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We study the supercurrent decay of a Bose-Einstein condensate in a ring trap combined with
a repulsive barrier potential. In recent experiments, Kumar et al. [Phys. Rev. A 95, 021602(R)
(2017)] have measured the dependence of the decay rate on the temperature and the barrier strength.
However, the origin of the decay observed in the experiment remains unclear. We calculate the rate
of supercurrent decay due to thermally activated phase slips (TAPS) by using the Kramers formula
based on the Gross-Pitaevskii mean-field theory. The resulting decay rate is astronomically small
compared to that measured in the experiment, thus excluding the possibility of TAPS as the decay
mechanism. Alternatively, we argue that three-body losses can be relevant to the observed decay
and predict that one can observe supercurrent decay via TAPS by decreasing the number of atoms.

I. INTRODUCTION

Systems of ultracold gases confined in ring-shaped
traps have served as an ideal platform for studies of
superfluidity [1–14]. Their exquisite controllability has
led to experimental observations of various fundamen-
tal properties of superfluids, including persistent currents
[2–4, 12–14], critical velocities [6, 7], and hysteresis loops
[10]. Such systems attract growing interest also as an
atomic analog of superconducting quantum interference
device [15], which constitutes a basic element for atom-
tronic circuits [16, 17].

A recent experiment performed by the NIST group has
raised a puzzling question concerning the superfluidity in
a ring-shaped Bose-Einstein condensate (BEC) [14]. In
this experiment, they prepared a current-carrying BEC
with winding number 1 as an initial state and measured
the lifetime of this state. To induce the decay of the
persistent current, they exposed the BEC to a repulsive
potential barrier, which is generated by a blue detuned
laser beam. They found that the observed decay rate is
significantly dependent on the barrier strength U0 and
the temperature T . One might naively expect that this
result could be interpreted as a decay of the persistent
current via thermally activated phase slips (TAPS) [18–
20], whose decay rate Γ obeys the Arrhenius law, i.e.,

Γ ∝ e−E
−
B /(kBT ). Here E−B denotes the energy barrier

separating the state with winding number 1 from that
with winding number 0 (see Fig. 1). However, the NIST
group presented a rough estimation of E−B to argue that
the observed decay rate is inconsistent with the Arrhe-
nius law. Thus, the decay mechanism of the persistent
currents remains unclear.

The above mentioned observation of Ref. [14] chal-
lenges our common understanding of the superfluidity
in the sense that TAPS has been established as a uni-
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FIG. 1: (Color online) Schematic picture of the energy land-
scape of the system. The left and right local minima are the
ground state and a persistent current state, respectively. The
local maximum is an unstable state, in the present case, the
solitonic vortex state. Γ± and E±B are the nucleation rate and
the energy barrier of the acceleration and the decay process,
respectively.

versal decay mechanism applicable to various superfluid
systems at finite temperatures, such as superfluid 4He
[21, 22], superconductors [23], spin superfluids [24], and
one-dimensional Bose gases in optical lattices [25, 26].
Resolving this puzzle is important also for engineering
and controlling the atomtronic circuits, which require
quantitative understanding of the persistent current in
the presence of repulsive potential barriers [8].

In this paper, we first re-examine the possibility of
TAPS as a decay mechanism by quantitatively computing
the nucleation rate of TAPS without any fitting parame-
ters. Our quantitative result shows that the energy bar-
rier in Ref. [14] was considerably underestimated. Nev-
ertheless, the computed decay rate completely disagrees
with the value measured in Ref. [14], thus confirming that
TAPS is irrelevant to the observed decay. Alternatively,
we find that three-body losses can induce the decay of
superflow in the experimental setup and discuss the pos-
sibility of this decay mechanism in the experiment. This
indicates that one may observe decay via TAPS by opti-
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mizing some experimental parameters in such a way that
TAPS is enhanced. We explicitly identify parameter re-
gions in which TAPS dominates over three-body losses
and predict the decay rate via TAPS as a reference that
can be directly compared with future experiments.

This paper is organized as follows: In Sec. II, we ex-
plain the system considered in this paper. In Sec. III A
and III B, we show our results for the energy barrier, life-
time, and real-time dynamics within the three-body loss
in the quasi-2D and 3D systems.. In Sec. IV, we summa-
rize our results. In the appendix, we explain the details
of the numerical method used in this paper.

