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Abstract

Using a microwave and radio frequency resonance approach we observe the transitions of ytter-

bium from the 6s(n + 3)d states to the 6snℓ states for 4 ≤ ℓ ≤ 6 and 28 ≤ n ≤ 33. The energies

of the 6snℓ states of ℓ ≥ 4 are determined from the observed intervals and the known values of

the 6snd energies. We use a non-adiabatic core polarization model to analyze the energy levels

to determine the dipole (αd) and quadrupole (αq) polarizabilities of the ground state of Yb+. We

find the values αd = 60.51(10) a30 and αq = 672(28) a50.
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I. INTRODUCTION

The Yb+ ion is of great interest for use in an optical frequency standard, the study of

parity nonconservation (PNC), and the study of the violation of Lorentz symmetry [1–15].

For these applications it is critical to know the electric multipole moments connecting the

Yb+ ground state to its first few excited states. In a 171Yb+ optical frequency standard [1–

12] the leading contribution to the systematic uncertainty of the frequency is the blackbody

radiation (BBR) shift [13]. At an operating temperature of 300 K, the BBR shift is measured

to be -0.36(7) Hz [5]. The 2S1/2(F = 0) − 2D3/2(F
′ = 2) transition frequency is realized

with an uncertainty of 1.1 × 10−16 which is mainly from the BBR shift uncertainty [13].

The BBR shift is proportional to the difference in the dipole polarizabilities of the ionic

2S1/2 and 2D3/2 states. The largest contribution to the uncertainty of the BBR shift is

the uncertainty of the polarizabilities of the ionic states [13]. Therefore, it is essential to

determine accurate values of the polarizabilities of the ionic states. In the study of PNC,

the Yb+ ion is one of the candidates for testing the standard model. The dipole (E1) matrix

elements of Yb+ 6s1/2 − 6p1/2 and 6s1/2 − 6p3/2 and the quadrupole (E2) matrix elements of

Yb+ 6s1/2 − 5d3/2 and 6s1/2 − 5d5/2 are important in the calculation of PNC in the Yb+ ion

[15]. Since these matrix elements are the most important contributions to the dipole and

quadrupole polarizabilities αd and αq of the ground state of Yb+, measurements of these

polarizabilities constrain the possible values of these matrix elements.

We have determined the ground state Yb+ polarizabilities by measuring energies of the

high ℓ, ℓ ≥ 5, 6snℓ states of Yb. When the Rydberg electron is in a high ℓ, ℓ ≥ 5, state there

is no core penetration [16, 17], but the nℓ Rydberg electron produces a quasistatic electric

field at the ion core, which polarizes the Yb+ ion core and depresses the 6snℓ Rydberg state

energy from the hydrogenic nℓ level [18]. Hence, the polarizabilities of the ion core can be

measured by measuring the depression of the energies of the Yb Rydberg 6snℓ states below

the nℓ hydrogenic level.

Here we report the 6s(n + 3)d1D2 → 6snℓ, 4 ≤ ℓ ≤ 6, intervals observed by microwave

spectroscopy. Using the known 6s(n+3)d energy levels [19], we determine the energy levels

of the 6snℓ states and their quantum defects. We use a nonadiabatic core polarization

model to analyze the 6snℓ energy levels of ℓ = 5 and 6 to determine the Yb+ 6s dipole

and quadrupole polarizabilities. In the sections which follow we describe the experimental
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approach, our observations, and the data analysis. Finally, we compare our polarizabilities

to those obtained previously.

II. EXPERIMENTAL APPROACH

In this experiment atoms in a thermal beam of neutral Yb are excited to Rydberg states

using two pulsed dye lasers at a 20 Hz repetition rate. We use natural Yb, and for the

analysis we assume that we have the most common isotope, 174Yb. The first laser, fixed at

398.91 nm, drives the ground state 6s2 1S0 atoms to the 6s6p 1P1 state, and a tunable laser

at about 396 nm drives the atoms to 6s(n + 3)d 1D2 states. The atoms in the 6s(n + 3)d

1D2 states are further excited by microwave and radio frequency (RF) photons to the higher

angular momentum 6snℓ states. The relevant energy levels of Yb are shown in Fig. 1(a).

