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We analytically and numerically investigate the steady-state entanglement and coherence of two
coupled qubits each interacting with a local boson or fermion reservoir, based on the Bloch-Redfield
master equation beyond the secular approximation. We find that there is non-vanishing steady-state
coherence in the nonequilibrium scenario, which grows monotonically with the nonequilibrium con-
dition quantified by the temperature difference or chemical potential difference of the two baths. The
steady-state entanglement, in general, is a non-monotonic function of the nonequilibrium condition
as well as the bath parameters in the equilibrium setting. We also discover that weak inter-qubit
coupling and high base temperature or chemical potential of the baths can strongly suppress the
steady-state entanglement and coherence, regardless of the strength of the nonequilibrium condi-
tion. On the other hand, the energy detuning of the two qubits, when used in a compensatory way
with the nonequilibrium condition, can lead to significant enhancement of the steady-state entan-
glement in some parameter regimes. In addition, the qubits typically have a stronger steady-state
entanglement when coupled to fermion baths exchanging particles with the system than boson baths
exchanging energy with the system, under similar conditions. We also identify a close connection
between the energy current flowing through the system and the steady-state coherence. Preliminary
investigations suggest that these results are insensitive to the form of the reservoir spectral densities
in the Markovian regime. Feasible experimental realization of measuring the steady-state entangle-
ment and coherence is discussed for the coupled qubit system in nonequilibrium environments. Our
findings offer some general guidelines for optimizing the steady-state entanglement and coherence in
the coupled qubit system and may find potential applications in quantum information technology.

I. INTRODUCTION

Entanglement and coherence are fundamental concepts
in quantum mechanics and key resources in quantum in-
formation processing [1–6]. In practice, a quantum sys-
tem inevitably interacts with its surrounding environ-
ments, deteriorating useful quantum resources such as
entanglement and coherence very quickly as a result of
the decoherence process [7, 8]. It is thus critical to study
the generation, control and protection of entanglement
and coherence in the context of open quantum systems.
Recently, there has been a growing interest in the study of
open quantum systems in nonequilibrium environments
[9–15]. It has been suggested that entanglement and co-
herence can survive in nonequilibrium steady states sus-
tained by nonequilibrium environments in constant ex-
change of matter, energy and information with the quan-
tum system [13–35]. The nonequilibrium conditions in
the environments are maintained by a constant tempera-
ture difference or chemical potential difference that drives
the flow of energy or matter through the quantum sys-
tem and the environments, sustaining a steady deviation
from the thermodynamic equilibrium [32–35]. The sur-
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viving quantum features in nonequilibrium steady states
open new doors to the generation, protection and control
of quantum resources in open quantum systems through
nonequilibrium conditions.
The simplest model imaginable that allows for the in-

vestigation of entanglement and coherence in nonequilib-
rium steady states is probably a coupled qubit system
interacting with two reservoirs. As a simple model the
two-qubit system has been investigated in various set-
tings [12–19, 36–61]. The concept of thermal entangle-
ment was proposed in a spin chain system at thermal
equilibrium [40–44]. The dynamical evolution of the en-
tanglement was explored for two uncoupled qubits inter-
acting with two reservoirs [45–49]. The coupled qubit
system has also been investigated when time-dependent
external driving is present [59–61]. The steady-state en-
tanglement of two coupled qubits interacting with two
reservoirs have been extensively studied based on Marko-
vian quantum master equations under the secular ap-
proximation [12–18, 54–58]. Some aspects of the non-
Markovian effects in the two-qubit system has also been
explored [46, 49–53]. In this paper, we analytically
and numerically investigate the steady-state entangle-
ment and coherence of the coupled qubit system inter-
acting with two independent boson or fermion reservoirs
that can exchange energy (boson reservoir) or particle
(fermion reservoir) with the system in both equilibrium
and nonequilibrium settings, with an emphasis on the
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entanglement in the nonequilibrium setting.

We adopt a quantum master equation approach in the
framework of the Born-Markov approximation, without
performing the frequently applied secular approximation.
The non-secularized Markovian quantum master equa-
tion is usually referred to as the Bloch-Redfield equation
[62, 63], which has found wide applications in the study
of nuclear magnetic resonance [64], chemical dynamical
systems [65], quantum transport [66, 67], and photosyn-
thetic reactions [68, 69]. A known issue related to the
Bloch-Redfield equation is that it does not guarantee a

priori the positivity of the density matrix in the time evo-
lution, which has been a subject of debate with a long
history [66, 69, 70]. This point has been used to argue for
secularizing the Bloch-Redfield equation in favor of the
Lindblad equation that is completely positive. However,
the secularized master equation ignores important effects
such as nonequilibrium steady-state coherence [25–31].
Moreover, the validity of secularization in certain situ-
ations has been questioned as the procedure may lead
to physically inconsistent results, such as disregarding
the nonequilibrium flux inside a composite system [26]
and violation of conservation laws [71]. A partial secular
approximation scheme has been proposed to limit the in-
discriminate use of the secularization procedure [69, 73].
Furthermore, some studies have suggested that positivity
of the density matrix in the Bloch-Redfield equation can
be restored without the secular approximation, provided
that the initial conditions are restricted to those compat-
ible with the system-bath correlations [74], a consistent
noise model for the bath is used [69], and the Marko-
vian approximation is truly honored [72]. Basically, vi-
olation of positivity is an indication that the equation
has been applied outside its range of validity, and thus
positivity may be guaranteed by operating inside its va-
lidity regimes. However, it is in general a highly non-
trivial task to quantify the validity regime of a master
equation. For an exactly solvable model of boson modes
coupled to boson baths [32–34], certain aspects of the va-
lidity regime of Markovian master equations have been
investigated [72, 75]. Yet much more work is still needed
before this issue can be fully understood and resolved. In
this study we employ the non-secularized Bloch-Redfield
equation and exercise caution in working within parame-
ter regimes ensuring the positivity of the density matrix.
We make comments if the issue of violation of positivity
arises. A full quantification of the validity regime of the
equation is reserved for future work.

