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Blind quantum computation is a scheme that adds unconditional security to cloud quantum

computation. In the protocol proposed by Broadbent, Fitzsimons, and Kashefi, the ability to

prepare and transmit a single qubit is required for a user (client) who uses a quantum computer

remotely. In case a weak coherent pulse is used as a pseudo single photon source, however, we must

introduce decoy states, owing to the inherent risk of transmitting multiple photon. In this study,

we demonstrate that by using a heralded single photon source and a probabilistic photon number

resolving detector, we can gain a higher blind state generation efficiency and longer access distance,

owing to noise reduction on account of the heralding signal.

I. INTRODUCTION

Universal quantum computing has been developed

rapidly in recent years. Indeed, it is thought that it

is only a matter of time until it can be used practi-

cally. However, it is expected that powerful quantum

computers will be very large and expensive. There are

still a number of challenges that remain to develop such

computers for personal or commercial use. Therefore,

it is indispensable to develop techniques for individual

users (clients) to use quantum computers securely when

they are owned by large companies or institutions. Blind

quantum computation is a method of using quantum

computers remotely without leaking information to third

parties, including its owner.

Various approaches exist for universal blind quan-

tum computation. Among them, the BKF protocol—

named after Broadbent, Fitzsimons, and Kashefi [1]—is

regarded as practical because it does not require quantum

memory nor quantum operations on the client side. In ac-

cordance with their protocol, we consider measurement-

based quantum computing [2], which is a method of per-

forming quantum computations with many qubit entan-

glements measured on the server side. In the BKF pro-

tocol, the server performs quantum computations by cre-

ating and measuring multipartite entanglements using

qubits transmitted by the client. By giving randomness

to the quantum state to be transmitted, the client can

perform calculations with both the content and results of

the calculations concealed on the server side.

Ideally, the BKF protocol guarantees unconditional se-

curity. However, in order to achieve this, the client must

transmit a single photon for each qubit. Although pho-

tons are generally used for signal transmission, it is ex-

tremely difficult to prepare an ideal single photon source.

Weak laser light (weak coherent pulse, WCP) is thus used

as a pseudo single photon source in practice. However,

with WCP, the number of photons follows Poissonian

statistics, so the probability of transmitting multiple pho-

tons can never be zero. As such, information risks being

stolen by the server exist. Given the existence of such

imperfections, a protocol to prepare qubits (remote blind

state preparation, RBSP) securely at remote locations is

proposed by Dunjko et al. [3]. With this protocol, it

is possible to create a single secure qubit from multiple

signals. In addition, ”ε - blindness” guarantees that the

probability information leaked to the server is less than

ε despite following the protocol correctly.

In the RBSP protocol, the client must send many

pulses to prepare a single qubit. In order to estimate

the number of pulses accurately and prove the security

with fewer pulses, the decoy state method [4–6] used in

the quantum key distribution (QKD) was brought into

RBSP [7, 8]. The decoy state method more precisely

estimates the transmittance for each photon number by

sending “decoy” states of different intensities. By adopt-

ing this method in RBSP, it is possible to estimate the

lower limit of the number of pulses N that the client

needs to send. In particular, in the original RBSP pro-

tocol [3], N = O(1/T 4) for the transmittance T . N in-

creases considerably with the communication distance.

With the decoy state method and an improved estima-

tion method, by contrast, N = O(1/T ), which offers a

significant improvement.

In QKD, a heralded single photon source (HSPS) has

been shown to have an advantage over WCP regard-
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ing the communication distance [9, 10]. A single pho-

ton is thus heralded by the detection of the counter-

part of two photons generated by spontaneous paramet-

ric down-conversion (SPDC). As a result, it is possible

to reduce the dark count and extend the communica-

tion distance. In addition, the multi-photon probability

can be decreased by measuring the photon number for

the heralding signal, increasing the secure key generation

rate.

In this study, we analyze the required number of pulses

N when using HSPS rather than WCP in universal blind

quantum computation (UBQC) and compare the results

to the case of WCP. In Sec. II, we briefly review UBQC

based on WCP. In Sec. III, we introduce HSPS in UBQC

in an asymptotic case, and Sec. IV describes RBSP by

using a HSPS. Sec. V compares the two cases followed

by discussion in Sec. VI.