II. MODEL AND METHODS

We consider a BEC in a combined potential of a ring
trap and a repulsive barrier to mimic the situation in the
experiment of Ref. [14]. The interatomic interaction is
sufficiently weak so that the dynamics of the superfluid
order parameter ψ(x, y, z, t) is quantitatively described
within the mean-field approximation. Specifically, the
three-dimensional (3D) Gross-Pitaevskii (GP) equation
with a phenomenological three-body loss term [27] is
given by

i~
∂

∂t
ψ(x, y, z, t)

=

[
− ~2

2m
∇2 + U(x, y, z) + g|ψ(x, y, z, t)|2

]
ψ(x, y, z, t)

− i~
2
L3|ψ(x, y, z, t)|4ψ(x, y, z, t), (1)

where m is the mass of the atom, U(x, y, z) ≡
(1/2)mω2

r (r−R)2 +(1/2)mω2
zz

2 +Uext(r) represents the
trap potential and the barrier potential, r = (x, y), ωr

and ωz are the trap frequency of the radial direction and
z-direction, respectively, R is the mean radius of the ring
trap, g ≡ 4π~2as/m is the coupling constant, as is the
s-wave scattering length, and L3 is the three-body loss
rate. We note that the three-body loss term is set to
zero except for the calculations of Fig. 10 in Sec. III B 3.
The barrier potential is created by dithering the Gaus-
sian laser beam. The time-averaged potential Uext(r) is
given by [28]

Uext(r) =
U0

2

{
erf

[√
2

w

(
x−R+

ld
2

)]

−erf

[√
2

w

(
x−R− ld

2

)]}
e−2y

2/w2

,

(2)

where U0 is the potential strength, w is the 1/e2 width of
the laser beam, ld is the length of the dither, and erf(·)
is the error function.

In Sec. III A, we show the quasi two-dimensional (2D)
results. The quasi 2D GP equation is derived by sub-

stituting ψ(x, y, z, t) = Ψ(r, t)[1/
√√

πaz]e
−(z/az)2/2 into

Eq. (1):

i~
∂

∂t
Ψ(r, t)

=

[
− ~2

2m
∇2

2D + U2D(r) + g2D|Ψ(r, t)|2
]

Ψ(r, t)

− i~
2
L3,2D|Ψ(r, t)|4Ψ(r, t), (3)

where ∇2
2D ≡ ∂2/∂x2 + ∂2/∂y2 is the two-dimensional

Laplacian, U2D(r) ≡ (1/2)mω2
r (r − R)2 + Uext(r)

is the two-dimensional external potential, g2D ≡√
8π~2as/(maz) is the two-dimensional coupling constant

[29], az ≡
√

~/(mωz) is the harmonic oscillator length in

the z-direction, and L3,2D ≡ L3/(
√

3πa2z) is the quasi-
2D three-body loss rate. We also note that L3,2D term
is set to zero except for the calculations of Fig. 5. in
Sec. III A 3.

To obtain excitation spectra, we linearize the GP equa-
tion around a stationary solution Ψ(r, t) = e−iµt/~Φ(r),
where µ is the chemical potential. The linearized GP
equation, i.e., the Bogoliubov equation is given by

HB

[
ui(r)
vi(r)

]
= εi

[
ui(r)
vi(r)

]
, (4)

HB ≡
[

L g2DΦ(r)2

−g2DΦ∗(r)2 −L∗
]
, (5)

L ≡ − ~2

2m
∇2

2D + U2D(r)− µ+ 2g2D|Φ(r)|2,
(6)

where εi is the excitation energy and ui(r) and vi(r) are
eigenfunction of the excited state labeled by i.

In addition to the Bogoliubov equation, we need to
diagonalize the following matrix: HE ≡ σ3HB, where
σ3 = diag(+1,−1). Let λi be an eigenvalue of the matrix
HE, which is a real value in contrast to the eigenvalue of
the Bogoliubov equation εi ∈ C.