We analytically solve the steady state of the Bloch-
Redfield equation for the coupled qubit system in the gen-
eral nonequilibrium setting for both boson and fermion
baths, even when the two qubits have an energy detuning.
The analytical solution offers insights on the behaviors of
the steady-state entanglement and coherence in some ex-
treme parameter regimes, which can be extrapolated to
account for their features in moderate parameter regimes
where the analytical solution may not be so apt to gen-
erate insights. Numerical results are also used in this

work as a consistency check for the analytical solution
and to explore wider parameter regimes that are difficult
to access directly from the analytical solution. Combined
with the perspective that the concurrence quantifying the
entanglement between the coupled qubits can be inter-
preted as a competition between coherence and popula-
tion in the bare-state representation, numerical results
can provide another view on some features of the steady-
state entanglement.

We investigate the steady-state entanglement and co-
herence first for the equilibrium setup and then move
on to the nonequilibrium scenario. Within each setting
we study the boson and fermion bath case, respectively.
The steady-state entanglement in relation to the detun-
ing of the two qubits and the nonequilibrium condition
are studied in the entanglement phase diagrams. We also
present some preliminary results on the effect of spectral
densities and the connection to energy current. Gener-
ally speaking, we find that the steady-state coherence
(in the eigen-state representation) has a simpler behav-
ior, while the steady-state entanglement displays more
complicated features. More specifically, the steady-state
coherence vanishes in the equilibrium scenario as a re-
sult of decoherence, and grows monotonically with the
nonequilibrium condition characterized by the temper-
ature difference or chemical potential difference. This
nonequilibrium steady-state coherence would have been
ignored by the secularized quantum master equation. On
the other hand, the steady-state entanglement in gen-
eral varies non-monotonically with the bath parameters
(temperatures or chemical potentials as well as their dif-
ferences) in both equilibrium and nonequilibrium set-
tings. Too weak inter-qubit coupling strength and too
high base temperature or chemical potential of the baths
both have destructive effects on the steady-state entan-
glement and coherence, regardless of the strength of the
nonequilibrium condition. Combining the detuning of
the two qubits with the nonequilibrium condition in a
compensatory way (i.e., the qubit with a higher frequency
is coupled to the bath with a lower temperature or chem-
ical potential) can lead to significant improvement in the
steady-state entanglement (5 ∼ 10 times in some pa-
rameter regimes) compared to the equilibrium symmet-
ric qubit case. In addition, fermion baths that exchange
particles with the system typically has a beneficial effect
on entanglement enhancement, in comparison with boson
baths that exchange energy with the system. We also ob-
serve a close connection between the energy current and
the coherence at the steady state. Preliminary investiga-
tions suggest that, in the Markovian regime, our results
are not sensitive to the form of the spectral densities
of the reservoirs. We also discuss feasible experimental
realization of measurements of the steady-state entan-
glement and coherence for nonequilibrium two-qubit sys-
tems. These results provide some general guidelines for
enhancing the steady-state entanglement and coherence
in the coupled qubit system, which may have potential
applications in quantum information processing.
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The rest of the paper is organized as follows. In
Sec. II, we describe the model and derive the quantum
master equation beyond the secular approximation. In
Sec. III, we provide an interpretation of the concurrence
that quantifies entanglement as a competition between
coherence and population in the bare-state representa-
tion. The steady-state entanglement and coherence for
the equilibrium and nonequilibrium scenarios are studied
in Sec. IV and Sec. V, respectively, for symmetric qubits
without energy detuning. In Sec. VI, we discuss the an-
alytical solution and the entanglement phase diagrams
for asymmetric qubits with an energy detuning. Some
preliminary investigations on the effect of spectral densi-
ties and the connection to energy current are presented
in Sec. VII. The conclusion is summarized in Sec. VIII.
The dynamical equations for the density matrix elements
and the method of solving analytically the steady state of
the Bloch-Redfield equation are given in the Appendix.

II. MODEL AND MASTER EQUATION

The model under consideration is illustrated in Fig. 1.
Two qubits (or two-level systems) are coupled to each
other, and each qubit is embedded in its own reservoir
that follows either bosonic or fermionic statistics. The
Hamiltonian for the total system readsH = Hs+HR+V ,
where (~ = kB = 1 in the following)

Hs = ω1|e〉1〈e|+ ω2|e〉2〈e|+
λ

2
[σ

(1)
+ σ

(2)
− + σ

(1)
− σ

(2)
+ ], (1)

HR =
∑

k

ωbkb
†
kbk +

∑

k

ωckc
†
kck, (2)

V =
∑

k

gk[σ
(1)
− b†k + σ

(1)
+ bk] +

∑

k

fk[σ
(2)
− c†k + σ

(2)
+ ck].