II. UNIVERSAL BLIND QUANTUM

COMPUTATION WITH WEAK COHERENT

PULSES

With the BKF protocol, all information except for the

calculated size is completely concealed. However, since

there are necessarily imperfections in the real world, com-

plete concealment is difficult. Specifically, it is difficult

to prepare an ideal single-photon source, and WCP uti-

lization is generally assumed. However, insofar as the

number of photons follows a Poisson distribution, pulses

containing multiple photons can exist. If there are multi-

photon signals, information leaks to the server (Bob).

The RBSP protocol [3] has been proposed to increase se-

curity despite multi-photon signals. Further, “ε - blind-

ness B serves as an index for the degree of security.

A. Interlaced 1-D Cluster computation

In the RBSP protocol, interlaced 1-D Cluster compu-

tation (I1DC) is used to create a single qubit from several

pulses to increase security even in the case that a multi-

photon pulse is included in the signal pulse sequence [3].

The client (Alice) sends several random-phased states

to Bob. Bob then generates a single qubit using them.

The phase of the generated qubit is the sum (or differ-

ence) of all the phases of the states used to create this

qubit. Therefore, Bob cannot obtain information about

the phase if any one of the states sent from Alice is un-

known. That is, in the case of sending multiple pulses,

no information leaks to Bob if there is at least one pulse

in which just a single photon exists. The procedure is as

follows.

1. Input

Alice randomly assigns σl = 0, π4 ,
2π
4 , ..., 7π

4 . Send

states |+σl
〉 = 1√

2
(|0〉+eiσl |1〉) (l = 1, ..., k) to Bob.

2. Operation with Bob

(a) Apply CZ(H ⊗ I) to i and the i+ 1-th qubit.

(b) Measure the i-th qubit with Pauli X and out-

put the measured value as si.

(c) Repeat (a) and (b) from i = 1 to k − 1.

(d) Bob receives an unmeasured qubit of state

|+θ〉 and tells Alice s = (s1, s2, ..., sk).

3. Output Alice calculates θ from s = (s1, s2, ..., sk)

and σl.

θ =

k
∑

l=1

(−1)tlσl (1)

ti =

{

∑k−1
j=1 si mod 2 (i > k)

0 (i = k)
(2)

In order for Bob to receive θ, it is necessary to know

all σl. That is, Bob cannot know θ if there is at least

one single photon signal σl unknown to Bob. From the

no-cloning theorem, Bob cannot derive information on σl

for pulses that contain only a single photon, and as such

it suffices for there to be at least one pulse with only a

single photon. Provided that this condition is satisfied,

Alice can create a qubit where the phase is unknown to

the server.

B. Remote blind qubit state preparation

RBSP proceeds according to the following procedure.

1. Preparation by Alice

(a) Prepare N WCPs with an average pho-

ton number of µ = T , where T denotes

channel transmittance. Each pulse has a

phase randomly selected from the set σl =

0, π4 ,
2π
4 , ..., 7π

4 (l = 1, ..., N). The state is de-

scribed as follows:

ρσl = e−µ
∞
∑

k=0

µk

k!
|k〉 〈k|σl

(3)

(b) Send {ρσl}l to Bob.

2. Preparation by Bob
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(a) Perform a quantum non-demolition measure-

ment of the photon number on each received

state. Keep signals with a nonzero photon

number, and discard the others.

(b) Bob tells Alice the number of photons

(n1, ..., nN) in each state.

3. Calculation and operation by Alice and Bob

(a) Alice makes sure that the number of reported

vacuum states is not too large. Specifically, if

it is larger than N(e−T 2

+T 2/6), the protocol

is aborted.

(b) Bob transfers each state to a single qubit. Let

the qubit number be M .

(c) Use the above qubits to do I1DC. Obtain t =

(t1, ..., tM ) and state |+θ〉.
(d) Bob tells Alice t.

(e) Alice calculates θ using σl and t.

At this time, the probability pfail that information is

leaked to Bob even though the protocol was executed cor-

rectly, and the probability pabort that the protocol will be

aborted even if Bob is not cheating, satisfy the following

expression:

pfail, pabort ≤ exp

(

−NT 4

18

)

, (4)

where T is the channel transmittance [3].