In the experiment of Ref. [14], they prepare a state with
the winding number W = 1 as the initial state. Here, we
calculate the decay from W = 1 state (metastable state)
toW = 0 state (ground state). According to the Kramers
formula [30, 31], the nucleation rate can be written as

Γ ≡ Γ− − Γ+, (7)

Γ± ≡
|εDI|/~

2π

∏
n

′

√
λs±n
|λun|

e−E
±
B /(kBT ), (8)

where Γ−(Γ+) is a nucleation rate of the decay process
(the acceleration process) (see Fig. 1), εDI is the fre-
quency of the unstable mode and λun and λs±n are the
eigenvalues of the matrix HE, E±B is the energy barrier of
the acceleration and the decay process, kB is the Boltz-
mann constant, T is the temperature of the system. In
the product of Eq. (8), we omit the zero-modes (λn = 0).
We define the nucleation rate (inverse of the lifetime) as
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FIG. 2: (Color online) Density [n(r) ≡ |Φ(r)|2] and phase
[ϕ(r) ≡ Im log Φ(r)] profiles of the metastable [(a) and (c)]
and unstable [(b) and (d)] solutions for U0 = 0.7µexp, respec-
tively.

the difference between Γ− and Γ+. We note that the
Kramers formula is valid for E±B � kBT .

Here, we explain the numerical method used in this
work. In the quasi-2D calculations of the GP equation
and the Bogoliubov equation, we use the almost same
methods as those used in our previous work [26], i.e., the
space discretization is performed by the discrete vari-
able representation method [32] (see also Appendix A)
and seeking the unstable stationary solution of the GP
equation is based on the pseudo-arclength continuation
method [33, 34] and the Newton method. For the real-
time dynamics, we use the pseudo-spectral method. The
typical numerical meshes taken in this work are 129×129.

In the 3D calculation, we use the standard discretiza-
tion method for the calculations of the energy barrier (see
sec. III B) and pseudo-spectral method for the calcula-
tions of the real-time dynamics. The typical numerical
meshes taken in this work are 129× 129× 65.

It is worth emphasizing that although the GP equation
has been extensively used for studying superfluidity of
ring-shaped BEC [35–39], decay rates via TAPS at 2D, to
our knowledge, have never been quantitatively calculated
because of the difficulty in finding the unstable solutions.

III. RESULTS

A. Quasi-2D results

Here, we show our theoretical results for quasi-2D sys-
tems, which are compared to the experimental ones. In
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FIG. 3: (Color online) Energy barrier as a function of the
strength of the external potential. The red circles and the
blue squares denote the values computed in this work and
those estimated in Ref. [14], respectively.

the following calculations, we consider 23Na atom and set
the system parameters as the case I in the Refs. [14, 40],
which corresponds to the lowest temperature and the
strongest two-dimensionality in the experiment. The
specific values are as follows: m = 3.82 × 10−26 kg,
(ωr, ωz)/(2π) = (258 Hz, 974 Hz), R = 22.4 µm, as =
2.75 nm, w = 6 µm, and ld = 21.8 µm. We use the
particle number N ' 3.75 × 105, which comes from the
ground state particle number at the chemical potential
µ = µexp ≡ h × 2.91 kHz. Here, µexp is the chemical
potential measured in the experiment.

1. Density and phase profiles

First, we show the density and phase profiles of the
order parameter for the metastable and unstable states
in Fig. 2. We see a solitonic vortex (SV) at the low-
density region under the barrier potential in the unstable
solution [Figs. 2 (b) and (d)]. The NIST group assumed
the presence of such a SV in the unstable state when they
estimated the energy barrier [14]. Our results support the
validity of their assumption.

2. Energy barrier and lifetime

Next, we show the energy barrier as a function of the
strength of the external potential in Fig. 3. There we
compare our results with those estimated in Ref. [14] and
see that the latter is considerably underestimated. This
happens because the energy barrier was estimated by the
energy of the SV [Eq. (2) in Ref. [14]] for a uniform sys-
tem. The present system is non-uniform due to the trap
potential and the external potential, which significantly
modify the quantitative size of the energy barrier.

We then show the lifetime of the superflow due to the
TAPS in Fig. 4. We see that the lifetime due to TAPS
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FIG. 4: (Color online) Lifetime of the superflow (Γ−1) as
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FIG. 5: (Color online) Time evolution of the angular mo-
mentum for various strength of the potential. The angu-
lar momentum is normalized by the initial particle number
N0 ' 4.40× 105.

is astronomically longer than that observed in Ref. [14]
(1-10 s). The origin of such long lifetime is the large en-
ergy barrier compared to the temperature. In the present
case, the energy barrier is typically EB/h ∼ 200 kHz (see
Fig. 3) and the temperature is given by kBT/h ' 0.6 kHz
(T = 30 nK). Consequently, we obtain the extremely
long lifetime Γ−1 ∼ eEB/(kBT ) ∼ e300. From the above
results, we conclude that the TAPS is irrelevant to the
decay of superflow observed in Ref. [14].

