czischek, M. Gärttner, M. Oberthaler, M. Kastner,
and T. Gasenzer, Quant. Sci. Tech. 4, 014006 (2018).

[58] J. Wurtz, A. Polkovnikov, and D. Sels, Ann. Phys.
(2018).

[59] R. Mukherjee, A. E. Mirasola, J. Hollingsworth, I. G.
White, and K. R. A. Hazzard, Phys. Rev. A 97, 043606
(2018).



19

[60] G. Kimura, Phys. Lett. A 314, 339 (2003).
[61] M. S. Byrd and N. Khaneja, Phys. Rev. A 68, 062322

(2003).
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