(3)

Hs is the Hamiltonian of the coupled qubit system, where
ω1 and ω2 are the respective energy-level spacings (fre-
quencies) of the two qubits and λ is the inter-qubit cou-
pling strength. HR is the free Hamiltonian of the reser-

voirs, where bk (b†k) and ck (c†k) are the annihilation (cre-
ation) operators for the k-th mode with frequencies ωck

and ωdk in the reservoirs in contact with qubit 1 and 2,
respectively. The last term V is the qubit-reservoir in-
teraction Hamiltonian under the rotating wave approx-
imation, and gk and fk are the qubit-reservoir coupling
strengths assumed to be real.
The eigen-energies and the corresponding eigen-states

of the Hamiltonian for the coupled qubit system Hs are
obtained as follows [17]:

E1 = δ, |1〉 = |ee〉, (4a)

E2 = 0, |2〉 = |gg〉, (4b)

E3 =
δ +Ω

2
, |3〉 = cos

θ

2
|eg〉+ sin

θ

2
|ge〉, (4c)

E4 =
δ − Ω

2
, |4〉 = − sin

θ

2
|eg〉+ cos

θ

2
|ge〉, (4d)

FIG. 1. (Color online) Schematic diagram of the physical
model under consideration. The coupled qubit system, with
respective energy spacings ω1 and ω2, are coupled to each
other and immersed in their individual reservoirs.

where δ = ω1 + ω2, ∆ = ω1 − ω2, Ω =
√
∆2 + λ2 is the

Rabi frequency, and θ ∈ [0, π] is the mixing angle defined
by tan θ = λ/∆. In the symmetric qubit case ∆ = ω1 −
ω2 = 0, we have θ = π/2. For the asymmetric qubit case,
θ = arctan(λ/∆) when ω1 > ω2 and θ = π+arctan(λ/∆)
when ω1 < ω2. Notice that to guarantee the validity of
the rotating wave approximation in the qubit-reservoir
interaction Hamiltonian, it is required that λ < 2

√
ω1ω2,

which implies δ > Ω and thus the eigen-energies form
an ordered sequence E1 > E3 > E4 > E2. A schematic
representation of the eigen-energies and eigen-states is
shown in Fig. 2. The unitary transformation matrix U
between the eigen basis {|1〉, |2〉, |3〉, |4〉} and the bare
basis {|ee〉, |gg〉, |eg〉, |ge〉}, defined by Uai = 〈a|i〉 (a and
i label the bare and eigen states respectively), has the
explicit expression

U =




1 0 0 0
0 1 0 0
0 0 cos θ

2 − sin θ
2

0 0 sin θ
2 cos θ

2


 . (5)

In terms of the eigen basis, the interaction Hamiltonian
V can be re-expressed as

V =
∑

k

[gk(A1 +B1)b
†
k + fk(A2 +B2)c

†
k] + h.c. (6)

where

A1 = sin
θ

2
(|3〉〈1| − |2〉〈4|), (7a)

B1 = cos
θ

2
(|4〉〈1|+ |2〉〈3|), (7b)

A2 = cos
θ

2
(|3〉〈1|+ |2〉〈4|), (7c)

B2 = sin
θ

2
(|2〉〈3| − |4〉〈1|). (7d)

In the interaction picture, with free Hamiltonian H0 =
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Hs +HR, we have

V (t) =
∑

k

gk[A1e
−i δ−Ω

2
t +B1e

−i δ+Ω
2

t]b†ke
iωbkt + h.c.

+
∑

k

fk[A2e
−i δ−Ω

2
t +B2e

−i δ+Ω
2

t]c†ke
iωckt + h.c..

(8)

Under the Born-Markov approximation, the quantum
master equation in the interaction picture reads [7]

dρI
dt

= −
∫ ∞

0

dsTrB[V (t), [V (t− s), ρI(t)⊗ ρB]], (9)

where ρI is the reduced density operator of the coupled
qubit system in the interaction picture, ρB = ρeqB1 ⊗ ρeqB2
is the density operator of the reservoirs with each reser-
voir at its own equilibrium state, and TrB denotes the
partial trace with respect to the degrees of freedom of
the reservoirs.
Going back to the Schrödinger picture, without making

the secular approximation [26, 27, 30], we finally arrive
at the quantum master equation for the reduced density
operator of the system, namely, the Bloch-Redfield equa-
tion:

dρ

dt
= −i[Hs, ρ] +D0[ρ] +Ds[ρ], (10)

where

D0[ρ] =
2∑

i=1

Ni[ρ], Ds[ρ] =
2∑

i=1

Si[ρ], (11)

and

Ni[ρ] = γ+
i [2B†

i ρBi −BiB
†
i ρ− ρBiB

†
i ]

+ γ−
i [2A†

iρAi −AiA
†
iρ− ρAiA

†
i ]

+ Γ+
i [2BiρB

†
i − B†

iBiρ− ρB†
iBi]

+ Γ−
i [2AiρA

†
i −A†

iAiρ− ρA†
iAi], (12)

Si[ρ] = γ+
i [A†

iρBi +B†
i ρAi −AiB

†
i ρ− ρBiA

†
i ]

+ γ−
i [A†

iρBi +B†
i ρAi −BiA

†
iρ− ρAiB

†
i ]

+ Γ+
i [AiρB

†
i +BiρA

†
i −A†

iBiρ− ρB†
iAi]

+ Γ−
i [AiρB

†
i +BiρA

†
i −B†

iAiρ− ρA†
iBi]. (13)

In the above, γ±
i and Γ±

i are short notations for γi(δ/2±
Ω/2) and Γi(δ/2 ± Ω/2), respectively. For boson reser-
voirs,

γi(ω) = Ji(ω)Ni(ω), Γi(ω) = Ji(ω)[Ni(ω) + 1], (14)

and for fermion reservoirs

γi(ω) = Ji(ω)Ni(ω), Γi(ω) = Ji(ω)[1 −Ni(ω)]. (15)

Here J1(ω) = π
∑

k g
2
kδ(ω − ωbk) and J2(ω) =

π
∑

k f
2
kδ(ω − ωck) are the spectral densities of the two

reservoirs in contact with qubit 1 and 2, respectively [79].

FIG. 2. (Color online) The levels of the four eigenstates |Ei〉
for i = 1, 2, 3, 4 of the coupled qubit system. The red and
green lines represent two groups of energy-level transitions
induced by the system-reservoir interaction (see the text for
detail).