The Yb beam and the two copropagating laser beams cross at a right angle between two

horizontal plates 1.5 cm apart, defining the region in which the Yb Rydberg atoms interact

with the microwave and RF pulses. As shown by Fig. 1(b), a 1µs long microwave pulse

starts 50 ns after the second laser pulse to excite the atoms to the nearby 6sng state by a

two-photon transition. For the three-photon transitions 6s(n+ 3)d → 6snh, a 1µs long RF

pulse is added at the same time as the microwave pulse. The 6s(n + 3)d → 6sni transition

is driven by adding a bias field of 100-200 mV/cm in addition to the microwave and RF

pulses.

The microwave power is generated by an Agilent 83620A synthesized sweep generator

which produces a continuous wave (CW) output from 10MHz to 20GHz. A General Mi-

crowave DM862D switch is then used to produce the microwave pulses. Several frequency

multipliers; a Narda DBS2640X220 active doubler, a Narda DBS4060X410 active quadru-

pler, a Pacific Millimeter V2WO passive doubler, a Pacific Millimeter W3WO passive tripler

and a custom made Pacific Millimeter D3WO passive tripler are used to multiply the synthe-

sizer frequency to the desired frequency. The microwave pulse propagates from the frequency

multiplier through a WR28 waveguide feedthrough to a WR28 horn inside the vacuum cham-

ber. The RF frequency source is a swept signal generator of the Agilent Technologies 8360B

series that is used to generate a pulsed output of ∼20 mW over a range of 3 - 8 GHz and is

delivered to a WR 187 horn inside the vacuum chamber by coaxial cable.

We nulled the stray electric field in the vertical direction by applying a bias voltage
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to the lower plate defining the interaction region. A typical applied voltage is 100 mV,

corresponding to a 67 mV/cm field. We have measured the horizontal stray field by replacing

the upper plate with a split plate, allowing the application of a horizontal field. Using

this approach we determined the horizontal stray fields to be <10 mV/cm. For all the

measurements the vertical field was nulled, and the horizontal field leads to a shift of at

most 170 kHz in the worst case, the 6s36d− 6s33i transition. In all cases the shifts are less

than the measurement uncertainties.

As shown in Fig. 1(b), 50 ns after the microwave pulse, a large negative voltage pulse

is applied to the bottom plate to field ionize the Rydberg atoms. The amplitude of the

field pulse is chosen to allow the temporal separation of the ionization signals from the

initial and final states of the transitions. The final states of the transitions are lower in

energy than the initial 6s(n + 3)d states and ionize at higher fields. Since the high ℓ 6snℓ

states lie energetically between the initial and final states of the microwave transitions, it

is straightforward to separate the two field ionization signals [20]. The freed electrons pass

through a hole in the top aluminum plate and are detected by a microchannel plate (MCP)

detector. The MCP signal is recorded by a gated integrator as one of the synthesizers is

swept over the resonance frequency over many shots of the lasers. The frequency sweeps are

repeated until an acceptable signal to noise ratio is obtained.

III. EXPERIMENTAL OBSERVATIONS

A. Two Photon 6s(n+ 3)d → 6sng Intervals

We observed the two microwave photon 6s(n + 3)d → 6sng transitions for 28 ≤ n ≤ 33.

Fig. 2 shows a typical resonance, the 6s34d → 6s31g transition at the relative microwave

power of 0.008. At relative power 1 the power output of the source is 15dBm (31mW).