C. Remote blind state preparation with weak

coherent pulses: decoy state method

In Ref. [3], it was demonstrated that the RBSP rate

using WCP decreases in proportion to the fourth power

of channel transmittance. This is a major obstacle to

attaining long-distance RBSP. Therefore, a method for

improving the RBSP has been introduced using the decoy

state method originally proposed in the field of QKD [7].

The procedure is as follows.

1. Preparation by Alice

(a) Prepare N WCPs including the signal state

and two kinds of decoy states with aver-

age photon numbers of µ, v1, v2, respectively.

Each pulse has a phase randomly defined by

σl = 0, π
4 ,

2π
4 , ..., 7π

4 (l = 1, ..., N). The signal

state is described as follows:

ρσl
µ = e−µ

∞
∑

k=0

µk

k!
|k〉 〈k|σl

(5)

Two decoy states ρσl
v1 , ρ

σl
v2 are defined as well.

(b) Send the prepared states {ρσl
µ }l, {ρσl

v1}l, {ρσl
v2}l

to Bob.

2. Preparation by Bob

(a) Bob tells Alice which pulses he has received.

3. Calculation and manipulation by Alice and Bob

(a) Alice confirms that the yield of the signal and

the two decoy states (Qµ, Qv1 , Qv2) reported

by Bob is not below a predetermined thresh-

old. If it is, the protocol is aborted.

(b) Alice tells Bob the position of the decoy and

the computation size S.

(c) Bob throws out the decoy states. The remain-

ing qubits (the number is given by Mµ) are

divided randomly into S groups and Bob per-

forms I1DC for each group. Bob obtains |+θ〉
and sends the measurement result to Alice.

(d) Alice calculates θ in accordance with the pro-

cedure of I1DC.

In this decoy scheme, as in the original RBSP [3], the

failure probability pfail is estimated and a condition that

it becomes less than ε is found [7, 8]. Here, S is the

computation size, which corresponds to the number of

qubits ultimately created by Bob. Let the rate of the

single photon pulse by Bob left after the decoy pulses

are discarded be p1. The number of signal states for

each group is given by m = Mµ/S, and the group fails

unless there is at least one single photon pulse in it. The

probability that a group fails is given by the following

expression:

pfail =

(

m

Mµ −M1

)

(

m

Mµ

) ≤
(

Mµ −M1

Mµ

)m

=
(

1− p1
)m

.

(6)

Here, M1 is a single photon count number at Bob. If

there is even one failed group among S groups, RBSP

fails. Therefore, the overall failure probability Pfail is

given by

Pfail ≤ Spfail = S(1− p1)
m. (7)

The condition that this is less than ε is given by

m ≥ ln (ε/S)

ln (1 − p1)
. (8)

In finite-length analysis, we ensure that Pfail is less than

the given security parameter ε. Below, we discuss the ef-

ficiency S/N and its asymptotic nature. For the asymp-

totic limit, we fix the security rate ε/S instead of the
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security parameter ε because the overall failure probabil-

ity increases as the protocol repeats.

By using the relation (8), the lower limit of N is given

by the following expression, under the assumption that

the ratio of the signal in N pulses is pµ:

N =
Mµ

pµQµ
=

mS

pµQµ
≥ S

pµQµ

ln (ε/S)

ln (1 − p1)
. (9)

Here, pµ, ε/S are the default values predetermined and

followed by the necessary computation and security level.

Further, Qµ is a characteristic value of a photon source

and channel transmittance, while p1 needs to be esti-

mated. From the expression of Y L,v1,v2
1 in [7], the mini-

mum of p1 is given as follows:

p1 =
Q1

Qµ
≥ Y L,v1,v2

1 µe−µ

Qµ

=
µ2e−µ

µv1 − µv2 − v21 + v22
×

[

Qv1

Qµ
ev1 − Qv2

Qµ
ev2 − v21 − v22

µ2Qµ

(

Qµe
µ − Y L

0

)

]

. (10)

It enables us to make µ almost independent to T whereas

we have to make µ proportional to T without decoy-state

method. Here, Yi is a channel transmittance including

the detection efficiency for the signal of photon number

i. In the case of a zero photon number Y0, it is given by

the dark count probability of detectors.