Ni(ω) = {exp[(ω − µi)/Ti] ∓ 1}−1 is the average parti-
cle number on frequency ω in the i-th reservoir, which
follows the Bose-Einstein statistics (minus sign) for bo-
son reservoirs and Fermi-Dirac statistics (plus sign) for
fermion reservoirs, with µi and Ti the chemical poten-
tial and the temperature of the i-th reservoir, respec-
tively. For boson reservoirs encountered in practice (such
as photon or phonon baths), it is typical that the particle
number is not conserved and as a result the chemical po-
tential vanishes. Therefore, unless explicitly stated, we
shall set µi = 0 (i = 1, 2) for boson reservoirs, namely,
Ni(ω) = [exp(ω/Ti) − 1]−1. For fermion reservoirs we
retain the chemical potentials, which means the system
can exchange particles with the fermion reservoirs in
processes conserving the particle number (e.g., in quan-
tum dot systems). Note that in deriving the quantum
master equation in Eq. (10), we have neglected the fre-
quency shift terms. The quantum master equation ex-
pressed in terms of the density matrix elements is given
in Appendix A. In the following sections of this paper,
with the exception of Sec. VII A, we restrict ourselves
to balanced and frequency-independent spectral densi-
ties, J1(δ/2 ± Ω/2) = J2(δ/2 ± Ω/2) = J . The effect of
unbalanced and frequency-dependent spectral densities
(Ohmic spectrum) is discussed in Sec. VIIA.

To better understand the physical processes described
by the quantum master equation, we notice that the
form of the interaction Hamiltonian V in Eqs. (6)-(8)
reveals that the interaction between the coupled qubit
system and the reservoirs induces two groups of energy-
level transitions in the system as shown in Fig. 2. One
group consists of the transitions |2〉 ↔ |4〉 and |3〉 ↔ |1〉
with the frequency (δ − Ω)/2, which is denoted by the
red arrows. The other group consists of the transitions
|1〉 ↔ |4〉 and |3〉 ↔ |2〉 with the frequency (δ + Ω)/2,
denoted by the green arrows. Now we can better appre-
ciate the physical meaning of the dissipators in Eqs. (12)-
(13). The dissipator D0[ρ] describes processes in which
the energy emitted to the reservoirs when the system un-
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dergoes an energy-level transition is re-absorbed by the
transitions in the same group with the same frequency.
In contrast, the dissipator Ds[ρ] describes processes in
which the emission and re-absorption of energy are as-
sociated with energy-level transitions in different groups
with different frequencies. Since the energy level transi-
tion frequencies in the two groups are in general different,
the process described byDs[ρ] is usually considered a fast
oscillating process and discarded by performing the so-
called secular approximation.
The secular approximation works reasonably well in

the equilibrium situation, with T1 = T2 for boson reser-
voirs or T1 = T2, µ1 = µ2 for fermion reservoirs. In such a
situation, the diagonal elements of the density matrix are
decoupled from the off-diagonal ones, as can be checked
from the dynamical equation for the density matrix ele-
ments in Appendix A. As a result, the density matrix of
the equilibrium steady state is a diagonal matrix, with-
out any coherence left in the energy eigen-state represen-
tation. However, in the nonequilibrium situation, with
T1 6= T2 for boson reservoirs and µ1 6= µ2 and/or T1 6= T2

for fermion reservoirs, the secular approximation ignores
important effects, such as the quantum coherence in the
nonequilibrium steady state [26, 27, 30]. Since nonequi-
librium steady-state coherence is an important aspect in
our study, we retain the non-secular terms Ds[ρ] in the
quantum master equation without performing the secular
approximation. This, however, can leave us vulnerable to
the issue of violating the positivity of the density matrix
in some cases as mentioned in the introduction. We do
our best to work in parameter regimes with positive den-
sity matrices and comment if an issue arises. Quantifica-
tion of the validity regime of the Bloch-Redfield equation
will be investigated in future work.

III. A COMPETITION PERSPECTIVE ON

STEADY-STATE ENTANGLEMENT

In the previous section, we have derived the quan-
tum master equation beyond the secular approximation.
With the dynamical equations for the density matrix el-
ements given in the Appendix, the steady state can be
obtained by solving the equation dρ/dt = 0. The spe-
cific expressions of the analytical solution of the steady
state will be given later. In this section we only need the
generic form of the steady-state density matrix.
Without the secular approximation, the diagonal el-

ements (populations) of the density matrix ρii (i =
1, 2, 3, 4) are in general coupled with a pair of off-diagonal
elements (coherence) ρ34 and ρ43. As a consequence, at
the steady state the density matrix in the energy eigen-
state representation has the generic form

ρeigss =




ρ11 0 0 0
0 ρ22 0 0
0 0 ρ33 ρ34
0 0 ρ43 ρ44


 . (16)

Here, ρ34 and ρ43 are the steady-state coherence induced
by the nonequilibrium condition, which vanish at equi-
librium as a consequence of the decoherence process.
Transformed into the bare-state representation with

the basis {|ee〉, |gg〉, |eg〉, |ge〉}, the density matrix be-
comes

ρbarss = Uρeigss U
† =




a 0 0 0
0 d 0 0
0 0 b w
0 0 w∗ c


 , (17)

where

a = ρ11, d = ρ22, (18a)

b = cos2
θ

2
ρ33 + sin2

θ

2
ρ44 −

1

2
sin θ(ρ34 + ρ43),(18b)

c = sin2
θ

2
ρ33 + cos2

θ

2
ρ44 +

1

2
sin θ(ρ34 + ρ43),(18c)

w =
1

2
sin θ(ρ33 − ρ44) + cos2

θ

2
ρ34 − sin2

θ

2
ρ43.(18d)

