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The stopping cross section for protons passing through hydrogen is calculated for the energy
range between 10 keV and 3 MeV. Both the positive and neutral charge-states of the projectile are
accounted for. The two-centre convergent close-coupling method is used to model proton collisions
with hydrogen. In this approach electron-capture channels are explicitly included by expanding the
scattering wave function in a basis of both target and projectile pseudostates. Hydrogen collisions
with hydrogen are modelled using two methods: the single-centre convergent close-coupling approach
is used for the calculation of one-electron processes, while two-electron processes are calculated using
the Born approximation. The aforementioned approaches are also applied to the calculation of the
charge-state fractions. These are then used to combine the proton-hydrogen and hydrogen-hydrogen
stopping cross sections to yield the total stopping cross section for protons passing through hydrogen.

PACS numbers: 34.10.+x, 34.50.Bw

I. INTRODUCTION

Any application of ion transport through matter is de-
pendent on knowledge of energy losses during ion-atom
collisions. Therefore, stopping power data are fundamen-
tally important in a great number of fields, including
medical radiation therapy [1, 2], aviation and space ex-
ploration [3], and astrophysics [4].

In this work we explore the topic of stopping pow-
ers from a theoretical perspective. Specifically, we will
be focusing on the simplest target, being atomic hy-
drogen, and looking at how the stopping power of this
atom is calculated for proton projectiles. When calculat-
ing the stopping power of hydrogen, energy losses due
to electronic excitation and ionisation processes must
be included. On top of this, collisions involving pro-
tons include the possibility for electron capture, in which
the proton grabs the target electron forming a hydro-
gen atom. This process plays an important role in the
calculation of the stopping power and, therefore, must
also be included if one wishes to obtain accurate re-
sults. However, including electron-capture processes sig-
nificantly increases the complexity of calculations as the
problem requires a two-centre approach. Additionally,
the electron-capture process in proton-hydrogen colli-
sions further complicates the calculations as the newly
formed hydrogen atom will continue interacting with the
stopping medium. Therefore, when calculating the stop-
ping power of hydrogen for protons one must also con-
sider the collisions of hydrogen with hydrogen. Not only
does the aforementioned collision system have a possi-
bility of excitation and ionisation of the target, but now
excitation and ionisation of the projectile is also possi-
ble. These processes can occur individually, resulting in
single excitation or ionisation, or simultaneously, result-
ing in double excitation, double ionisation, or ionisation

with excitation. All these reaction channels must be in-
cluded in the calculation of the stopping power. The to-
tal stopping power of hydrogen for protons then becomes
the sum of the proton-hydrogen and hydrogen-hydrogen
stopping powers weighted by their corresponding charge-
state fractions. Here we present our approach to calcu-
lating the stopping power of hydrogen for protons and
compare the results to the experimental data and theo-
retical calculations by other groups. There is currently
no experimental data for proton stopping in atomic hy-
drogen. For this reason theoretical calculations are usu-
ally compared to experimental measurements involving
a molecular hydrogen target. Measurements of the stop-
ping cross section for protons passing through a H2 gas,
which cover the range from 10 keV to 2 MeV, have been
performed by Reynolds et al. [5], Reiter et al. [6], and
Golser and Semrad [7].

The first theoretical study of proton stopping in atomic
hydrogen was performed by Dalgarno and Griffing [8].
They applied the first Born approximation (FBA) to
calculate the proton-hydrogen and hydrogen-hydrogen
stopping cross sections. Rearrangement processes in the
case of proton-hydrogen scattering and two-electron pro-
cesses in the case of hydrogen-hydrogen scattering were
included. The results were combined by weighting each
contribution by its charge-state fraction to obtain the
total stopping cross section. Agreement with the ex-
perimental data for protons passing through H2 was ob-
tained above 120 keV, however their calculations under-
estimated the data at low energies. This discrepancy was
attributed to the failure of the Bragg additivity rule in
the proton-hydrogen fraction.

Schiwietz [9] performed single-centre coupled-channel
atomic-orbital (AO) calculations for the proton frac-
tion of the beam. They used the FBA calculations for
the hydrogen fraction (including only single-excitation
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and single-ionisation processes) and the experimental H2

charge-state fractions of Allison [10] to obtain the to-
tal stopping cross section. Agreement with the calcu-
lations of Dalgarno and Griffing [8] above 125 keV was
obtained. Also, agreement with experiment within 5%
was achieved at low and high energies, however results
underestimated the experiment by 10-15% at intermedi-
ate energies. It was suggested that the deterioration was
due to an inaccurate ionisation cross section in hydrogen-
hydrogen collisions as electron-electron correlations were
neglected.

Schiwietz and Grande [11] further developed the afore-
mentioned AO method of Schiwietz [9] by replacing the
single-centre AO results below 30 keV with two-centre
(AO+) ones, which included electron capture. The re-
sult was a significant reduction in the proton-hydrogen
stopping cross section in this region. Additionally, a
screened potential was used to perform AO calculations
for hydrogen-hydrogen collisions, including only single
excitation and single ionisation. Continuing to use the
experimental H2 charge-state fractions, these authors
achieved 5% agreement with the H2 stopping-power ex-
periments over the whole energy range from 10 keV to
500 keV.

Fainstein et al. [12] used the continuum distorted-
wave eikonal initial-state (CDW-EIS) method to calcu-
late the stopping cross section for protons impinging
on atomic hydrogen. When combined with the FBA
hydrogen-hydrogen results of Dalgarno and Griffing [8]
good agreement with experiment was obtained above 70
keV. Disagreement with the experiment below 70 keV
was attributed to the usage of the FBA in the hydrogen-
hydrogen channel. Agreement with all previous calcu-
lations was obtained above 125 keV, however, different
results were obtained below this.