3. Three-body loss

Instead of the TAPS, we investigate the effects of three-
body losses. The reason why we consider three-body
losses is that the timescale of the NIST experiment (∼ 5s)
is longer than that of the typical cold atomic gases ex-
periments (. 1s). Hence, the three-body loss, which is

negligible in the usual cases, may become relevant to the
supercurrent decay. Specifically, the superflow state is
a metastable state, which may be broken by three-body
losses.

In order to investigate the effects of three-body losses
in quasi-2D systems, we numerically solve Eq. (3) with
L3,2D 6= 0. Here, we set L3 = 1.1× 10−30 cm−6/s, which
is the three-body loss rate of the 23Na atom [41]. The
initial condition is the ground state solution of the non-
dissipative GP equation (L3 = 0) for U0 = 0 and N '
4.40 × 105, which comes from the ground state particle
number at µ = (10/9)µexp. The reason why we put a
factor 10/9 to µexp is that µexp is measured at the end
of the experiment [42]. According to Ref. [14], the atom
loss reduces the chemical potential by 10%. Therefore,
the initial particle number is evaluated by (10/9)µexp.

The time dependence of the potential strength U0 is de-
termined by mimicking the experimental sequences (see
Fig. 1 in Ref. [40].). Specifically, we start with U0 = 0 at
t = 0. The first 1 s is the preparation stage for W = 1
state. The strength is linearly ramped up in 300 ms,
kept constant (U0 = 1.1µexp) in 400 ms, and linearly
ramped down in 300 ms. During this ramp-up process,
we rotate the barrier potential at the angular velocity
Ω0 ≡ ~/(mR2) ' 2π × 0.88 Hz. For 1 s ≤ t ≤ 3 s,
the potential strength is kept zero. Finally, U0 is lin-
early ramped up to the desired value in 70 ms and kept
constant after that.

We use the fourth-order Runge-Kutta method for the
time evolution and the pseudo-spectral method for space
discretization. The numerical meshes are used for 128×
128 and the time step ∆t for ∆t = 0.5 µs.

The time dependence of the angular momentum of the
z-component per particle is shown in Fig. 5, where the
expression of the angular momentum is given by

Lz(t) ≡
∫
drΨ∗(r, t)lzΨ(r, t), (9)

lz ≡ −i~
(
x
∂

∂y
− y ∂

∂x

)
. (10)

We can see a sudden jump of the angular momentum im-
mediately after t = 3s. This is due to the ramp-up of the
potential strength U0 during 3s ≤ t ≤ 3.07s, which does
not change the winding number. After this sudden de-
crease, the angular momentum decays at a certain time
for U0 ≥ 0.7µexp. This decay can be attributed to the fact
that the energy barrier E±B diminishes as the total par-
ticle number decreases via three-body losses. This result
means that three-body losses can induce the decay of su-
perflow within a few tens of seconds at zero-temperature.

Here, we comment on the fluctuations of the angular
momentum around zero after the phase slip. After the
vortex passes through the ring trap, various oscillation
modes are excited. Hence the system has weak dissi-
pation (three-body loss), these excitations do not decay.
Consequently, the angular momentum strongly fluctuates
around Lz = 0.
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4. Discussion

In Sec. III A 3, we found that three-body losses can in-
duce the decay of superflow at zero temperature. The re-
maining problem is whether this mechanism is the origin
of the decay observed in the NIST experiment or not. To
investigate this, we compare the decay timescale of the
experiment with the theoretical one. Before discussing
our results, we briefly explain how to extract the lifetime
in the NIST experiment [14]: The experimentalists mea-
sured the winding number of the BEC as a function of
the temperature, the barrier strength, and the time by
using the interference technique [12]. The ensemble av-
erage of the winding number can be interpreted as the
angular momentum per particle. They fitted the results
to the exponential function exp (−Γt) [see Fig.2 (a) in
Ref. [14]]. The experimental lifetime is given by 1/Γ.