Here w represents the quantum coherence in the bare-
state representation. At equilibrium we have ρ34 = ρ43 =
0 and thus w = sin θ(ρ33 − ρ44)/2, which in general
does not vanish unless λ = 0. In other words, due to
the inter-qubit coupling, there is a residual quantum co-
herence in the bare-state representation even at equilib-
rium. When considering steady-state coherence induced
by the nonequilibrium condition, we are always referring
to the coherence in the eigen-state representation (ρ34
and ρ43) [26].
The entanglement between the two qubits can be quan-

tified by the concurrence [76]. For the density matrix in
the bare basis in Eq. (17), which is an example of the
so-called “X-state” (when the base vectors are arranged
in the order {|ee〉, |eg〉, |ge〉, |gg〉}), the concurrence has
the expression [77, 78]

C = 2max(0, |w| −
√
ad). (19)

The state is entangled whenever C > 0 and maximally
entangled when C = 1. The expression of C suggests
that the degree of entanglement, i.e. the value of con-
currence, is determined by the competition between the
coherence w and the populations a and d in the bare-state
representation. The coherence contributes positively to
concurrence (the term |w|) and the populations con-

tribute negatively to concurrence (the term−
√
ad). Only

when the coherence dominates the populations (namely,

|w| >
√
ad) will the state become entangled.

The underlying physics behind this literal interpre-
tation of the concurrence expression can be better un-
derstood by writing the density matrix in Eq. (17) as
ρ = ρ̃1 ⊕ ρ̃2, where

ρ̃1 =

(
a 0
0 d

)
, ρ̃2 =

(
b w
w∗ c

)
. (20)

Here ρ̃1 and ρ̃2 are “density matrices” (not normalized) in
the Hilbert subspaces H1 and H2 spanned by {|ee〉, |gg〉}
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and {|eg〉, |ge〉}, respectively. First consider the special
case ρ̃1 = 0, i.e., a = d = 0. The density matrix then
reduces to ρ̃2 in H2 spanned by {|eg〉, |ge〉}. In this case,
the expression of concurrence becomes C = 2|w|, which
means the entanglement is essentially quantified by the
coherence between |eg〉 and |ge〉 in H2. This is intuitively
understandable given how the Bell states (maximally en-
tangled states) are constructed as the coherent superpo-
sitions of the pair of separable states |eg〉 and |ge〉. When
there are non-zero populations in H1 (i.e., ad 6= 0), the
state of the system becomes more mixed since ρ = ρ̃1⊕ρ̃2,
or equivalently, ρ = p1ρ1 + p2ρ2, where ρ1 and ρ2 (4 × 4
matrices) are normalized versions of ρ̃1 and ρ̃2, respec-
tively. It can be expected that the entanglement as a
quantum property becomes weaker (at least not stronger)
when the state becomes more mixed in a classical way.
This is mathematically captured by the convexity prop-
erty of concurrence, C(ρ) ≤ p1C(ρ1) + p2C(ρ2), leading
to C(ρ) ≤ 2|w| in this case. (Note that we have used
C(ρ1) = 0, which can also be intuitively understood from
the fact that ρ1 is a mixture of the two separable states
|gg〉 and |ee〉 without entanglement.) Therefore, the neg-
ative contribution of the populations in H1 to concur-
rence can be identified as the effect of mixing with sep-
arable states |gg〉 and |ee〉. This is the mechanism of
competition between the coherence in H2 and the pop-
ulations in H1 that determines the entanglement of the
steady state of the system.

This competition perspective provides a basic struc-
ture to understand the behavior of the steady-state en-
tanglement in both equilibrium and nonequilibrium set-
tings as demonstrated in the following sections.

IV. ENTANGLEMENT AND COHERENCE IN

THE EQUILIBRIUM SITUATION

In the equilibrium situation, the two baths share the
same temperature and chemical potential. We consider
the symmetric qubit case ω1 = ω2 = ω (θ = π/2) here.
(The asymmetric qubit case will be discussed in Sec. VI.)
Our focus in this section for the equilibrium setting is on
the physical understanding of the behaviors of entangle-
ment and coherence less explored in the previous work.

It can be shown that in the eigen-state representation,
the coherence at the equilibrium steady state vanishes,
i.e., ρ34 = ρ43 = 0, in agreement with decoherence. The
populations can be found to be [17]

ρ11 =
(γ−

1 + γ−
2 )(γ+

1 + γ+
2 )

Z
, (21)

ρ22 =
(Γ−

1 + Γ−
2 )(Γ

+
1 + Γ+

2 )

Z
, (22)

ρ33 =
(Γ−

1 + Γ−
2 )(γ

+
1 + γ+

2 )

Z
, (23)

ρ44 =
(Γ+

1 + Γ+
2 )(γ

−
1 + γ−

2 )

Z
, (24)

where

Z = (γ−
1 + γ−

2 + Γ−
1 + Γ−

2 )(γ
+
1 + γ+

2 + Γ+
1 + Γ+

2 ) (25)

is the normalization factor. The above analytical solution
for the equilibrium case can also be obtained as the limit
of the analytical solutions we have obtained for the more
general nonequilibrium scenarios given later.
According to Eq. (18), the coherence in the bare-state

representation in this equilibrium setting reads

w =
1

2
(ρ33 − ρ44). (26)

We will simply refer to w as coherence in this section

given that the coherence in the eigen-state representa-
tion vanishes here. Notice that |3〉 = (|ge〉 + |eg〉)/

√
2

and |4〉 = (|ge〉 − |eg〉)/
√
2 (for θ = π/2) are both max-

imally entangled and coherent states. The expression of
w in Eq. (26) shows that these two states work against
each other, in the sense that the coherence and thus en-
tanglement (coherence w contributes positively to entan-
glement) tend to decrease if the populations on these two
states become more balanced and increase if more im-
balanced. This may also be regarded as a “competition
perspective”.