In this work the stopping cross sections correspond-
ing to both the positive and neutral charge-states of the
projectile are calculated and combined to yield the total
stopping cross section for protons passing through hy-
drogen. To model proton-hydrogen collisions we use the
two-centre convergent close-coupling (CCC) method. In
this approach electron-capture channels are explicitly in-
cluded by expanding the scattering wave function in a
basis made of both target and projectile states. This is
important for calculating both the stopping cross section
and charge-state fractions. These calculations improve
upon the work of Schiwietz and Grande [11] by employing
a two-centre approach over the whole energy region con-
sidered as well as by including more target and projectile
states in the expansion of the scattering wave function
required for convergence. To model hydrogen-hydrogen
collisions we use a combination of two approaches, the
first is the single-centre CCC method and the second is
the FBA. The usage of the single-centre approach is jus-
tified as the probability of H− formation is very small. In
the single-centre CCC approach one atom remains fixed
in the ground state. Therefore, only single excitation
and single ionisation can be taken into account, however

coupling between the channels is included. Subsequently,
the first Born approximation is used to account for the
two-electron processes of double excitation, double ioni-
sation, and ionisation with excitation. These calculations
improve upon those of Dalgarno and Griffing [8] by in-
cluding excitations up to the n = 8 shell as opposed to
n = 3.
We neglect electron exchange in the H-H channels as

it was done in all the aforementioned calculations of the
stopping power. The spin effects are expected to be small
in the energy range between 10 keV and 3 MeV where
we apply our method. However, at low energies, in par-
ticular around 10 keV and below, the spin effects become
important [13–16]. Nevertheless, to our best knowledge,
there has been no attempt to include them in stopping
power calculations.
In addition to the non-exchange approximation men-

tioned above, we neglect electron transfer in H-H col-
lisions. Thus the solution we present is not complete.
Though we neglect electron transfer in H-H collisions,
we do take into account total electron loss by one of the
hydrogen atoms. In other words, we do not completely
neglect electron transfer but take it into account implic-
itly (our approach cannot differentiate whether the lost
electron has been captured by the other atom or not).
As we will see later (see Sect. III B), comparison of the
total cross section for electron loss in H-H collisions with
experiment indicates that overall electron-loss processes
have been modelled sufficiently accurately.
The single-centre CCC approach has previously been

applied to the calculation of stopping cross sections for
antiproton collisions with atoms and molecules [17–19]
and to the calculation of scattering cross sections for
antiproton-hydrogen collisions [20, 21]. Additionally, the
two-centre CCC approach has been applied to the cal-
culation of scattering cross sections for proton-hydrogen
collisions [22–24]. Preliminary results of the proton-
hydrogen stopping cross section using the two-centre
CCC approach have been reported in Ref. [25].
The paper is set out as follows. Section II outlines

the method. The results of calculations are presented
and discussed in Sect. III. Finally, in Sect. IV we draw
conclusions.

II. DESCRIPTION OF THE APPROACH

For CCC calculations we use the semiclassical approx-
imation to formulate a set of coupled-channel differen-
tial equations that describe the scattering system. In the
semiclassical approximation the target electron is treated
fully quantum-mechanically while the motion of the pro-
jectile is treated classically. In the laboratory frame the
projectile is assumed to be moving with velocity v along
a straight line toward the target at an impact parame-
ter b. The position of the projectile with respect to the
target nucleus is then given by R(t) = b + vt, where t
is time and t = 0 corresponds to the distance of closest
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approach. The velocity of the projectile is taken to be
along the z-axis and the impact parameter is taken to be
along the x-axis. The position of the projectile along the
z-axis is hence z = vt.

A. proton-hydrogen collisions

The two-centre CCC approach is based on the exact
time-independent Schrödinger equation and uses an ex-
pansion for the total scattering wave function that cor-
rectly represents both the target and projectile centres.
Here we describe the main steps. More details are given
in Refs. [24, 26].
To describe the proton-hydrogen system we utilise the

Jacobi coordinates where rT is the position of the electron
relative to the target proton, while rP is the position of
the electron relative to the projectile proton, and σT is
the position of the projectile proton relative to the centre-
of-mass of the target proton-electron system, while σP is
the position of the centre-of-mass of the projectile proton-
electron system relative to the target proton. Finally, r is
the position of the electron relative to the centre-of-mass
of the two-proton system.
The exact nonrelativistic Schrödinger equation for the

total scattering wave function Ψ is written as

HΨ = EΨ, (1)

where E is the total energy of the system and H is the
full three-body Hamiltonian. The Hamiltonian can be
written in the following equivalent forms:

H = − 1

2µ
∇2

σT
+HT + VP = − 1

2µ
∇2

σP
+HP + VT. (2)

Here µ is the reduced mass of the proton-hydrogen sys-
tem, HT and HP are the target and projectile atom
Hamiltonians, VT is the interaction of the target pro-
ton with the projectile atom, and VP is the interaction of
the projectile proton with the target atom. Hamiltonians
HT and HP are given by

HT = −1

2
∇2

rT
− 1

rT
, HP = −1

2
∇2

rP
− 1

rP
, (3)

while the interactions VT and VP are given by

VT =
1

R
− 1

rT
, VP =

1

R
− 1

rP
. (4)

The total scattering wave function is expanded in
terms of a set of NT target pseudostates ψα and NP pro-
jectile pseudostates ψβ according to

Ψ =

NT
∑

α=1

Aα(σT)ψα(rT)e
ikα·σT

+

NP
∑

β=1

Bβ(σP)ψβ(rP)e
ikβ ·σP , (5)

where kα is the relative momentum of the projectile pro-
ton and the target atom in channel α, and similarly kβ

is the relative momentum of the target proton and the
projectile atom in channel β. The total energy of the
system E is given by

E =
k2α
2µ

+ ǫα =
k2β
2µ

+ ǫβ . (6)

Furthermore, the pseudostates ψα and ψβ represent both
bound and continuum states, and are constructed to sat-
isfy the conditions

〈ψγ′ |HT(P)|ψγ〉 = ǫγδγ′γ , 〈ψγ′ |ψγ〉 = δγ′γ . (7)

It must be emphasised, that although the pseudostates
within each set are orthogonal to each other, a pseu-
dostate from one set is not orthogonal to a pseudostate
from the other set. Details of the pseudostates are given
in Sect. II C.
The scattering wave function (5) is substituted into

the Schrödinger equation (1) and the result is projected
onto to conjugate of each term in the expansion, i.e.
ψ∗
α′(rT)e

−ikα′ ·σT and ψ∗
β′(rP)e

−ikβ′ ·σP . After applying
the semiclassical approximation and some lengthy al-
gebra we arrive at the final set of two-centre coupled-
channel differential equations that describes proton scat-
tering from hydrogen:







































iȦα′ + i

NP
∑

β=1

ḂβKα′β =

NT
∑

α=1

AαDα′α +

NP
∑

β=1

BβQα′β ,

i

NT
∑

α=1

ȦαK̃β′α + iḂβ′ =

NT
∑

α=1

AαQ̃β′α +

NP
∑

β=1

BβD̃β′β ,

α′ = 1, . . . , NT, β′ = 1, . . . , NP,

(8)

where the dots over A and B denote the time derivative.
In Eq. (8) the direct-scattering matrix elements Dα′α and