The experimental results show that the lifetime is
about 6.7 s for U0 = 0.6884µexp. In the theoretical cal-
culations, we obtain that the time for the instability to
set in is about 20.4 s for U0 = 0.6884µexp. This result
shows that the theoretical decay timescale is about three
times longer than the experimental one. This means that
the experimental results can not be attributed solely to
the three-body losses. In addition to this, our calcula-
tions cannot explain the temperature dependence of the
lifetime.

An obvious reason for this discrepancy is the lack of
finite-temperature effects in our GP calculations. These
effects should enhance the decay of superflow. Moreover,
other mechanisms, which accelerate the decay of super-
flow, may exist in the actual experimental setup. For
example, one-body loss due to the inelastic collision be-
tween the atoms and the background gases, inelastic col-
lision of the light scattering, and inevitable experimental
noise and so on. Hence, our results should be interpreted
as the upper bound of the decay timescale. The hybrid
effects of the three-body loss and the finite temperature
effects are a possible scenario of the decay of superflow

in the NIST experiment.

To confirm whether or not the hybrid effects appear
in the experiment, we need to perform the dynamical
simulations including the finite temperature effects and
the three-body loss and compare them with the experi-
ments. For example, the truncated-Wigner approxima-
tion (TWA) [43, 44], the Zaremba-Nikuni-Griffin (ZNG)
formalism [45], and the stochastic projected GP (SPGP)
method [43, 46] have been used for simulating dynam-
ics of BEC at finite temperatures in previous literature.
Among them, the ZNG formalism cannot describe the
nucleation process of the vortices due to thermal fluctu-
ations. The TWA at finite temperature and the SPGP
method are possible ways to attack this problem. To in-
vestigate the decay problem by using such kind of meth-
ods will be our future work.

Nevertheless, we can at least predict that if the decay
is indeed due to three-body losses, one can experimen-
tally observe the decay via TAPS by suppressing the en-
ergy barrier in the following way: we seek the parameter
region where the lifetime due to the TAPS becomes 1-
100 ms by tuning the particle number in the trap. In
this time scale, we can neglect the effects of three-body
losses. Figure 6 shows the lifetime of the superflow for
N ' 2.7×104 [note that the particle number in the exper-
iment is O(105).], which corresponds to the ground-state
particle number for µ = h× 0.5 kHz. Here, other param-
eters such as trap frequencies are fixed. If these results
agree with future experiments, we can conclude that the
superflow decay via TAPS occurs without being affected
by three-body losses.

B. 3D results

In Sec. III A, we showed the quasi-2D results. How-
ever, the confinement in the z-direction is not suffi-
ciently strong for quantitatively justifying the quasi-2D
approximation. In fact, the experimental parameters
are given by ωz = 2π × 974Hz, ωr = 2π × 256Hz,
kBT = kB × 30nK ' h × 600Hz, and µ = h × 2.91kHz.
From these values, we can obtain the following inequal-
ity; µ > ~ωz > kBT > ~ωr, which is inconsistent with
a quasi-2D condition ~ωz � max(kBT, µ, ~ωr). In the
experimental setup, the thermal excitations along the
z-direction are suppressed and the spatial dependence
of the order parameter on the z-direction is not of the
Gaussian form. This means that the conclusions in the
previous section should be treated carefully.

In this section, we show the 3D calculation results in
order to clarify the validity of the quasi-2D calculations
performed in the previous section. We show the energy
barrier and the real-time dynamics with the same param-
eters as those of the quasi-2D systems. We will see that
the quasi-2D and 3D results are qualitatively similar.



6

-30 -20 -10 0 10 20 30

x [µm]

-30

-20

-10

0

10

20

30
y 

[µ
m

]

-30 -20 -10 0 10 20 30

x [µm]

 0
 25
 50
 75
 100
 125
 150
 175
 200

n(
x,

y,
0)

 [1
/µ

m
3 ]

-30 -20 -10 0 10 20 30

x [µm]

-30

-20

-10

0

10

20

30

z 
[µ

m
]

-30 -20 -10 0 10 20 30

x [µm]

 0
 25
 50
 75
 100
 125
 150
 175
 200

n(
x,

0,
z)

 [1
/µ

m
3 ]

-30 -20 -10 0 10 20 30

x [µm]