A. Equilibrium Boson Reservoirs

We first consider the case that the qubits are immersed
in equilibrium boson reservoirs with T1 = T2 = T . Ac-
cording to Eq. (14), we have

γ+
1 = γ+

2 =
J

eωb+/T − 1
, Γ+

1 = Γ+
2 =

Jeωb+/T

eωb+/T − 1
,(27)

γ−
1 = γ−

2 =
J

eωb−/T − 1
, Γ−

1 = Γ−
2 =

Jeωb−/T

eωb−/T − 1
,(28)

with ωb± = ω±λ/2 (in the symmetric qubit case δ = 2ω,
Ω = λ and λ < 2ω). The populations in the eigen-state
representation can then be obtained from Eqs. (21)-(24),
which agrees with the equilibrium canonical ensemble
distribution ρii ∝ e−Ei/T . Thus the coherence, according
to Eq. (26), has the explicit expression

w = − sinh( λ
2T )

2[cosh(ωT ) + cosh( λ
2T )]

, (29)

and the concurrence can then be obtained as

C = max(0, Eb) (30)

where

Eb =
sinh( λ

2T )− 1

cosh(ωT ) + cosh( λ
2T )

. (31)

The concurrence C and the coherence magnitude |w|
are plotted in Fig. 3. As can be seen, concurrence
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FIG. 3. (Color online) (a) The steady-state concurrence for
the boson reservoir case. (b) The steady-state coherence in
the bare-state representation for the boson reservoir case. The
parameters are set as ω1 = ω2 = 10, J1 = J2 = 1.

and coherence both increase as the inter-qubit coupling
strength becomes larger. This behavior can be expected
as stronger inter-qubit coupling tends to enhance the
quantum connection between the two qubits, making
them more “intertwined” with each other. It is also easy
to show mathematically that C and |w| monotonically in-
crease with λ. Note that when λ is small (e.g., the blue
solid line in Fig. 3(a) with λ = 2), the concurrence graph
appears to be completely flat, with zero value (i.e., no en-
tanglement). However, the concurrence actually still has
non-zero values in a temperature range, just too small to
be seen in the figure. In fact, according to Eq. (31), the
concurrence takes positive values when sinh(λ/2T ) > 1,
which leads to the temperature range 0 < T < Tmax with
Tmax = λ/[2 ln(1 +

√
2)], no matter how small λ is.

The concurrence and coherence (in the bare-state rep-
resentation) are both non-monotonic functions of the
temperature as can be seen in Fig. 3(a) and (b). The
non-monotonic behavior can be explained by consider-
ing the low and high temperature regimes respectively.
In the low temperature regime, close to the absolute
zero, the system is almost exclusively populated on the
ground state |2〉=|gg〉 with zero entanglement and co-
herence. When the temperature is increased, the first
excited state |4〉 = (|ge〉−|eg〉)/

√
2 starts to become pop-

ulated, while |3〉 = (|ge〉+|eg〉)/
√
2 and |1〉 = |ee〉 remain

much less populated. Since |3〉 and |4〉 work against each
other in the sense of Eq. (26), the imbalance in their
populations at this stage contributes to the increase of
coherence. Moreover, since |1〉 is still underpopulated,
the negative contribution of populations to concurrence
(
√
ad =

√
ρ11ρ22) due to state mixing remains small.

In other words, the coherence beats the populations in
the battle of contributing to concurrence. These are the
physical reasons why concurrence and coherence increase
with temperature in the low temperature regime. Math-

ematically, for small T we have

C ≈ 2|w| ≈ Eb ≈
sinh( λ

2T )

cosh(ωT )
≈ e−

ω−λ/2
T , (32)

which increases with temperature (note ω > λ/2).
In the high temperature regime, all the four eigen-

states are fairly populated (equally populated in the limit
T → ∞). The more balanced populations on |3〉 and |4〉
weakens the coherence, resulting in the decreasing be-
havior of coherence with temperature in this regime. On
the other hand, more balanced and significant popula-
tions on |1〉 and |2〉 enhance the negative contribution
of populations to concurrence arising from state mixing.
As a result, the populations take over in the competi-
tion with coherence, leading to zero concurrence in this
regime. Mathematically, the Taylor expansion with re-
spect to 1/T gives

Eb ≈ 2|w| − 1

2
≈ −1

2
+

λ

4T
+ o(1/T 2), (33)

which decreases with T and becomes less than zero (so
that C = 0) when T is large enough. This approximate
expression yields Tmax ≈ λ/2, at which point the concur-
rence becomes zero. The exact temperature at the turn-
ing point was given previously, Tmax = λ/[2 ln(1 +

√
2)].

At this temperature the positive contribution by coher-
ence and negative contribution by populations to con-
currence are exactly balanced. For temperatures higher
than Tmax, the populations in |1〉 and 2〉 promoted by the
thermal effect in the reservoirs beat the quantum coher-
ence in |3〉 and |4〉 between the two qubits, resulting in
vanishing entanglement.
The maximum concurrence that can be achieved or

asymptotically approached in this setting is of particular
interest. For fixed λ, it is not easy to obtain an explicit
analytical expression for the maximum of C(T ). But we
know that the concurrence increases monotonically with
λ, and the upper bound of λ is 2ω due to the rotat-
ing wave approximation. (Actually the rotating wave
approximation breaks down if λ is close to 2ω). Thus
we only need to consider the asymptotic case λ → 2ω,
which leads to Eb = [sinh(ω/T )− 1]/[2 cosh(ω/T )], with
its maximum value 1/2 obtained as T → 0. That means,
in this equilibrium boson reservoir setting, the maximum
concurrence that can be achieved cannot exceed 1/2, one
half of the maximum theoretical value of concurrence.