Its linewidth is 1 MHz, which is the transform limited linewidth. There was no attempt

to eliminate the earth’s magnetic field. However, the states 6s(n + 3)d 1D2 and 6sng 1G4

are singlet states, and they have the same Landé gj factors. Therefore, all the ∆mj = 0

transitions occur at the same frequency, yielding narrow lines [21]. Since there is an AC Stark

shift, we observed the microwave resonances at different microwave powers and extrapolated

to zero power as shown in Fig. 3. The largest AC shift we observed was ∼0.5 MHz. The
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(a)

(b)

FIG. 1. (a) Energy levels and (b) timing of the experiment.

observed intervals, twice the two photon frequencies extrapolated to zero power, are given

in Table I.

TABLE I. 6s(n + 3)d− 6sng observed intervals

n Interval (MHz)

28 93 198.90(5)

29 83 854.12(8)

30 75 730.23(12)

31 68 628.92(6)

32 62 392.36(7)

33 56 891.84(7)
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FIG. 2. Two-photon 6s34d → 6s31g resonance at the relative microwave power of 0.008. The

linewidth of the resonance is 1 MHz which is the transform limited linewidth of a 1 µs microwave

pulse. At the peak of the resonance we estimate that ∼100 atoms undergo the microwave transition

on each laser shot.

B. Three Photon 6s(n+ 3)d → 6snh Intervals

The three-photon transitions were driven by two microwave photons and one RF photon.

To observe the three-photon resonances, the microwave frequency was swept near the two-

photon (n + 3)d − ng transitions and the RF frequency was fixed approximately 100-500

MHz from the expected 6sng − 6snh interval. The RF frequency was in the range of 3-6

GHz for the n states of interest. To verify that the transitions observed were three-photon

6s(n + 3)d → 6snh transitions, we varied the RF frequency over a range of ± 5 MHz. At

each RF frequency, the microwave frequency was scanned, and we verified that the difference

of twice the microwave frequency and the RF frequency was constant over the RF range

used. A typical resonance, the 6s32d− 6s29h transition, is shown in Fig. 4. The resonance

is not as narrow as that shown in Fig. 2, possibly because the 6snh state is not a singlet

state, with the result that the resonance is broadened by the earth’s field.

6



0.000 0.004 0.008 0.012
62392.2

62392.4

62392.6

62392.8

62393.0

62393.2

 

 

M
ea

su
re

d 
in

te
rv

al
 (M

H
z)

Relative MW power 

FIG. 3. Extrapolation of the two-photon 6s35d → 6s32g resonance to zero microwave power.

We expected to observe doublets of approximately equal intensity, due to the K splitting,

as observed in Ca, Sr, and Ba [16, 17, 22]. Using the adiabatic expansion method we esti-

mated the K splittings for the Yb 6s30h and 6s30g states to be 60 and 10 MHz, respectively

[23]. In spite of a thorough search we only observed one strong feature, as shown in Fig.

4. The small feature at 79305 MHz in Fig. 4 is due to ∆m 6= 0 transitions, which occur

due to the presence of both parallel and perpendicular microwave and RF fields. Since both

features extrapolate to the same zero power interval, we ignore the weaker feature.

There are AC Stark shifts due to both the microwave and RF fields, leading to maximum

shifts of about 20 MHz. We verified that the AC Stark shifts due to the RF and microwave

fields were additive, and we then employed the following approach. We observed the reso-

nances at different RF powers while the microwave power was kept constant. The zero RF

power resonance frequency at that microwave power was determined by the extrapolating

the observed resonances linearly as shown in Fig. 5(a). We then varied the microwave power

to find the zero RF power resonances at different microwave powers. The zero RF power

data were extrapolated to zero microwave power to obtain the resonance frequency at zero

RF and microwave powers, as shown in Fig. 5(b). In Table II we present the approximate
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RF and microwave frequencies used and the 6s(n+3)d−6snh intervals extrapolated to zero

RF and microwave powers.