III. HERALDED SINGLE PHOTON SOURCE

In QKD, an alternative photon source has been pro-

posed, called a heralded single photon source (HSPS),

which utilizes spontaneous parametric down-conversion

(SPDC) [9, 10]. SPDC is a nonlinear optical process

that generates a two-photon pair (or pairs) called a sig-

nal and idler. In this method, after the signal and idler

are separated spatially by a polarizing beam splitter or a

dichroic mirror, the photon number for the idler is mea-

sured using a practical photon number resolving detector

[10], and signal pulses that include multi-photons are re-

moved from the key generation process. Since the num-

ber of photons can only be measured stochastically, mul-

tiple photon pulses cannot be completely eliminated, yet

the probability that a nonzero signal pulse consists of a

single photon can be increased. In addition, by utiliz-

ing heralding with the idler detection, it is possible to

reduce the detector dark count, insofar as Bob accepts

signal pulses only when the corresponding idler photon is

detected as a single photon. This enables longer distance

communication. The photon (pair) number distribution

of SPDC is thermal when single mode approximation is

valid:

P (n) =
µn

(1 + µ)n+1
. (11)

We assume that the photon number of the idler for gen-

erating heralding signals on Alice’s side is measured by

using a fiber beam splitter and single photon detectors,

which do not themselves have a photon number reso-

lution [11–13]. The so-called time-multiplexed detec-

tor works well if the detectors’ quantum efficiencies are

good. In practice, currently available superconducting

single photon detectors typically offer detection efficien-

cies higher than 0.85. Assuming that the number of cou-

plers is x, the mode number X after the fiber beamsplit-

ter output ports is X = 2x. The probability of measuring

m photon pulse as l photon P (l|m) with the detection

probability at each detector as ηA is given as follows [11]:

P (l|m) =

(

X

l

) l
∑

j=0

(−1)j
(

l

j

)[

(1− ηA) +
(l − j)ηA

X

]m

.

(12)

After discarding multi-photon pulses and leaving only

single photon pulses, the yield Qµ and error rate Eµ

are given by Eqs. (13) and (14), respectively. Here, we

set the dark count rate of the detectors on Alice’s side

(heralding detector) as dA:

Qµ = Y0XdA
1

1 + µ
+

∞
∑

i=1

YiP (1|i) µi

(1 + µ)i+1
, (13)

EµQµ = e0Y0XdA
1

1 + µ
+

∞
∑

i=1

eiYiP (1|i) µi

(1 + µ)i+1
.

(14)

IV. REMOTE BLIND STATE PREPARATION

WITH DECOY HSPS

We now turn to the case of HSPS. In this case, the

mean photon number for the signal and two decoy states

is defined in the same manner as the WCP case (µ, v1, v2):

0 ≤ v2 < v1, (15)

v1 + v2 < µ. (16)

The yield for decoy states Qv1 , Qv2 is expressed as well.
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Then, the following can be derived:

v1Qv2(1 + v2)
2 − v2Qv1(1 + v1)

2

= [v1(1 + v2)− v2(1 + v1)]×

Y0XdA − v1v2

{[

v1
1 + v1

− v2
1 + v2

]

Y2P (1|2)

+

[

v21
(1 + v1)2

− v22
(1 + v2)2

]

Y3P (1|3) + · · ·
}

≤ [v1(1 + v2)− v2(1 + v1)]Y0XdA (17)

and

Y0XdA ≥ Y L
0 XdA

=max

{

v1Qv2(1 + v2)
2 − v2Qv1(1 + v1)

2

v1(1 + v2)− v2(1 + v1)
, 0

}

. (18)

The lower bound of Y0 is obtained as Y L
0 . Here, a relation

v1
1+v1

> v2
1+v2

, from v1 > v2, is utilized. Equation (18)

holds for v2 = 0. Hence, the best lower bound is obtained

in the condition. Furthermore, Eq. (19) is derived from

Eq. (17), and Eq. (20) is derived from Eq. (16):

∞
∑

i=2

YiP (1|i) µi

(1 + µ)i
= Qµ(1 + µ)− Y0XdA − Y1ηA

µ

1 + µ
,

(19)

(

v1
1+v1

)2 −
(

v2
1+v2

)2

(

µ
1+µ

)2 ≥
(

v1
1+v1

)i −
(

v2
1+v2

)i

(

µ
1+µ

)i . (20)

By removing Y0 from Qv1 and Qv2 , the minimum of Y1

is estimated (Y L,v1,v2
1 ) in Eq. (21).