B. Equilibrium Fermion Reservoirs

To overcome the possible limitation in the approach
of exchanging energy with the equilibrium boson reser-
voirs due to the thermal effects, we also investigate en-
tanglement and coherence in relation to particle exchange
(chemical potential) when the two qubits are immersed
in equilibrium fermion reservoirs with T1 = T2 = T and
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FIG. 4. (Color online) (a) The steady-state concurrence for
the fermion reservoir case. (b) The steady-state coherence in
the bare-state representation for the fermion reservoir case.
The parameters are set as ω1 = ω2 = 10, J1 = J2 = 1, T1 =
T2 = 1.5.

µ1 = µ2 = µ. In this setting, we have

γ+
1 = γ+

2 =
J

eωf+/T + 1
,Γ+

1 = Γ+
2 =

Jeωf+/T

eωf+/T + 1
,(34)

γ−
1 = γ−

2 =
J

eωf−
/T + 1

,Γ−
1 = Γ−

2 =
Jeωf−

/T

eωf−
/T + 1

,(35)

with ωf± = ω−µ±λ/2. The coherence has the expression

w = − sinh( λ
2T )

2[cosh(ω−µ
T ) + cosh( λ

2T )]
(36)

and the concurrence is given by

C = max(0, Ef ) (37)

where

Ef =
sinh( λ

2T )− 1

cosh(ω−µ
T ) + cosh( λ

2T )
. (38)

The graphs of C and |w| as functions of the chemi-
cal potential are shown in Fig. 4, with the temperature
fixed at a relatively low value T = 1.5. As can be ex-
pected, both concurrence and coherence increase with
the inter-qubit coupling strength in general. However,
when λ is too small (e.g., λ = 2), the concurrence van-
ishes completely as can be seen in Fig. (4)(a) (solid blue
line). The concurrence here is genuinely zero in the en-
tire range of µ, in contrast with the solid blue line in
Fig. 3(a) where the concurrence only appears to be zero.
According to Eq. (38), the concurrence vanishes com-

pletely when 0 < λ ≤ λmin with λmin = [2 ln(1 +
√
2)]T .

It is easy to check that λ = 2 is in this range for T = 1.5.
In this range, the thermal effect due to the temperature
of the reservoirs overrides the quantum connection estab-
lished by the inter-qubit coupling, leading to vanishing
entanglement.

Then we also notice in Fig. (4) that the concurrence
and coherence (in the bare-state representation) are both
non-monotonic functions of the reservoir chemical poten-
tial (when λ > λmin for concurrence). The analytical
expressions in Eqs. (36) and (38) show that the depen-
dence on the chemical potential comes from the term
cosh((ω − µ)/T ) in the denominator, which has a min-
imum value at µ = ω and reverses its monotonicity as
µ crosses ω. This is the mathematical reason why con-
currence and coherence vary non-monotonically with the
chemical potential and have a maximum at µ = ω.

To gain a physical perspective on the features of con-
currence and coherence in Fig. (4), we notice that in
this equilibrium scenario the populations actually fol-
low the grand canonical ensemble distribution ρii ∝
e−(Ei−µNi)/T , given that the system can change both en-
ergy and particle with the equilibrium reservoir. Here Ni

is the particle number on the energy level Ei. What is
relevant is the particle number difference between energy
levels instead of their absolute values. The form of the
qubit-reservoir interaction Hamiltonian in Eq. (3) indi-
cates that the particle number in the excited state |e〉
of a qubit is one larger than that in the ground state
|g〉 due to particle absorption from the reservoir. This
translates into the particle number assignment N1 = 2,
N2 = 0, N3 = N4 = 1 for the eigen-states. Up to a nor-
malization factor, the grand canonical distribution then
yields ρ11 ∝ e−(ω−µ)/T , ρ22 ∝ e(ω−µ)/T , ρ33 ∝ e−λ/2T ,
ρ44 ∝ eλ/2T . This suggests the introduction of the ‘effec-
tive’ energies ±(ω−µ) and ±λ/2 associated with |1〉, |2〉,
|3〉, |4〉, respectively, which determine the populations on
these eigen-states. The chemical potential simply ad-
justs the effective energy level spacing between |1〉 and
|2〉 while |3〉 and |4〉 are fixed. As µ increases, |1〉 and |2〉
become effectively closer, and coincide with each other
at µ = ω, after which they split up again. This process
is symmetric with respect to the cross-over point µ = ω,
as far as concurrence and coherence are concerned. This
explains the feature that C and |w| are symmetric with
respect to µ = ω (with ω = 10) in Fig. 4 (for fermion
reservoirs µ can also take negative values). Moreover,
as |1〉 and |2〉 get closer to each other with increasing µ,
the combined weights of the populations on |1〉 and |2〉
decrease. (This can be understood by considering the ex-
treme cases of a very large and a very small level spacing.)
Roughly speaking, this means there is a population trans-
fer from |1〉 and |2〉 together to |3〉 and |4〉. In turn it sug-
gests an increase in entanglement and coherence, given
that |3〉 and |4〉 are entangled and coherent states while
|1〉 and |2〉 are separable and incoherent states. This pro-
vides an intuitive perspective on the increasing interval
of entanglement and coherence as µ < ω. When µ further
increases beyond ω, the process is reversed according to
the symmetry argument above. That is, the separable
and incoherent states |1〉 and |2〉 together become more
populated, while the entangled and coherent states |3〉
and |4〉 become less populated. This suggests the de-
crease of entanglement and coherence with µ as µ > ω.
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Thus we can intuitively understand the non-monotonic
behaviors of entanglement and coherence in Fig. 4.
The maximum concurrence is achieved at µ = ω with

the value Cmax = [sinh(λ/2T ) − 1]/[1 + cosh(λ/2T )] for
λ > λmin. As the temperature T approaches the absolute
zero, this value approaches one, the theoretical maximum
value of concurrence. In other words, in this equilibrium
fermion reservoir setting, maximally entangled state with
concurrence one can be approached as T → 0 with µ = ω
and fixed positive λ. The physics is easy to understand
in the picture of the effective energy introduced in the
previous paragraph. At µ = ω, the effective energies of
|1〉 and |2〉 both become zero, which means these two
levels effectively coincide with each other in between |3〉
and |4〉 (with effective energies ±λ/2). Thus the effective
ground state with the lowest effective energy becomes
|4〉 = (|ge〉− |eg〉)/