-30

-20

-10

0

10

20

30

y 
[µ

m
]

-30 -20 -10 0 10 20 30

x [µm]

-3

-2

-1

 0

 1

 2

 3

ϕ(
x,

y,
0)

(a) (b)

(c) (d)

(e) (f)

FIG. 7: (Color online) Density and phase profile for 3D sys-
tems. (a), (b) Density profiles in the x-y plane (z = 0) for
metastable and unstable states. (c), (d) Density profiles in
the x-z plane (y = 0) for metastable and unstable states. (e),
(f) Phase profiles in the x-y plane (z = 0) for metastable and
unstable states. The potential strength is U0 = 0.7µexp.

1. Density and phase profile

First, we show the density and phase profiles in the 3D
systems for the metastable and unstable stationary states
in Fig. 7. Here, the particle number is N3D ' 4.31× 105,
which is evaluated as the particle number of the ground
state at the chemical potential µexp by solving the GP
equation. We see the SV at the low-density region in the
unstable solution [Figs. 7 (b) and (f)]. The existence of
the SV reflects the z-dependence of the density [Fig. 7
(d)]. Comparing Fig. 7 (c) with Fig. 7 (d), we can see
that the density around x ∼ R of the unstable state is
lower than that of the metastable state. This is due the
existence of the SV. These results are consistent with the
quasi-2D ones (see Fig. 2).
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2. Energy barrier

Next, we show the energy barrier in Fig. 8. The 3D
results are shown by the green triangles. We can find
that the values of the energy barrier for 3D systems are
close to those of the experimental one compared to the
2D ones. In the following, we explain the reason why the
energy barrier in 3D are so different from that in 2D (the
difference is roughly 200kHz).

The difference between 2D and 3D systems can be at-
tributed to the discrepancy in the critical strength of the
external potential Uc, where the energy barrier for the
W = 1 states vanishes. The critical values are given by
U2D
c ' 0.960µexp and U3D

c ' 0.839µexp, which are de-
termined by the time-evolution of the GP equation as
performed in Sec. III A 3 and Sec. III B 3. This result in-
dicates that one should compare the energy barriers in
2D and 3D systems as a function of U0/Uc instead of
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FIG. 10: (Color online) Time evolution of the angular mo-
mentum for various strength of the potential in 3D. The an-
gular momentum is normalized by the initial particle number
N0 ' 5.32× 105.

U0/µexp. In Fig. 9, we show the energy barrier as a func-
tion of rescaled external potential strength U0/Uc. This
result shows that the difference between the 2D and 3D
energy barrier at the same U0/Uc is about 50kHz, which
is small compared to the difference that is extracted from
the same U0/µexp.

Our results show that the values of the 3D energy bar-
rier are small compared to those of the 2D ones. Never-
theless, our conclusion that the TAPS is irrelevant to the
supercurrent decay observed in the NIST experiment still
remains. The reasons are as follows: The typical energy
barrier for the 3D system is given by EB ∼ h× 100kHz.
This means that the ratio between the energy barrier
and the temperature is given by EB/(kBT ) ∼ 100 for
T = 30nK. Although we do not calculate the prefactor
of the Kramers formula in 3D systems due to the high
computational costs, we can estimate the lifetime by us-
ing the 2D prefactor. The lifetime for T = 30nK and
U0 = 0.6884µexp becomes Γ−1 ∼ 1057s, which is much
longer than the experimental timescales. From this 3D
calculation, we can confirm that the TAPS is irrelevant
in the NIST experiment.

3. Three-body loss

Finally, we show the results for the effects of three-
body losses in the 3D systems. We solve the 3D dissi-
pative GP equation (1). The numerical procedures are
the same as the quasi-2D case: The initial condition
is the ground-state solution of the non-dissipative GP
equation (L3 = 0) for U0 = 0 and N ' 5.32 × 105,
which comes from the ground-state particle number at
µ = (10/9)µexp. We use the split-step method for the
time evolution and the pseudo-spectral method for space
discretization. The numerical meshes and the time step
used here are 128×128×64 and ∆t = 0.5 µs, respectively.

Figure 10 shows the time evolution of the z-component

of the angular momentum for various potential strengths.
Comparing these results with those shown in Fig. 5, the
qualitative behavior is rather similar to the quasi-2D one.
We also find that the time for the instability to set in is
about 20.3s for U0 = 0.6884µexp. This value is almost
the same as the quasi-2D case (see III A 4). From these
results, we conclude that the effects of the z-direction for
the three-body loss induced decay are not significant.