TABLE II. 6s(n+ 3)d − 6snh observed intervals

n Approx. RF frequency

(MHz)

Approx. MW

frequency (MHz)

6s(n+3)d → 6snh Interval

(MHz)

29 4730 42010 79 298.88(24)

30 4490 38050 71 613.62(30)

31 4200 34550 64 895.66(37)

32 4190 31600 58 999.46(38)

33 4200 29000 53 788.98(38)
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FIG. 4. Three-photon 6s32d → 6s29h resonances at relative microwave power and relative RF

power of 0.562 and 0.126, respectively. The RF frequency is 4730 MHz and the microwave frequency

is scanned as shown by the scale at the top of the figure. The linewidth of the resonance is 2.1

MHz. The subsidiary feature at 79305 MHz is due to a ∆m 6= 0 transitions driven by perpendicular

RF and microwave fields.
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FIG. 5. Extrapolation of the three-photon 6s34d → 6s31h resonance to zero microwave power

and zero RF power. (a) The relative microwave power was kept at 0.316, the resonances were

observed at different RF powers. The observed data was extrapolated to find the resonance at zero

RF power. (b) The same process as (a) was repeated at several microwave powers. The zero RF

power data at different microwave powers were extrapolated to obtain the resonance at zero RF

and microwave powers.
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C. Three Photon and static field 6s(n + 3)d → 6sni Intervals

We could not produce enough microwave and RF power to drive the four-photon 6s(n+

3)d → 6sni transitions. Hence, these transitions were driven by three photons in the presence

of a static field in the z direction. For these transitions the microwave frequency was kept

constant near the two-photon 6s(n + 3)d → 6sng resonances, and the RF frequency was

swept to observe the 6s(n + 3)d → 6sni transitions. As for the 6snh states, we do not

observe a K splitting, rather a single resonance, typified by the 6s32d − 6s29i resonance

shown in Fig. 6, which was taken at a static field of 121.8 mV/cm, with relative microwave

and RF powers of 0.9 and 0.1, respectively. The linewidth of the resonance is 5.3 MHz.

The minimum linewidth of the 6s(n + 3)d − 6sni transitions was 3 MHz, presumably due

to the earth’s field. Since the Rabi frequency for the transition is proportional to the static

field, the resonances broaden with increasing static field. The static field was varied over

the range of 0-150 mV/cm, which causes a frequency shift as large as 40 MHz. To eliminate

the AC Stark shift of a 6s(n + 3)d to 6sni transition at a given value of static field we

followed the same procedure we used for the three-photon 6s(n + 3)d → 6snh transitions,

resulting in the 6s(n + 3)d → 6sni intervals at zero microwave and RF powers for that

static field. The RF and microwave power extrapolations are shown in Figs. 7(a) and 7(b).

Both microwave and RF powers lead to frequency shifts of up to ∼ 5 MHz. The zero power

intervals were then extraplated to zero static field, as shown by Fig. 8, a linear plot of the

6s(n + 3)d → 6sni interval versus the square of the static field. In Table III we give the

typical RF and microwave frequencies and the 6s(n + 3)d − 6sni intervals extrapolated to

zero static field.

TABLE III. 6s(n + 3)d− 6sni observed intervals

n Approx. RF frequency

(MHz)

Approx. MW

frequency (MHz)

6s(n+3)d → 6sni Interval

(MHz)

29 6010 41940 77 866.0(28)

30 5440 37880 70 318.78(36)

31 4930 34330 63 726.60(85)

32 4490 31210 57 934.35(55)

33 4080 28460 52 836.4(25)
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FIG. 6. Four-photon 6s32d → 6s29i resonance at static field of 121.8 mV/cm, relative microwave

power 0.891 and relative RF power 0.1. The microwave frequency is 41940 MHz, and the RF

frequency is scanned as shown by the upper scale. With the same microwave and RF powers the

linewidth is 3 MHz at low static field, but at this static field the resonance is power broadened to

5.3 MHz since the Rabi frequency is proportional to the static field.

IV. ENERGIES AND QUANTUM DEFECTS

Using the 6snd 1D2 quantum defects extracted from the multichannel quantum defect

theory analysis of ref. [19] and the ionization limit of 50443.07041(25) cm−1 [19] yields the

6s(n+ 3)d binding energies of Table IV.