Y1ηA ≥ Y L,v1,v2
1 ηA

=

µ
1+µ

v1
1+v1

µ
1+µ − v2

1+v2

µ
1+µ −

(

v1
1+v1

)2
+
(

v2
1+v2

)2×

[

Qv1(1 + v1)−Qv2(1 + v2)−
(

v1
1+v1

)2 −
(

v2
1+v2

)2

(

µ
1+µ

)2

× {Qµ − Y L
0 XdA}

]

(21)

Inequalities (18) and (21) represent the minimum of Y0

and Y1, respectively. The expressions of the lower limits

allow us to estimate the lower limit of p1:

p1 =
Q1

Qµ
≥

Y L,v1,v2
1 ηA

µ
(1+µ)2

Qµ
, (22)

where Q1 is the yield for single photon pulses. The lower

limit of N to attain “ε - blindness B by using an HSPS

is obtained by substituting Eq. (22) with Eq. (9).

V. RESULT

Thus far, we have considered an asymptotic case where

the size S has an infinite length. However, when con-

sidering the generation of a finite-length graph state in

practice, it is necessary to evaluate the deviation from the

Poissonian, which should be attained in an infinite-length

graph state. Here, it is necessary to evaluate the blind

state generation efficiency, defined as S/N . Its maxi-

mization is considered a performance index of RBSP.

For WCP blind quantum computations without decoy

states [3], for Bob detection number Mµ = O(NµT ), all

signals that consist of more than two photons are as-

sumed to be detected by Bob M≥2 = O(Nµ2). Then,

M≥2/Mµ = O(µ/T ). Therefore, if µ ≤ O(T ) is not

satisfied, M≥2/Mµ ≥ 1. Even if m is increased, an in-

equality (
M≥2

Mµ
)m < pfail cannot be satisfied. As µ in-

creases, Mµ becomes larger, so µ = O(T ). As for pabort,

the difference N∆ between the number M0 of states for

which the server measured 0 and its expectation value is

bounded O(
√
N) because it obeys Eq. (9) of the sup-

plimentary material of [3], which is Hoeffding’s bound,

and they consider pabort as a small constant. The signal

detection number Mµ needs to be much higher than M0,

O(NµT ) > O(
√
N). Then, N > O((µT )−2) is necessary.

Finally, the efficiency is S/N = O(T 4).

Indeed, the bound of the statistical fluctuation N∆ in

[3] is loose. Hoeffding’s bound for independent random

variables can be replaced with the Chernoff bound. It

bounds the difference between the actual and expected

values of Mµ to be O(
√
NµT ). It makes this difference

irrelevant to the efficiency of the protocol in the asymp-

totic regime. In this study, the total detection number

Mµ is the same, whereas M≥2 = O(Nµ2T ), because the

value is precisely estimated by decoy states. Therefore,

M≥2/Mµ = O(µ), such that the qubit number m for

obtaining a single qubit does need not increase as the

distance increases (m = O(1), µ = O(1)). As a result,

the efficiency will be S/N = Mµ/(Nm) = O(T ). For

the finite-length RBSP, we can still take advantage of

utilizing decoy states.

In the following, we will evaluate the efficiency S/N

and the performance of HSPS. Parameters Qµ, Qv1 , Qv2

needed to calculate S/N are obtained using the trans-

mittance T , derived by Eq. (26), where α(dB/km) is the

loss factor in an optical fiber, L is the fiber length (km),

ts is the transmittance inside the server, and ηs, is the

detection rate on the server side. Here, µ is the average

photon number, and in the case of WCP and HSPS, we

use Eqs. (27) and (28), respectively. We also set the

average photon numbers v1 and v2 for decoy states.
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Qµ ≃ Y0 + Tµ, (23)

Qv1 ≃ Y0 + Tv1, (24)

Qv2 ≃ Y0 + Tv2, (25)

T = 10−αL/10tsηs, (26)

µwcp = µ (27)

µthermal =

∞
∑

i=0

µi

(1 + µ)i+1
P (1|i). (28)

Here, α = 0.2 dB/km, L = 25 km, ts = 0.45, ηs = 0.1,

and the server’s dark count Y0 is set to 6×10−6 [8]. Fur-

thermore, v2 is the optimum value 0, and v1 = 0.125.