IV. SUMMARY

We have investigated the supercurrent decay of BEC
in ring traps to reveal the origin of the decay observed
in the experiment of Ref. [14]. First, we re-considered
the decay via the TAPS based on the Kramers formula
in the quasi-2D systems. Our results show that the life-
time via TAPS is astronomically long. This means that
the TAPS is not relevant in the experiment of Ref. [14].
The same conclusion has also been obtained from the 3D
calculations.

Next, we performed the numerical simulations of the
GP equation with the three-body loss term in the quasi-
2D and 3D systems and found that three-body losses can
induce the decay of superflow at zero temperature. Com-
paring the decay timescale of the theory and experiment,
we found the decay timescale is about three times longer
than the experimental one. These results indicate that
the experimental results can not be attributed solely to
the three-body loss. We proposed a possible scenario
that the hybrid effects of the three-body loss and the fi-
nite temperature is the origin of the decay observed in
the NIST experiment. We also proposed that one can en-
hance the TAPS by decreasing the energy barrier in order
to observe the decay via the TAPS in future experiments.

We finally emphasize that the effects of particle loss, to
our knowledge, have not been considered in the context
of superflow decay before the present work. In this sense,
our results open up a new possibility in the study of su-
perfluidity. Specifically, consideration of such effects is
expected to be relevant also to advanced superfluid sys-
tems, including exciton polariton BEC [47] and ultracold
atomic gases with controllable particle losses [48, 49].
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Appendix A: DVR method

In this appendix, we explain the DVR method [32].
For numerical calculations, we consider a box region
[−L′x/2,+L′x/2] × [−L′y/2,+L′y/2], where L′x ≡ Lx/ar
and L′y ≡ Ly/ar are the dimensionless system size for

x and y directions, respectively, and ar ≡
√
~/(mωr) is

the harmonic oscillator length of the radial direction. We
discretize the space into Nx×Ny lattice points. The con-
densate wave function is expanded as a series of the DVR
functions:

Ψ′(r′, t′) =

(Nx−1)/2∑
i=−(Nx−1)/2

(Ny−1)/2∑
j=−(Ny−1)/2

Ψ′ij(t
′)fi(x

′)gj(y
′),

(A1)

where Nx and Ny are odd natural numbers and the DVR
functions fi(x

′) and gj(y
′) are defined by

fi(x
′) ≡ 1

Nx
√

∆x

sin[π(x′/∆x− i)]
sin[π(x′/∆x− i)/Nx]

, (A2)

gj(y
′) ≡ 1

Ny
√

∆y

sin[π(y′/∆y − j)]
sin[π(y′/∆y − j)/Ny]

. (A3)

Here, the mesh sizes of the x and y-directions are given
by ∆x ≡ L′x/Nx and ∆y ≡ L′y/Ny. We can show that
on the mesh points, which are x′i ≡ ∆x × i and y′j ≡
∆y × j, the DVR functions satisfy fi(xk) = δi,k/

√
∆x

and gj(y
′
k) = δj,k/

√
∆y. We can also show that the DVR

functions satisfy the orthonormal relations∫ +L′x/2

−L′x/2
dx′fi(x

′)fj(x
′) = δij , (A4)∫ +L′y/2

−L′y/2
dy′gi(y

′)gj(y
′) = δij , (A5)

where we used the Gauss quadrature to derive these re-
lations [50]. We note that the wave function on the mesh
points satisfies Ψ′(x′i, y

′
j , t
′) = Ψ′ij(t

′)/
√

∆x∆y.
From the above relations, we can derive the matrix

elements of the first and second derivative terms

T
(1)
x,ij ≡

∫ +L′x/2

−L′x/2
dx′fi(x

′)
d

dx′
fj(x

′)

=


π

Nx∆x

(−1)i−j

sin[π(i− j)/Nx]
(i 6= j)

0 (i = j)

, (A6)

T
(1)
y,ij ≡

∫ +L′y/2

−L′y/2
dy′gi(x

′)
d

dy′
gj(y

′)

=


π

Ny∆y

(−1)i−j

sin[π(i− j)/Ny]
(i 6= j)