D̃β′β are given as

Dα′α = ei(ǫα′−ǫα)t

∫

drTψ
∗
α′(rT)VPψα(rT) (9)

and

D̃β′β = ei(ǫβ′−ǫβ)t

∫

drPψ
∗
β′(rP)VTψβ(rP). (10)

The overlap matrix elements Kα′β and K̃β′α are

Kα′β = ei(−v2t/2+(ǫα′−ǫβ)t)

∫

drTψ
∗
α′(rT)e

iv·rTψβ(rP)

(11)
and

K̃β′α = ei(−v2t/2+(ǫβ′−ǫα)t)

∫

drPψ
∗
β′(rP)e

−iv·rPψα(rT),

(12)
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and the electron-transfer matrix elements Qα′β and Q̃β′α
are

Qα′β = ei(−v2t/2+(ǫα′−ǫβ)t)

×
∫

drTψ
∗
α′(rT)e

iv·rT(HP + VT − ǫβ)ψβ(rP)

(13)

and

Q̃β′α = ei(−v2t/2+(ǫβ′−ǫα)t)

×
∫

drPψ
∗
β′(rP)e

−iv·rP(HT + VP − ǫα)ψα(rT).

(14)

In Eqs. (8)-(14) the exponential factors arise naturally
and not from the introduction of electron translation fac-
tors. For details see Refs. [24, 26].
The system of differential equations (8) is solved with

the initial condition Aα′(t = −∞, b) = δα′i and Bβ′(t =
−∞, b) = 0. This implies the target is in the initial state
ψi. For all calculations we take i = 1s, i.e. the target
is initially in the ground state. The dependence of Aα′

and Bβ′ on the orientation of b can be factored such that
the probability for transition from some initial state state
of the target i into any final target state f or any final
projectile state k is given by

pf (b) = |Af (t = +∞, b)− δfi|2,
pk(b) = |Bk(t = +∞, b)|2, (15)

where Af (t = +∞, b) and Bk(t = +∞, b) are the prob-
ability amplitudes. The set of equations (8) is solved
within the region [−zmax, zmax], where parameter zmax is
increased until convergent results are obtained. Direct-
scattering matrix elements are evaluated in spherical co-
ordinates, while overlap and electron-transfer matrix el-
ements are evaluated in prolate spheroidal coordinates
[22, 26].

B. hydrogen-hydrogen collisions

For the collisions of hydrogen with hydrogen we must
introduce the coordinate r

′
P
, which is the position of the

projectile electron relative to the projectile nucleus. As
previously stated, we use a single-centre CCC approach
for the calculation of one-electron processes and the first
Born approximation for the calculation of two-electron
processes (B2e). The details of both methods are given
here. Together we refer to this as the “CCC+B2e” ap-
proach.
First, we consider the single-centre CCC approach.

With the projectile atom fixed in the ground state the
total scattering wave function is expanded in terms of a
complete set of NT target pseudostates ψα according to

Ψ =

NT
∑

α=1

Aα(σT)ψα(rT)ψ1s(r
′
P
)eikα·σT . (16)

Details of target pseudostates are given in Sect. II C. Ad-
ditionally, the total energy of the system E is given by

E =
k2α
2µ

+ ǫα + ǫ1s, (17)

and the total Hamiltonian H is written as

H = − 1

2µ
∇2

σT
+HT +H ′

P + VP, (18)

where µ is the reduced mass of the hydrogen-hydrogen
system. Here HT is the target atom Hamiltonian defined
earlier in Eq. (3) and the projectile atom Hamiltonian
H ′

P is given by

H ′
P = −1

2
∇2

r′

P
− 1

r′
P

. (19)

Also, VP is the projectile-target interaction, which is
given by

VP =
1

R
− 1

|R− rT|
− 1

|R+ r′
P
| +

1

|R+ r′
P
− rT|

. (20)

Substituting the scattering wave function (16) into the
Schrödinger equation (1) and following the same proce-
dure as in Section IIA we obtain the final set of coupled-
channel differential equations

iȦα′ =

NT
∑

α=1

AαHα′α; α
′ = 1, . . . , NT, (21)

where Hα′α are the direct-scattering matrix elements

Hα′α = ei(ǫα′−ǫα)t

×
∫

drTdr
′
P
ψ∗
α′(rT)ψ1s(r

′
P
)VPψ1s(r

′
P
)ψα(rT).

(22)

Equation (21) is solved in a similar manner described for
the proton-hydrogen system.
To model two-electron processes, i.e. double excita-

tion, double ionisation, and ionisation with excitation we
use the FBA. In the Born approximation the transition
amplitude for the scattering process H(1s) + H(1s) →
H(α) + H(β) is given by

Tα,β =

∫∫∫

drTdr
′
P
dRψ1s(rT)ψ

∗
α(rT)ψ1s(r

′
P
)ψ∗

β(r
′
P
)

× eiK·R

(

1

R
− 1

|R+ r′
P
| −

1

|R− rT|

+
1

|R+ r′
P
− rT|

)

. (23)

Here K = ki − kf is the momentum transfer, where ki

and kf are the initial and final momenta of the projec-
tile, respectively. For FBA calculations we will choose K
to be along the z-axis. Additionally, α and β represent
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the final states of the target and projectile atoms, respec-
tively. If the final state of the target is a bound state then
α = nαlαmα, where n, l, andm are the principal, orbital,
and magnetic quantum numbers, and ψα = ψnαlαmα

is
the eigenstate wave function of the hydrogen atom. On
the other-hand, if the final state of the target is a contin-
uum state then we use the momentum of the ejected elec-
tron ke as the channel index, i.e. α = ke, and ψα = ψ−

ke
is

the two-body Coulomb wave function (see below). Sim-
ilarly, if the final state of the projectile is a bound state
then β = nβlβmβ , and if it is a continuum state then
β = k

′
e.