Combining these energies with the intervals given in the previous section we find the

6snℓ binding energies given in Table V, where we also give the hydrogenic binding energies

of 28 ≤ n ≤ 33, calculated using the Rydberg constant for 174Yb, RY b=3 289 831 526.526

MHz.

The binding energies of Table V can be used to determine the quantum defects of the

6snℓ states. The energy of a 6snℓ state is given by

W6snℓ =
−RY b

(n− δℓ)2
. (1)

The quantum defect δℓ of an unperturbed Rydberg series can be expressed using a Ritz
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TABLE IV. Quantum defects and binding energy of 6s(n + 3)d states

(n+ 3) Quantum defects Binding energy (MHz)

31 2.710792 4 110 837.1(2.4)

32 2.710816 3 834 998.7(2.4)

33 2.710879 3 586 003.7(2.4)

34 2.710960 3 360 484.1(2.4)

35 2.711049 3 155 582.3(2.4)

36 2.711141 2 968 861.1(2.4)

TABLE V. Binding energies of 6snℓ states and the hydrogenic energy

n 6sng (MHz) 6snh (MHz) 6sni (MHz) Hydrogenic (MHz)

28 4 204 036.0(2.4) 4 196 213.7

29 3 918 852.8(2.4) 3 914 297.6(2.4) 3 912 864.7(3.7) 3 911 809.2

30 3 661 733.9(2.4) 3 657 617.3(2.4) 3 656 322.4(2.4) 3 655 368.4

31 3 429 113.0(2.4) 3 425 379.7(2.4) 3 424 210.7(2.6) 3 423 341.9

32 3 217 974.6(2.4) 3 214 581.7(2.4) 3 213 516.6(2.5) 3 212 726.1

33 3 025 752.9(2.4) 3 022 650.1(2.4) 3 021 697.5(3.5) 3 020 965.6

expansion.

TABLE VI. Quantum defects of 6snℓ states

n 6sng 6snh 6sni

28 0.026 062(8)

29 0.026 074(9) 0.009 219(9) 0.003 912(14)

30 0.026 087(10) 0.009 224(10) 0.003 914(10)

31 0.026 097(11) 0.009 223(11) 0.003 933(12)

32 0.026 107(12) 0.009 237(12) 0.003 936(12)

33 0.026 117(13) 0.009 196(13) 0.003 997(19)

Explicitly,

δℓ = δℓ0 +
δℓ1

(n− δℓ0)2
. (2)
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FIG. 7. Extrapolation of the three-photon 6s36d → 6s33i resonance in the static field of 83.33

mV/cm to zero microwave power and zero RF power. (a) The relative microwave power was kept at

0.0631, the resonances were observed at different RF powers. The observed data were extrapolated

to find the resonance at zero RF power. (b) The same process as (a) was repeated at few different

microwave powers. The zero RF power data at different microwave powers were extrapolated to

obtain the 6s36d → 6s33i interval at zero RF and microwave powers.
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FIG. 8. Frequency of the 6s34d → 6s31i interval vs squared bias field applied in the z direction.

The zero field frequency is 63726.60(85) MHz.

Fitting the 6sng, 6snh, and 6sni energies of Table V to Eqs. (1) and (2) leads to the

quantum defects of the 6snℓ states and the quantum defect parameters shown in Table VI

and VII, respectively.

TABLE VII. Quantum defect parameters of the 6snℓ series

Series δ0 δ1

6sng 0.026 257 4(25) -0.153 3(22)

6snh 0.009 305(33) -0.073(31)

6sni 0.004 062(36) -0.128(34)