We also set the signal proportion pµ to 0.9. These val-

ues are adjusted to the values used in [8] for comparison.

Furthermore, the detection efficiency ηA of the heralding

detector on Alice included only in HSPS is set to 0.85,

and the dark count rate dA is set to 1.0× 10−8. This is

a value sufficiently achievable with a commercially avail-

able superconducting single photon detector [14].

In Fig. 1, the dependence of S/N on µ is shown.

In WCP (HSPS), the maximum is obtained with µ =

0.625, p1 = 0.51 (µ = 0.605, p1 = 0.65). Moreover, S/N

for WCP is about 3/2 times higher. The reason S/N is

inferior in HSPS is because the efficiency of the herald-

ing detector is imperfect and because the multi-photon

probability for HSPS (thermal) is higher than the Pois-

son distribution. When the efficiency of the heralding

detector approaches unity, it approaches the WCP.

WCP
HSPS

 2.0×10
-4

 1.5×10
-4

 1.0×10
-4

 0.5×10
-4

0
0.2 0.6 1.0 1.4 1.8

S
/N

μ

FIG. 1. Dependence of S/N on µ. (ηA = 0.85, dA = 1.0 ×

10−8)

We also calculated a case using the lowest dark count

rate demonstrated so far [19]. Here, according to [19],

the dark count rate per second is 0.01 cps, and dA is

1.0×10−12 within the detection window width of 100 ps.

The detection efficiency ηA is 0.04. The S/N dependence

on µ is shown in Fig. 2. In this case, the upper limit of

S/N was considerably low due to the influence of Alice’s

low detection efficiency ηA. It was about two orders of

magnitude lower than in the case of WCP. From this

result, we found that decreasing the photon detection ef-

ficiency by one order was more influential than improving

the dark count rate by four orders of magnitude. There-

fore, in the following calculation, we used the parameters

ηA = 0.85 and dA = 1.0× 10−8.

WCP
HSPS

S
/N

μ

0.2 0.6 1.0 1.4 1.8
 1.0×10

-7

 1.0×10
-6

 1.0×10
-5

 1.0×10
-4

 1.0×10
-3

FIG. 2. S/N dependence on µ. (ηA = 0.04, dA = 1.0×10−12)

Next, S/N dependence on the distance L is shown in

Fig. 3. For each distance L, we numerically obtained

the maximum S/N by varying µ. Up to 100 km, µ was

constant at 0.625 for WCP and 0.605 for HSPS.
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WCP
HSPS

 4.0×10
-4

 3.0×10
-4

 2.0×10
-4

 1.0×10
-4

0

S
/N

L(km)

 5.0×10
-4

 6.0×10
-4

0 20 40 60 80 100

FIG. 3. S/N dependence on distance. (ηA = 0.85, dA =

1.0× 10−8)

Furthermore, Fig. 4 shows the S/N up to L = 1000 km.

In the long-distance regime, the S/N becomes constant.

The signal from Alice rarely reaches Bob, owing to the

decrease in transmittance T . The yields in Qµ, Qv1 , Qv2

are all derived from dark counts and become constant re-

gardless of the distance. So the flat area is removed from

the plot to avoid confusion. Therefore, the distance that

starts to become flat in Fig. 4 indicates the upper limit of

the distance for RBSP. This was approximately 200 km

by WCP and 500 km by HSPS. By reducing the proba-

bility of zero photon pulses with the use of the heralding

detector, RBSP with HSPS extended the distance farther

than with WCP.

WCP
HSPS

S
/N

L(km)

      10
-2

0 200 400 600 800 1000

      10
-4

      10
-6

      10
-8

      10
-10

      10
-12

      10
-14

FIG. 4. S/N dependence on distance up to a 1000 km. (ηA =

0.85, dA = 1.0× 10−8)

As discussed above, the S/N for HSPS is lower than

in the case of WCP. This is because of the difference in

the photon number distributions. Specifically, this is due

to a lower single photon probability in SPDC compared

to the Poisson distribution of WCP. When using HSPS

with a broad spectral width, which corresponds to a case

where the Poisson distribution is obtained [18], there is

considerable dispersion in the optical fiber and this can-

not be ignored. Consequently, it is unrealistic to consider

this case.