Equation (23) can be evaluated analytically to get

Tα,β =
4π

K2

(

δα,1s −Fα(K)
)(

δβ,1s −Fβ(−K)
)

, (24)

where

Fγ(K) =

∫

drψ1s(r)ψ
∗
γ(r)e

iK·r. (25)

The latter can be evaluated for any excitation transition.
Since we choose K to be aligned along the z-axis the
resulting amplitudes are non-zero only when the change
in magnetic quantum number is equal to zero. As both
atoms are initially in the ground state, only final states
with m = 0 need to be considered and the amplitude
becomes

Fnl(K) = il
√
2l + 1

∫ ∞

0

r2drR10(r)Rnl(r)jl(Kr), (26)

where Rnl are the radial functions and jl is the spherical
Bessel function of the first kind. Eq. (26) is evaluated
analytically for a specific Rnl.
For ionisation transitions the final-state wave function

is taken to be two-body Coulomb wave function. Follow-
ing the ideas of Guth and Mullin [27] who calculated the
Fourier transform of the Coulomb wave function, it can
be shown that Fke

is given by

Fke
(K) =

2
√
2

π
e−πη/2Γ(1 + iη)

[

K2 − (ke + i)2
]iη

[(ke +K)2 + 1]
1+iη

×
(

(1 + iη)

[(ke +K)2 + 1]
+

(1− iη)

[K2 − (ke + i)2]

)

,

(27)

where Γ is the Gamma function and η = −1/ke is the
Sommerfeld parameter.

C. Target structure

The atomic hydrogen pseudostates used in CCC calcu-
lations are generated by following the ideas of Bray and
Stelbovics [28]. The radial parts of the pseudostates ψα

in Eqs. (5) and (16) are written as

Rnl(r) =
1

r

Nl
∑

k=1

Bl
nkξkl(r), (28)

where ξkl is a complete set of orthonormal basis func-
tions, Nl is the number of basis functions for a given l,
and Bl

nk are the expansion coefficients that are found
by diagonalisation of the target Hamiltonian in the com-
plete basis. In other words, the pseudostates ψα satisfy
the conditions specified in Eq. (7).
In Eq. (28), we choose the basis functions to be the

Laguerre functions

ξkl(r) =

(

λl(k − 1)!

(2l + 1 + k)!

)1/2

(λlr)
l+1

× exp(−λlr/2)L2l+2
k−1 (λlr), (29)

where L2l+2
k−1 (λlr) are the associated Laguerre polynomi-

als and λl is an exponential fall-off parameter. Choice
of λl does not affect the final result, however it does af-
fect the speed of convergence. Specific values of λl will
be given in Sect. III. The choice of the basis as a set
of orthogonal Laguerre functions allows us to model the
whole spectrum of the target atom. As the size of the
one-electron basis increases the low-lying states will con-
verge to the true bound states of the target, while the re-
maining negative-energy (pseudo) states will provide an
effective representation of the high-lying bound states of
the target atom. The positive-energy pseudostates pro-
vide and an increasingly dense square-integrable repre-
sentation of the target continuum.

D. Stopping power

The stopping power is the energy loss per unit path
length and is defined as

− dE

dx
= NaS(E0), (30)

where S(E0) is referred to as the stopping cross section.
It depends on the incident energy of the projectile E0,
and is related to the stopping power through the den-
sity of target atoms in the stopping medium Na. For
heavy projectiles it can be assumed that the total stop-
ping cross section is the sum of two contributions, the
nuclear and the electronic stopping cross sections, i.e.
S = Se+Sn. In this work we consider only the electronic
part of the stopping cross section as we are interested in
incident energies above 10 keV where the nuclear part
is insignificant. However, if one is interested in incident
energies below 10 keV, calculation of the nuclear part is
straightforward and is detailed in Ref. [18].
Due to the possibility of electron-capture the incident

proton can grab the electron and form a hydrogen atom.
This newly formed hydrogen atom will continue inter-
acting with the stopping medium, losing energy and po-
tentially losing and gaining electrons many times. For
this reason all possible charge-states of the beam must
be considered when calculating the total stopping cross
section for protons incident on atomic hydrogen. The to-
tal stopping cross section for the proton-hydrogen system
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is therefore given by

S(E0) = fH+

SH+

+ fH0

SH0

, (31)

where SH+

is the stopping cross sections for a beam

consisting entirely of protons (positive charge), SH0

is
the stopping cross sections for a beam consisting en-

tirely of hydrogen atoms (neutral charge), and fH+

and

fH0

are the positive and neutral charge-state fractions
of the beam, respectively. In this work we neglect the
negative charge state as the probability of H− forma-

tion is insignificant. The charge-state fractions fH+

and

fH0

are calculated from the total electron-capture (EC)
cross section σEC in proton-hydrogen collisions and the
total electron-loss (EL) cross section σEL in hydrogen-
hydrogen collisions according to

fH+

= σEL/(σEC + σEL), fH0

= σEC/(σEC + σEL).
(32)

This highlights the importance of having a two-centre ap-
proach that can provide accurate electron-capture cross
sections. Further details on σEC and σEL are given below.
The positive-charge-state electronic stopping cross sec-

tion SH+

e is the result of three possible energy-loss pro-
cesses in the proton-hydrogen collision system. These are
excitation and ionisation of the target, and capture of the
target electron to a bound state of the projectile. The
stopping cross section is therefore written as

SH+

e =

∞
∑

f=1

(ǫf − ǫi)σfi +

∫ E0+ǫi

0

(ǫ− ǫi)
dσ

dǫ
dǫ

+
∞
∑

k=1

(ǫk − ǫi + v2/2)σki, (33)

where ǫi is the energy of the ground state of the target
i, σfi is the cross section for excitation to a state f of
energy ǫf , dσ/dǫ is the single differential cross section for
ionisation when the electron is ejected with energy ǫ, and
σki is the cross section for electron capture to a state k
of energy ǫk. Additionally, the v2/2 term represents the
kinetic energy of an electron travelling with the speed of
the incident proton after being captured.
To accurately model electron-capture processes we use

a two-centre coupled-channel approach with pseudostates
centred on both the target and projectile, as described
in Sect. II A. For the calculation of the stopping cross
section we include bound and continuum pseudostates
on the target centre, while only negative-energy pseu-
dostates for the projectile centre. This is due to ambigu-
ities in the calculation of the stopping power associated
with electron capture into continuum process. Such is-
sues have been explored in Ref. [24]. With this model
the first two terms in Eq. (33) that represent excitation
and ionisation become a single sum over NT negative-
and positive-energy target-centred pseudostates, while
the third term becomes a sum over NP negative-energy

projectile-centred pseudostates. Thus we obtain

SH+

e ≈
NT
∑

f=1

(ǫf − ǫi)σfi +

NP
∑

k=1

(ǫk − ǫi + v2/2)σki. (34)

Here the cross sections for the direct transitions σfi and
rearrangement transitions σki are obtained by integra-
tion of the transition probabilities (15) over the impact
parameter according to

σfi = 2π

∫ ∞

0

pfi(b)bdb, σki = 2π

∫ ∞

0

pki(b)bdb.