V. CORE POLARIZATION ANALYSIS

The energy depression below the hydrogenic energy and quantum defects of non hydro-

genic Rydberg states arise from penetration and polarization of the ion core by the Rydberg

electron. Penetration only occurs for Rydberg states of low ℓ; for high ℓ states the quantum
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defects are only due to the polarization of the ion core by the electric field and field gradient

from the Rydberg electron. The polarization energy is given by

Wpol,nℓ = W6snℓ −WnH , (3)

where Wpol,nℓ is the polarization energy, W6snℓ is the energy level of the nℓ Rydberg state

and WnH is the hydrogenic energy level of the n state. If the Rydberg electron moves slowly

relative to the electrons in the ion core (the adiabatic approximation) the polarization energy

can be written in atomic units as [18]

Wpol,nℓ = −
1

2
αd〈r

−4〉nℓ −
1

2
αq〈r

−6〉nℓ, (4)

where αd and αq are the dipole and quadrupole polarizabilities of the Yb+ 6s core, respec-

tively. The expectation values of r−4 and r−6 are the squares of the field and the field

gradient at the core from the Rydberg electron in the nℓ state. Assuming the Rydberg nℓ

electron to be hydrogenic, we can use known analytic expressions for the expectation values

〈r−4〉nℓ and 〈r−6〉nℓ. Therefore, by measuring Wpol,nℓ for several non penetrating high ℓ states

we can determine the polarizabilities αd and αq of the ion core.

We can rewrite Eq. (4) in the experimentally convenient form as [24]

Wpol,nℓ = −αdPnℓ − αqPQnℓ, (5)

where

Pnℓ = RYb〈r
−4〉nℓ (6)

and

Qnℓ =
〈r−6〉nℓ
〈r−4〉nℓ

. (7)

We can express Eq. (5) as

−
Wpol,nℓ

Pnℓ
= αd + αqQnℓ. (8)

From Eq. (8), we can extract the values of αd and αq from a graph of −Wpol,nℓ/Pnℓ vs Qnℓ;

αd and αq are the intercept and slope of a line through the data points.

As pointed out by van Vleck and Whitelaw, the adiabatic core polarization model is a

limiting case of a more general model. The polarization energy shift of the nℓ state from

the hydrogenic level is the second-order shift due to the multipole expansion of the Coulomb

interaction between the ion core and the nℓ Rydberg electron [25]. The adiabatic equation,
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Eq. (4), is the limiting case of the second-order shift when the energies of the excited

ion core are much greater than the spread in energies of the relevant Rydberg states. To

make this notion more concrete we use the dipole polarization energy of the 6s30h state of

Yb as an example. Consider the simple picture of the Yb energy levels shown in Fig. 9.

For each energy level of the Yb+ core (NL, bold line), there are Rydberg series (NLnℓ)

converging to the ionic level from below and the continua (NLǫℓ) above the ionic level.

The dipole polarization energy of the 6s30h state comes from the dipole coupling of the

6s30h state to the Npng, Npǫg, Npni and Npǫi states. The total dipole shift due to the

levels associated with the ionic Np state is calculated by using the dipole coupling in second

order perturbation theory and summing over all n and integrating over the continua ǫ. The

summation and integration span the energy range ∆ in Fig. 9. In the limit where the span of

energy is much less than the ionic energy level separation, ∆ << Ω, the adiabatic equation,

Eq. (4), is recovered.

The adiabatic core polarization model works well for the alkali metals where the energies

of the excited ionic states are much greater than the spread in energy of the relevant Rydberg

states. However, the adiabatic core polarization model breaks down when applied to the

alkaline-earth metals and Yb, where the energies of the ionic excited states are comparable

to the spread in energy of the relevant Rydberg states. For example, the energies of the

low-lying excited states of Li+ and Na+ exceed 30 eV while the energy span of the relevant

Rydberg states is less than 1 eV. In contrast, the low-lying ionic states of Yb+ have energies

less than 4 eV, while the relevant Rydberg states still span an energy range approaching 1

eV. Therefore, we must take the non-adiabatic effect into account. It can be done in several

ways. One is the adiabatic expansion method, in which expectation values of higher inverse

powers of r are used [26]. An alternative, which we have used here, is to introduce the

non-adiabatic factors kd and kq so that Eq. (4) becomes [27],

Wpol,nℓ = −
1

2
αdkd〈r

−4〉nℓ −
1

2
αqkq〈r

−6〉nℓ. (9)