0 (i = j)

, (A7)

T
(2)
x,ij ≡ −

1

2

∫ +L′x/2

−L′x/2
dx′fi(x

′)
d2

dx′2
fj(x

′)

=


(−1)i−j

∆x2
π2

N2
x

cos [π(i− j)/Nx]

sin2 [π(i− j)/Nx]
(i 6= j)

π2

6∆x2

(
1− 1

N2
x

)
(i = j)

,

(A8)

T
(2)
y,ij ≡ −

1

2

∫ +L′y/2

−L′y/2
dy′gi(y

′)
d2

dy′2
gj(y

′)

=


(−1)i−j

∆y2
π2

N2
y

cos [π(i− j)/Ny]

sin2 [π(i− j)/Ny]
(i 6= j)

π2

6∆y2

(
1− 1

N2
y

)
(i = j)

.

(A9)

One of the advantage of the DVR method is that
the matrix elements of the potential and the interaction
terms are diagonal. Although the matrix elements of the
kinetic terms have the off-diagonal elements, the matrix
is sparse. This is the advantageous to the calculation of
the Bogoliubov equation. The other advantage is that the
DVR method has higher accuracy compared to the stan-
dard discretization method (centered difference method).
The DVR method can represent up to the polynomials of
degree O(Ni) exactly, where Ni(i = x, y) is the number
of lattice points for i-direction. This is in contrast to the
standard discretization method, which can represent up
to the quadratic polynomials exactly. This fact comes
from the Gauss quadrature in the derivation.

We note that another type of basis has been used
to calculate the GP and the Bogoliubov equation in
Ref. [51].
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[16] B. T. Seaman, M. Krämer, D. Z. Anderson, and M. J.
Holland, Phys. Rev. A 75, 023615 (2007).

[17] R. A. Pepino, J. Cooper, D. Z. Anderson, and M. J.
Holland, Phys. Rev. Lett. 103, 140405 (2009).

[18] J. S. Langer and M. E. Fisher, Phys. Rev. Lett. 19, 560
(1967).

[19] J. S. Langer and V. Ambegaokar, Phys. Rev. 164, 498
(1967).

[20] D. E. McCumber and B. I. Halperin, Phys. Rev. B 1,
1054 (1970).

[21] J. S. Langer and J. D. Reppy, in Progress in Low Tem-
perature Physics, edited by C. J. Gorter (North-Holland,
Amsterdam, 1970), Vol. 6, Chap. 1.

[22] J. D. Reppy, J. Low Temp. Phys. 87, 205 (1992).
[23] B. I. Halperin, G. Refael, and E. Demler, Int. J. Mod.

Phys. B 24, 4039 (2010).
[24] S. K. Kim, S. Takei, and Y. Tserkovnyak, Phys. Rev. B

93, 020402(R) (2016).
[25] L. Tanzi, S. S. Abbate, F. Cataldini, L. Gori, E. Lucioni,

M. Inguscio, G. Modugno, and C. D’Errico, Sci. Rep. 6,
25965 (2016).

[26] M. Kunimi and I. Danshita, Phys. Rev. A 95, 033637
(2017).

[27] Y. Kagan, A. E. Muryshev, and G. V. Shlyapnikov, Phys.
Rev. Lett. 81, 933 (1998).

[28] A. Kumar, private communications.
[29] D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov,

Phys. Rev. Lett. 84, 2551 (2000).
[30] J. S. Langer, Ann. Phys. 54, 258 (1969).
[31] P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.

62, 251 (1990).
[32] D. Baye and P.-H. Heenen, J. Phys. A: Math. Gen. 19,

2041 (1986).
[33] H. B. Keller, Lectures on Numerical Methods in Bifurca-

tion Problems (Springer-Verlag, Berlin/Heidelberg/New
York/Tokyo, 1987).

[34] M. Kunimi and Y. Kato, Phys. Rev. A 91, 053608 (2015).
[35] J. Brand and W. P. Reinhardt, J. Phys. B: At. Mol. Opt.

Phys. 34, L113 (2001).
[36] F. Piazza, L. A. Collins, and A. Smerzi, Phys. Rev. A

80, 021601(R) (2009).
[37] A. C. Mathey, C. W. Clark, and L. Mathey, Phys. Rev.

A 90, 023604 (2014).
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