(35)
Furthermore, the total electron-capture cross section
σEC, which is required for the calculation of the charge-
state fractions (32), is the sum of all electron-capture
cross sections (35), i.e.

σEC =

NP
∑

k=1

σki. (36)

The neutral-charge-state electronic stopping cross sec-

tion SH0

e is the result of many possible energy-loss pro-
cesses in the hydrogen-hydrogen collision system. These
are excitation or ionisation of either the target or pro-
jectile, simultaneous excitation or ionisation of both the
target and projectile, and excitation of either the target
or projectile with ionisation of the other. Including all
these terms the stopping cross section is written as

SH0

e =2
∞
∑

f=1

(ǫf − ǫi)σfi + 2

∫ E0+ǫi

0

(ǫ− ǫi)
dσ

dǫ
dǫ

+

∞
∑

f 6=i

∞
∑

k 6=i

(ǫf − ǫi + ǫk − ǫi)σfi,ki

+

∫ E0+ǫi

0

∫ E0+ǫi

0

(ǫ − ǫi + ǫ′ − ǫi)
dσ

dǫdǫ′
dǫdǫ′

+ 2

∞
∑

f 6=i

∫ E0+ǫi

0

(ǫf − ǫi + ǫ− ǫi)
dσfi
dǫ

dǫ, (37)

where σfi is now the cross section for excitation of one
hydrogen atom to a state f of energy ǫf while the other
remains in the ground state, dσ/dǫ is the differential cross
section for ionisation of one hydrogen atom when the elec-
tron is ejected with energy ǫ while the other remains in
the ground state, σfi,ki is the cross section for excitation
of both hydrogen atoms, one to a state f of energy ǫf
and the other to a state k of energy ǫk, dσ/dǫdǫ

′ is the
differential cross section for ionisation of both hydrogen
atoms, one with energy ǫ and the other with energy ǫ′,
and dσfi/dǫ is the differential cross section for ionisation
of one hydrogen atom when the electron is ejected with
energy ǫ while the other is excited to a state f of en-
ergy ǫf . Additionally, the factor of 2 in the first, third,
and last terms of Eq. (37) is due to the symmetry of the
system.
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To model one-electron processes we use a single-centre
coupled-channel approach. Since the continuum is dis-
cretised in this approach, the first and third terms of
Eq. (37), which represent the stopping cross sections as-
sociated with single excitation and ionisation, become a
single sum over NT negative- and positive-energy pseu-
dostates. To model two-electron processes we use the
first Born approximation. In this approach we limit our-
selves to a total of Nb bound states. Combining these
two models the neutral-charge-state electronic stopping
cross section (37) becomes

SH0

e =2

NT
∑

f=1

(ǫf − ǫi)σfi +

Nb
∑

f 6=i

Nb
∑

k 6=i

(ǫf − ǫi + ǫk − ǫi)σfi,ki

+

∫ E0+ǫi

0

∫ E0+ǫi

0

(ǫ − ǫi + ǫ′ − ǫi)
dσ

dǫdǫ′
dǫdǫ′

+ 2

Nb
∑

f 6=i

∫ E0+ǫi

0

(ǫf − ǫi + ǫ− ǫi)
dσfi
dǫ

dǫ, (38)

Here the cross sections for one-electron transitions σfi are
obtained using Eq. (35). Additionally, the cross sections
for the two-electron processes of double excitation, dou-
ble ionisation, and ionisation with excitation are calcu-
lated from the Born transition amplitudes (24) according
to

σfi,ki =
µ2

2πk2i

∫

|Tnf lf ,nklk |2KdK, (39)

dσ

dǫdǫ′
= kek

′
e

µ2

2πk2i

∫∫∫

|Tke,k′

e
|2KdKdΩke

Ωk′

e
, (40)

and

dσfi
dǫ

= ke
µ2

2πk2i

∫∫

|Tnf lf ,ke
|2KdKdΩke

, (41)

respectively. In Eqs. (39)-(41), the integrals over K are
over the range from Kmin = ki − kf to Kmax = ki + kf
and evaluated numerically, while the integrals over Ωke

are evaluated analytically. The final momentum of the
projectile kf is obtained from the energy-conservation
law and depends on the final states of the atoms, while ke

is the momentum of the ejected electron. Furthermore,
the total electron-loss cross section σEL, which is required
for the calculation of the charge-state fractions (32), is
the sum of all cross sections corresponding to ionisation of
the target atom. Therefore, it is written as the sum of the
total single-ionisation (SI) cross section σSI, total double-
ionisation (DI) cross section σDI, and total ionisation-
with-excitation (IE) cross section σIE, that is

σEL = σSI + σDI + σIE. (42)

In the aforementioned model the total single-ionisation
cross section is given by the sum of all cross sections for

one-electron transitions to positive-energy states:

σSI =

NT
∑

f :ǫf>0

σfi. (43)

The total double-ionisation and ionisation-with-
excitation cross sections are calculated from Eqs. (40)
and (41), respectively, as

σDI =

∫ E0+ǫ1s

0

∫ E0+ǫ1s

0

dσ

dǫdǫ′
dǫdǫ′, (44)

and

σIE =

Nb
∑

f 6=i

∫ E0+ǫ1s

0

dσfi
dǫ

dǫ. (45)

III. RESULTS

In this section the results of our calculations for the
proton-hydrogen electronic stopping cross section will be
presented and compared to existing theoretical and ex-
perimental results. When using a coupled-channel ap-
proach where the scattering wave function is expanded
in a set of target- and projectile-centered pseudostates
it is important to establish convergence of the stopping
cross section with increasing the size of the underlying
basis. Therefore, we will start by specifying the basis pa-
rameters Nl and lmax, where Nl is the number of basis
functions for a given l and lmax is the maximum value
of orbital angular momentum included in the expansion
of the scattering wave function that produced the con-
vergent result. Specifically, we say that convergence is
achieved when the stopping cross section varies no more
than 2% with an increase in either Nl or lmax. Therefore,
our calculations are estimated to be accurate to within
2%.