The numerical factors kd and kq are the ratios of the perturbation theory sums to the

expectation values 〈r−4〉nℓ and 〈r−6〉nℓ. Yb is similar to alkaline earth atoms in that the

largest radial matrix elements connecting the Yb+ ground state to the Np and Nd states

are the 〈6s|r|6p〉 and 〈6s|r2|5d〉 matrix elements. Accordingly, the largest contributions to

αd and αq come from the dipole and quadrupole couplings to the 6pn′ℓ and 5dn′ℓ states. To
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FIG. 9. Schematic Yb energy levels. For each level of the Yb+ core NL (bold line), there are

Rydberg series (NLnℓ) converging to the ionic level from below and continua (NLǫℓ) converging

to the ionic level from above. The 6s30h state is dipole coupled to the Npng and Npni states

and the Npǫg and Npǫi continua by the Rydberg electron and the ion core interaction. The total

dipole shift of the 6s30h state due to the Rydberg states associated with the ionic Np levels is

calculated by using the second order perturbation of the dipole coupling and summing over all n

and integrating over the continua ǫ. The summation and integration span the energy range ∆. In

the limit where the span of energy is much less than the ionic energy level, ∆ << Ω, the adiabatic

equation, Eq. (4), is valid.

a good approximation αd and αq are only due to these couplings, so we assume this to be

the case, although it introduces the need for small corrections to the values we obtain for

αd and αq. With the assumption that only the 6pn′ℓ and 5dn′ℓ states contribute to the kd

and kq sums, they are given by [27]

kd =
(W6p −W6s)

〈nℓ| 1

r42
|nℓ〉

[

ℓ

2ℓ+ 1

∑

n′

|〈nℓ| 1

r22
|n′ℓ− 1〉|2

W6pn′ℓ−1 −W6snℓ
+

ℓ+ 1

2ℓ+ 1

∑

n′

|〈nℓ| 1

r22
|n′ℓ+ 1〉|2

W6pn′ℓ+1 −W6snℓ

]

(10)

and
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kq =
5(W5d −W6s)

〈nℓ| 1

r62
|nℓ〉

[

3

10(4ℓ2 − ℓ)(2ℓ+ 3)

[

(2ℓ− 1)(ℓ+ 1)(ℓ+ 2)
∑

n′

|〈nℓ| 1

r32
|n′ℓ+ 2〉|2

W5dn′ℓ+2 −W6snℓ

+
2(ℓ2 + ℓ)(2ℓ+ 1)

3

∑

n′

|〈nℓ| 1

r3
2

|n′ℓ〉|2

W5dn′ℓ −W6snℓ

+(2ℓ+ 3)(ℓ2 − ℓ)
∑

n′

|〈nℓ| 1

r32
|n′ℓ− 2〉|2

W5dn′ℓ−2 −W6snℓ

]]

. (11)

In the adiabatic limit, ∆ ≪ Ω, the energy denominators in the summations of Eqs. (10)

and (11) can be removed from the summations and cancel the energy differences in the

prefactors. Thus, the summations contain only squared radial matrix elements, and it is

straightforward to show that in this limit kd = kq = 1. In Table VIII and Table IX we

present the calculated values for kd and kq. These values were calculated numerically using

hydrogen wavefunctions and a Numerov algorithm. We checked our numerical calculation

using [25]
∑

n′

〈n′ℓ′|rs|nℓ〉2 = 〈nℓ|r2s|nℓ〉. (12)

The errors in calculation were determined to be less than 0.1%. The kd values have no

n dependence to four significant digits and the kq values have no n dependence to three

significant digits.