Moreover, in order to consider the upper limit from

using HSPS, calculations were also made when ηA = 1.0

and dA = 1.0 × 10−8. The value of S/N with varying

fiber length L is given in Fig. 5. For the purpose of

comparison, the case of WCP is also shown.

WCP
HSPS

 4.0×10
-4

 3.0×10
-4

 2.0×10
-4

 1.0×10
-4

S
/N

L(km)

 5.0×10
-4

 6.0×10
-4

0 20 40 60 80 100

FIG. 5. S/N dependence on distance (ηA = 1.0, dA = 1.0 ×

10−8).

WCP
HSPS d=10

S
/N

L(km)

      10
-2

0 200 400 600 800 1000

      10
-4

      10
-6

      10
-8

      10
-10

      10
-12

      10
-14

      10
-16

      10
-18

-8

HSPS d=10-12

FIG. 6. S/N dependence on distance (Purple solid: WCP,

green dashed: HSPS with ηA = 1.0, dA = 1.0 × 10−8, blue

dotted: HSPS with ηA = 1.0, dA = 1.0× 10−12).

It can be seen from this figure that HSPS exceeds

WCP when the heralding detector’s efficiency is at unity
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though the improvement is small (roughly around 8 %).

Note that since we are utilizing a time-multiplexed de-

tector to obtain the photon number resolution, there is

still a probability of failure, in which a multi-photon is

counted as a single photon.This is possible when a multi-

photon exists and stays in the same mode after the final

fiber coupler. To see the longest distance available by the

state of the art technology, we assume the dark count rate

of 10−12 with unit detection efficienty in Fig. 6. While

S/N improvement is mild, the longest distance is close to

700 km which is more than three times of the distance

achievable with WCP. Clearly, the improvement is due to

the small dark count probability which enables the lower

signal transmittance.

VI. DISCUSSION

The performance of the I1DC protocol with HSPS is

worse than that with WCP from the viewpoint of S/N

unless the efficiency of the heralding detector approaches

1. Now we focus on m as another performance index.

The I1DC protocol creates a qubit using m pulses, such

that a smaller m helps to reduce the tasks on the server.

It is clear that m depends on p1 from Eq. (8). In the

protocol using WCP, the single photon probability p1 is

expressed as follows:

p1 =
Q1

Qµ
≥ Y L,v1,v2

1 µe−µ

Qµ
, (29)

where Y L,v1,v2
1 is the lower limit of single-photon trans-

mittance, and µe−µ is the probability of a single pho-

ton pulse by Poisson distribution. Since these values are

fixed, it is impossible to raise the single photon probabil-

ity further.

On the other hand, the single photon probability p1
of HSPS includes the heralding detection probability ηA.

This is a value that can be increased with the develop-

ment of single photon detectors and other optical equip-

ment. In addition, heralding maintains the value of Q1

while decreasing Qµ. Therefore, when HSPS is used, it is

possible to reduce N and increase p1—that is, reducing

m. When a heralding detection efficiency ηA is 0.85, the

dark count rate dA is 1.0× 10−8, and the fiber length is

L = 25 km, p1 with HSPS is 0.65, exceeding that of WCP

(0.51). In the case of ηA = 1.0, p1 is 0.81. Therefore, the

use of HSPS instead of WCP reduces the number of op-

erations performed on the server.

VII. CONCLUSION

In this study, we investigated RBSP in blind quantum

computation by using a heralded single photon source

and decoy states. With the decoy-state method and the

improved estimation, we show that the scaling of the re-

quired number N of pulses becomes O(1/T ). By lowering

the multiphoton probability using HSPS and available

photon number resolving detectors, the communication

distance was extended to 500 km, which is more than

twice that of WCP. We also showed that when the ef-

ficiency of the heralding detector approaches 1, RBSP-

HSPS outperforms RBSP-WCP in terms of the efficiency

S/N or the required number of pulses. Thus, the distance

of secure cloud quantum computations can be greatly ex-

tended, facilitating the potential of future quantum com-

puters.
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