A. Proton-hydrogen stopping cross section

Convergence in calculations of the electronic stopping
cross section for proton-hydrogen collisions was achieved
with lmax = 8 and Nl = 30 − l. These basis parameters
result in a total of 1896 target states and 159 projectile
states to be used in the solution of the coupled-channel
differential equations (8). Also, the basis function ex-
ponential fall-off parameter λl is chosen to be 2 for all
l.
In Fig. 1 we present our result for the proton-hydrogen

electronic stopping cross section (SCS) together with the
calculations of Dalgarno and Griffing [8], Schiwietz [9],
Schiwietz and Grande [11], and Fainstein et al. [12]. We
use the two-centre CCC approach, meaning energy losses
due to electron-capture processes are explicitly included,
as well as energy losses due to excitation and ionisation.
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FIG. 1. Electronic stopping cross section for protons incident
on hydrogen. The two-centre CCC calculations are compared
with the results of Dalgarno and Griffing [8], Schiwietz [9]
(AO), Schiwietz and Grande [11] (AO+), and Fainstein et al.

[12].

The CCC results are in good agreement with the FBA
calculation of Dalgarno and Griffing [8] above 50 keV.
They are also in good agreement with the AO calcu-
lations of Schiwietz [9] and the CDW-EIS calculations
of Fainstein et al. [12] above 130 keV. Furthermore, in
the lower energy region we obtain reasonable agreement
with the two-centre AO+ calculations of Schiwietz and
Grande [11]. The fact that the CCC results are slightly
higher than the AO+ ones above 15 keV is likely to be
due to the inclusion of more target and projectile states
in our calculations compared to those of Schiwietz and
Grande [11]. In addition, comparing the single-centre
AO calculations of Schiwietz [9] to the two-centre CCC
and AO+ calculations we see that the explicit inclusion
of electron-capture channels results in a significant dif-
ference in the proton-hydrogen electronic stopping cross
section below 100 keV.
Individual contributions to the stopping cross section

are presented in Fig. 2. This figure demonstrates that
below 35 keV energy loss due to momentum transfer to
the electron during electron capture is the dominant con-
tribution to the stopping cross section, whereas above
35 keV the dominant contribution is due to ionisation.
Additionally, it shows that energy losses associated with
excitation of the target make a substantial contribution
over the whole energy region, while electron-capture pro-
cesses make a significant contribution only below 60 keV.

B. Hydrogen-hydrogen stopping cross section

Convergence in the CCC calculations of the electronic
stopping cross section for hydrogen-hydrogen collisions
was achieved with lmax = 15 and Nl = 30 − l. These
basis parameters result in a total of 5080 target states
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FIG. 2. Individual contributions to the proton-hydrogen elec-
tronic stopping cross section. The curves labelled “Excita-
tion” and “Ionisation” are the stopping cross sections asso-
ciated with excitation and ionisation of the target atom, re-
spectively. The curve labelled “Electron capture” represents
the stopping cross section associated with electron capture.
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FIG. 3. Electronic stopping cross section for hydrogen in-
cident on hydrogen. Calculations are compared with those
of Dalgarno and Griffing [8], and Schiwietz and Grande [11].
The results labelled as “CCC” and “B1e” include one-electron
processes only, while “CCC+B2e” and “Born” results include
one- and two-electron processes (see text for details).

used in the solution of the coupled-channel differential
equations (21). Also, the basis function exponential fall-
off parameter λl is chosen to be 4 for all l. It should be
noted that the value for lmax is significantly larger than
that required for proton-hydrogen collisions due to the
single-centre approach being used. This is to generate
higher-energy continuum states compared to the proton
calculations. Furthermore, in the Born calculations we
include excitations to all states for which n ≤ 8 and l ≤ 3.

In Fig. 3 we present our CCC+B2e results for the
hydrogen-hydrogen electronic stopping cross section to-
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gether with the calculations of Dalgarno and Griffing [8],
and Schiwietz and Grande [11]. The CCC+B2e calcula-
tions include energy losses due to single excitation and
single ionisation that are calculated in the single-centre
CCC approach, as well as energy losses due to double ex-
citation, double ionisation, and ionisation with excitation
that are calculated in the FBA. Also shown in Fig. 3 are
the results arising solely from CCC calculations, meaning
only energy losses due to single excitation and ionisation
are included, as well as the results of the Born calcu-
lations for all energy loss processes (labelled as Born)
and one-electron processes only (labelled as B1e). First,
we note that the CCC results are in agreement with the
B1e results at high energies where the latter is consid-
ered accurate. Specifically, good agreement is seen above
300 keV. However, at lower energies, below 200 keV, the
coupling between channels in the CCC approach results
in a significantly larger stopping cross section when com-
pared to the B1e results. In this energy region CCC
calculations are much larger than the AO calculations of
Schiwietz and Grande [11] as well, although both meth-
ods are based on a somewhat similar approach. It could
be that the results of Schiwietz and Grande [11] did not
have a sufficient number of states as the CCC calculations
include a much larger number of target states. Turning to
the Born results we see a small but systematic disagree-
ment with the FBA calculations of Dalgarno and Griffing
[8] above 40 keV. This is due to the fact that we include
excitation to all states with n ≤ 8 and l ≤ 3, whereas
Dalgarno and Griffing [8] include excitations up to the
n = 3 shell only. This fact has been verified by perform-
ing calculations that include the same number of states
as Dalgarno and Griffing [8]. On the other hand, below
20 keV the FBA calculations of Dalgarno and Griffing
[8] are slightly higher as they have included an estimated
contribution to the stopping cross section due to H− for-
mation. Lastly, comparing our calculations that include
one-electron processes (i.e. CCC and B1e) to those that
include one- and two-electron processes (CCC+B2e and
Born) we conclude that double excitation, double ionisa-
tion, and ionisation with excitation make a substantial
contribution to the stopping cross section above 20 keV
(further evidence for this conclusion is given in the next
paragraph). As such, the CCC+B2e calculation is con-
sidered our most accurate result.

The conclusion drawn above can be validated by con-
sidering the total cross section for electron loss by the
projectile as there is experimental data to compare with.
Since the stopping cross section is dominated by ionisa-
tion processes (as shown below), this may prove useful
in assessing the accuracy of the hydrogen-hydrogen stop-
ping cross section. In Fig. 4 we present our CCC+B2e
calculation for the total electron-loss cross section com-
pared to the experimental data of Wittkower et al. [29]
and McClure [30]. Also shown are the Born calculations
for the total electron-loss cross section (Born EL), as well
as the Born and single-centre CCC calculations for the
single-ionisation cross section (denoted as Born SI and
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FIG. 4. Projectile total electron-loss cross section in hydrogen
collisions with hydrogen. The CCC+B2e calculations (see
text for details) are compared to the experimental data of
Wittkower et al. [29] and McClure [30]. Also shown are the
Born calculations for total electron loss (Born EL), as well
as the Born and CCC calculations for single ionisation only,
labelled “Born SI” and “CCC SI”, respectively.