For simplicity of notation we introduce the following adaptations of Pnℓ and Qnℓ;

P ′

nℓ = RYbkd〈r
−4〉nℓ (13)

and

Q′

nℓ =
kq〈r

−6〉nℓ
kd〈r−4〉nℓ

. (14)

With these definitions we can rewrite Eq.(9) as

−
Wpol,nℓ

P ′

nℓ

= αd + αqQ
′

nℓ. (15)

TABLE VIII. kd calculated values

ℓ = 4 ℓ = 5 ℓ = 6

0.9375 0.9576 0.9733
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The polarization energies Wpol,nℓ are determined from Table V. Combining the analyt-

ically known values of 〈r−4〉 and 〈r−6〉 with the values of kd and kq from Tables VIII and

IX we can calculate P ′

nℓ and Q′

nℓ. Using Wpol,nℓ, P
′

nℓ, and Q′

nℓ we plot a graph of −
Wpol,nℓ

P ′

nℓ

vs Q′

nℓ as shown in Fig. 10. From the intercept and slope of the line through the data

points in Fig. 10, we determine the dipole and quadrupole polarizabilities of Yb+ 6s to be

αd = 60.31(10) a30 and αq = 659(28) a50, respectively. We ignore the ng series due to the

possibilities of core penetration and interseries interactions with low lying states converging

to higher limits, and we exclude the n = 33ℓ states as these data exhibit an inconsistent n

scaling.
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FIG. 10. Plot of −Wpol,nℓ/P
′

nℓ vs Q
′

nℓ. From the nonadiabatic treatment of the ion core, Eq. (15),

the plot can be fit linearly. The intercept of the graph is αd and the slope of the graph is αq. We

determine αd and αq to be 60.31(10) a30 and 659(28) a50, respectively. Note that the ng data is

omitted in the fit due to the core penetration of the ng states, and we omit n = 33 states as they

are already inconsistent.

TABLE IX. kq calculated values

ℓ = 4 ℓ = 5 ℓ = 6

0.947 0.894 0.921
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As mentioned earlier, assuming that αd and αq arise solely from coupling to the 6pn′ℓ

and 5dn′ℓ states introduces small errors. For αd the largest error is due to the contribution

of the Yb++ polarizability, which is calculated to be 6.4 a30. It is not subject to the non

adiabatic correction, i. e. kd = 1 for this part of αd, not 0.97. Accordingly, the value of αd

obtained from Fig. 10 is too low by 0.2 a30, and the correct value is

αd = 60.51(10)a30. (16)

For Yb+ there has been no calculation of αq. However, we have estimated that the con-

tributions to αq from couplings to the Ndn′ℓ states of N ≥ 6 represent 20% of αq. This

fraction is similar to those calculated for Ca+ and Sr+ [17, 22]. Since these contributions

are not subject as large a non adiabatic correction, they should have kq ≈ 1, not kq = 0.9.

Accordingly, we raise the value of αq obtained from Fig. 10 by 2%, to yield

αq = 672(28)a50. (17)

There are theoretical predictions for the value of αd. Ref. [28] predicts the value of αd to

be 62.04 a30. Ref. [29] extracts the Yb
+ electric dipole matrix elements E1 〈6s1/2|r|6p3/2,1/2〉

from the lifetime measurements of the 6p1/2,3/2 levels in Yb+ ion of Ref. [30] and [31] to

calculate αd, yielding αd = 59.3(8) a30. Our direct measurement value of αd falls between

the two predictions. To our knowledge, there is no measurement or theoretical prediction of

αq for the Yb+ 6s state.

VI. CONCLUSION

We have measured the microwave and RF transitions of ytterbium from the 6s(n + 3)d

states to the 6sng, 6snh and 6sni states for 28 ≤ n ≤ 33. From the observed measurements,

we use the precise values of the nd quantum defects to determine the precise energy levels and

the quantum defects of the measured nℓ states. We apply the non-adiabatic core polarization

model to these energy levels to determined the Yb+ 6s ionic dipole (αd) and quadrupole

(αq) polarizabilities. We determine the values of αd and αq to be αd = 60.51(10) a30 and αq

= 672(28) a50, respectively. Our αd agrees well with the theoretical predictions.
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