CCC SI, respectively). The CCC+B2e results are in good
agreement with the experimental data over the whole en-
ergy region considered. On the other hand, the Born EL
calculations significantly underestimate experiment be-
low 70 keV projectile energy. This illustrates the benefit
of using a coupled-channel approach for the one-electron
processes, as is done presently. This becomes evident
when we compare the CCC SI and Born SI calculations,
where the latter significantly underestimates the former
below 100 keV. Furthermore, the importance of includ-
ing the two-electron processes becomes apparent when
two models that include one-electron processes only, i.e.
CCC SI and Born SI, are compared to those that include
both one- and two-electron processes, i.e. CCC+B2e EL
and Born EL. As can been seen, the CCC SI calculations
underestimate experiment above 20 keV projectile energy
and the Born SI calculations underestimate experiment
at all projectile energies considered.

Individual contributions to the Born stopping cross
section are presented in Fig. 5. This figure demonstrates
that at high incident energies the stopping cross section
is dominated by single- and double-ionisation processes,
each making an almost equal contribution. In the inter-
mediate energy region, energy losses due to single ion-
isation are the main contribution to the stopping cross
section, while double ionisation and ionisation with exci-
tation make a smaller but still significant addition. Dou-
ble excitation also makes relatively small but important
contribution in this region. Lastly, at lower incident en-
ergies the contribution from single-excitation processes
increases and becomes significant, however, single ionisa-
tion remains dominant.

The same but for the CCC stopping cross section are
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FIG. 5. Individual contributions to the hydrogen-hydrogen
electronic stopping cross section calculated in the Born ap-
proximation. The curves labelled “SE” and “SI” are the
stopping cross sections associated with single excitation and
ionisation, respectively. While the curves labelled “DE” and
“DI” are the stopping cross sections associated with double
excitation and double ionisation, respectively. Also, “IE” is
the stopping cross section due to ionisation with excitation.

presented in Fig. 6. The figure shows that energy losses
due to ionisation dominate the stopping cross section at
all incident energies considered, while energy losses due
to excitation make a significant contribution only below
50 keV.
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FIG. 6. Individual contributions to the hydrogen-hydrogen
electronic stopping cross section calculated with the CCC
method. The curves labelled “Excitaiton” and “Ionisation”
are the stopping cross sections associated with single excita-
tion and single ionisation, respectively.
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FIG. 7. Positive (fH
+

) and neutral (fH
0

) charge-state frac-
tions for protons passing through hydrogen. The present re-
sults are compared to those of Dalgarno and Griffing [8], and
Fainstein et al. [12]. The experimental data of Allison [10],
which were measured for a molecular hydrogen target, are
also shown.

C. Total stopping cross section

As discussed previously, the total stopping cross sec-
tion for protons passing through hydrogen is calcu-
lated by summing the proton-hydrogen and hydrogen-
hydrogen stopping cross sections weighted by their re-
spective charge-state fractions. We remind that for the
hydrogen-hydrogen stopping cross section we use the
CCC+B2e result. Subsequently, the hydrogen-hydrogen
total electron-loss cross section, which is required for the
calculation of charge-state fractions, is the sum of the
single-ionisation cross that is calculated in the single-
centre CCC approach and the double-ionisation and
ionisation-with-excitation cross sections that are calcu-
lated using the Born approximation.

In Fig. 7 we present our results for the positive (fH+

)

and neutral (fH0

) charge-state fractions for a beam of
protons passing through hydrogen. They are displayed
alongside the calculations of Dalgarno and Griffing [8]
and Fainstein et al. [12], as well as the experimental data
of Allison [10] (which was used in the calculation of the
total stopping cross section by Schiwietz [9] and Schiwi-
etz and Grande [11]). We obtain good agreement with
Dalgarno and Griffing [8] above 40 keV projectile en-
ergy and with Fainstein et al. [12] above 150 keV. Fur-
thermore, although the experimental data of Allison [10]
were measured for a molecular hydrogen target, we ob-
tain reasonable agreement with the latter over the whole
energy range. Additionally, from Fig. 7 we can learn
about the composition of the beam passing through the
target. Firstly, above 200 keV projectile energy the beam
is comprised almost entirely of protons. As the projectile
energy falls the proportion of hydrogen begins to rise,
reaching 50% of the beam composition at 50 keV. Be-
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FIG. 8. Total electronic stopping cross section for protons
passing through hydrogen. The present results have been
obtained using the two-centre CCC method for the positive
charge-state contribution and the CCC+B2e (see text for de-
tails) method for the neutral charge-state contribution. Also
shown are the theoretical calculations of Dalgarno and Griff-
ing [8], Schiwietz [9], Schiwietz and Grande [11], and Fainstein
et al. [12]. The experimental data of Reynolds et al. [5], Re-
iter et al. [6], and Golser and Semrad [7] for protons passing
through molecular hydrogen are shown as well.

low 50 keV hydrogen atoms make up the majority of the
beam, reaching 90% of the beam composition at 10 keV.
In Fig. 8 we present our results for the total electronic

stopping cross section for protons passing through hydro-
gen together with the theoretical calculations of Dalgarno
and Griffing [8], Schiwietz [9], Schiwietz and Grande [11],
and Fainstein et al. [12]. Also shown are the experimental
results of Reynolds et al. [5], Reiter et al. [6], and Golser
and Semrad [7] for protons passing through molecular
hydrogen divided by two, i.e. the results are given per
atom as originally presented. Good agreement with the
calculations of Dalgarno and Griffing [8] is seen above
100 keV projectile energy, while agreement with the cal-
culations of Schiwietz [9], Schiwietz and Grande [11], and
Fainstein et al. [12] is obtained above 125 keV. Further-
more, there is good agreement with the experimental
data above 150 keV. This demonstrates that the Bragg
additivity rule, according to which H2 is an aggregate of
two independent hydrogen atoms, is acceptable above the
aforementioned projectile energy. On the other hand, our
calculations are significantly above other theoretical esti-
mates and the H2 experimental data below 100 keV. This
fact will be discussed in more detail below. Noticeably,
in this region there are substantial deviations between
all theoretical approaches. These deviations cannot be
attributed to either the positive or neutral charge-state
contributions, since there are large deviations between
theories in both cases, as seen in Figs. 1 and 3. We
can, however, emphasise that our calculations for the
positive charge-state contribution are the most sophis-
ticated and accurate as we employ a large two-centre ex-
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FIG. 9. Total electronic stopping cross section for pro-
tons passing through hydrogen. Our present calculations are
shown alongside the calculations of Dalgarno and Griffing [8],
Schiwietz [9], Schiwietz and Grande [11], and Fainstein et al.

[12]. Also shown are the experimental data of Reynolds et al.
[5], Reiter et al. [6], and Golser and Semrad [7] for a molecular
hydrogen target scaled by the ratio between the atomic- and
molecular-hydrogen total ionisation cross sections to provide
an estimate of experimental data for an atomic target (see
text for details).

pansion of the scattering wave function, which explicitly
includes electron-capture channels. Furthermore, for the
neutral charge-state contribution our approach produces
the most accurate projectile total electron-loss cross sec-
tion.
We conclude by discussing our calculations for atomic

hydrogen in comparison to the experimental measure-
ments for molecular hydrogen below 100 keV projectile
energy. As can be seen in Fig. 8 there is a significant
difference between the two results. The reason for the
discrepancy is that Bragg’s additivity rule is not valid
in this region and, hence, the stopping cross for protons
passing through atomic hydrogen can not be represented
as a half of the stopping cross section for protons passing
through molecular hydrogen. This fact was also demon-
strated in our earlier work [18], where a significant differ-
ence between the calculated antiproton-atomic hydrogen
and antiproton-molecular hydrogen stopping cross sec-
tions below the maximum was also observed. Therefore,
although some earlier theoretical calculations for atomic
hydrogen showed good agreement with experimental data
for molecular hydrogen divided by two and the authors
claimed this to be a positive aspect of their approach, we
emphasise that agreement between the two should not
be expected. To further support this statement we can
estimate how should experimental data for the proton-
atomic hydrogen stopping cross section look like based
on the proton-molecular hydrogen stopping cross section
data. To this end we scale the proton-H2 stopping cross
section data of Reynolds et al. [5], Reiter et al. [6], and
Golser and Semrad [7] by the ratio between the proton-
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hydrogen and proton-H2 total ionisation cross sections.
Ionisation is a dominant energy-loss process and therefore
the ratio between the atomic- and molecular-hydrogen
ionisation cross sections can provide a reasonable esti-
mate of the ratio between the atomic- and molecular-
hydrogen stopping cross sections.

For the ratio between the atomic- and molecular-
hydrogen total ionisation cross sections we use the exper-
imental result of Shah and Gilbody [31]. These authors
give the ratio from 38 keV to 1.5 MeV. At 1.5 MeV the
ratio has plateaued and therefore above this the ratio is
taken to be constant. Below 38 keV we calculate the ra-
tio based on the measurements of Shah et al. [32] for the
atomic target and the measurements of Afrosimov et al.

[33] for the molecular target. In Fig. 9 we present the
same theoretical calculations for the proton-hydrogen to-
tal electronic stopping cross section from Fig. 8 alongside
the scaled experimental data of Reynolds et al. [5], Reiter
et al. [6], and Golser and Semrad [7]. With the aforemen-
tioned scaling of experimental data we obtain excellent
agreement over the whole energy range.

IV. CONCLUSION

In conclusion, the total stopping cross section for pro-
tons passing through hydrogen has been calculated. Due
to the possibility of electron capture both the positive
and neutral charge states of the projectile were consid-
ered. To model proton-hydrogen collisions the two-centre
CCC method was used. By comparing the results of
our two-centre calculations to other single-centre calcu-
lations we conclude that singe-centre approaches cannot
produced accurate stopping cross sections at low and in-
termediate incident energies. Hydrogen-hydrogen colli-
sions are modelled using two methods: the single-centre
CCC method was used for the calculation of one-electron
processes and the Born approximation was used for the
calculation of two-electron processes. From the results
of these calculations we conclude that the coupling be-
tween channels plays an important role in the calculation
of one-electron processes. We also conclude that two-
electron processes make a significant contribution to the
stopping cross section. An evidence is provided that this
hybrid approach to modelling hydrogen-hydrogen colli-
sions to gives reliable results. The calculations for the
positive and neutral charge states of the projectile were
combined by utilising calculated charge-state fractions
to yield the total stopping cross section for protons pass-
ing through a medium made of atomic hydrogen. Good
agreement with all existing theories is obtained above
125 keV incident energy, however below this there is sig-

nificant deviations between the theoretical calculations.
From analysing the results of our calculations and exper-
imental data for molecular hydrogen we conclude that
around and below the stopping maximum the stopping
cross for protons passing through atomic hydrogen can
not be represented as a half of the stopping cross sec-
tion for protons passing through molecular hydrogen.
In addition, although some theoretical calculations for
atomic hydrogen have attempted to obtain good agree-
ment with experimental data for molecular hydrogen di-
vided by two, we emphasise that agreement between the
two should not be expected.
We conclude by commenting on the approximations

used in this work. As we mentioned earlier, we neglected
electron exchange in the H-H channels. The spin effects
are expected to be small in the energy range between
10 keV and 3 MeV where our method is applied. The
approximation is commonly used in the literature. In
fact, all the theoretical approaches referenced to here use
this approximation. However, at low energies, in par-
ticular around 10 keV and below, spin effects become
important. Nevertheless, no attempt has been made in
the literature to estimate the role of the spin effects in
stopping of the proton beam. We also neglected electron
transfer in H-H collisions. Nevertheless, we did take into
account total electron loss by one of the hydrogen atoms.
In other words, electron transfer was not completely ig-
nored but taken it into account implicitly. Simply, our
approach cannot differentiate whether the lost electron
has been captured by the other atom or not. However,
as discussed in Sect. III B, comparison of the total cross
section for electron loss in H-H collisions with experiment
shown in Fig. 4 indicates that overall electron-loss pro-
cesses have been modelled sufficiently accurately. Thus,
the solution we presented in this work is not complete
and there is room for improvement. A possible avenue
for improving the current results would be to use an an-
tisymmetrised wave function in the H-H channels to take
into account the spin effects. However, this would add
another dimension to the extraordinary complexity of the
problem.
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