√
2, a maximally entangled state with

concurrence one. At absolute zero, the system is only
populated in |4〉, thus maximally entangled.
Judging from the maximum concurrence that can

be asymptotically achieved or approached, equilibrium
fermion reservoir with particle exchange (maximum con-
currence 1) is more beneficial to enhancing quantum en-
tanglement than equilibrium boson reservoir with en-
ergy exchange (maximum concurrence not exceeding
1/2). However, since these two settings use different ap-
proaches of system-reservoir exchange (energy exchange
versus particle exchange), one may wonder to what ex-
tent the difference between the statistics in these two set-
tings played a role. To place the two types of reservoirs
on an equal footing, we may also consider boson reser-
voirs with a chemical potential that can exchange particle
with the system. At equilibrium, the expressions of the
populations and thus the coherence and concurrence in
this boson bath setting are actually the same as those
in the fermion setting in Eqs. (36)-(38), in agreement
with the grand canonical ensemble. However, there is
one important difference. That is, the chemical poten-
tial of the boson reservoir is negative (due to the Boson-
Einstein statistics), while there is no such constraint on
the fermion reservoir chemical potential. This sign re-
striction on the boson reservoir chemical potential pre-
vents it from taking the value µ = ω to achieve maximum
concurrence as in the fermion case. Therefore, the differ-
ence in statistics did play an important role in manifest-
ing different entanglement behaviors in these two equi-
librium settings.

V. ENTANGLEMENT AND COHERENCE IN

THE NONEQUILIBRIUM SITUATION

In the pervious section we investigated the steady-state
entanglement and coherence for the equilibrium situa-
tion. We now consider the nonequilibrium setup when
the two reservoirs have different temperatures (boson
reservoirs) or chemical potentials (fermion reservoirs).
We still focus on the symmetric qubit case ω1 = ω2 = ω

(θ = π/2, δ = 2ω, Ω = λ). We have obtained the ana-
lytical expressions of the steady-state density matrix for
the nonequilibrium scenario, using the method outlined
in Appendix B. To express the analytical solutions in a
concise form, we introduce the following notations

N̄+ =
1

2
(N+

1 +N+
2 ), N̄− =

1

2
(N−

1 +N−
2 ), (39)

Ñ+ =
1

2
(N+

1 −N+
2 ), Ñ− =

1

2
(N−

1 −N−
2 ), (40)

where N±
i = Ni(δ/2 ± Ω/2) and Ni(ω) is the average

particle number on frequency ω in the i-th reservoir that
obeys Bose-Einstein or Fermi-Dirac statistics. Notice

that Ñ± = 0 at equilibrium and in general Ñ± 6= 0 in a
nonequilibrium setting when the two reservoirs have dif-
ferent temperatures or chemical potentials. This means

Ñ± can be considered as indicators of the nonequilibrium
condition. On the other hand, N̄± as the particle num-
ber averaged between the two baths represent a form of
average equilibrium effect of the two baths.

A. Nonequilibrium Boson Reservoirs

We consider the two coupled qubits embedded in their
individual boson reservoirs at different temperatures.
The nonequilibrium condition is characterized by the
temperature difference ∆T = T2 − T1.
The expressions of the steady-state populations in the

eigen-state representation are obtained as

ρ11 =
1

N
[
N̄+N̄− − r1r2R

]
, (41)

ρ22 =
1

N
[
(1 + N̄+)(1 + N̄−)− s1s2R

]
, (42)

ρ33 =
1

N
[
N̄+(1 + N̄−) + s1r2R

]
, (43)

ρ44 =
1

N
[
N̄−(1 + N̄+) + s2r1R

]
, (44)

and the steady-state coherence in the eigen-state repre-
sentation has the expression

ρ34 = − 1

N

[
Ñ+(1 + 2N̄−) + Ñ−(1 + 2N̄+)

2(1 + N̄+ + N̄−) + iΩ′

]
, (45)

where

r1 = Ñ+ + Ñ−(1 + 2N̄+ + 2N̄−), (46)

r2 = Ñ− + Ñ+(1 + 2N̄+ + 2N̄−), (47)

s1 = Ñ+ − Ñ−(3 + 2N̄+ + 2N̄−), (48)

s2 = Ñ− − Ñ+(3 + 2N̄+ + 2N̄−), (49)

R =
1

4(1 + N̄+ + N̄−)2 +Ω′2
. (50)

In the above, Ω′ = Ω/J is the rescaled Rabi frequency
and N is the normalization factor given by

N = (1 + 2N̄+)(1 + 2N̄−)− 16Ñ+Ñ−(1 + N̄+ + N̄−)
2R.
(51)
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Accordingly, the coherence in the bare-state representa-
tion (for the symmetric qubit case) is given by

w =
1

2
(ρ33 − ρ44) + iImρ34, (52)

and the concurrence can be obtained from

C = 2max{0, |w| −
√
ad} (53)

with a = ρ11 and d = ρ22.
The steady-state solution in Eqs. (41)-(45) has the

structure of an average equilibrium solution plus nonequi-
librium corrections. It is easy to check that this nonequi-
librium solution reduces to the equilibrium one when

∆T = 0 by noticing that Ñ± = 0 so that r1 = r2 = s1 =
s2 = 0 and ρ34 = 0 at equilibrium. In this sense, the
terms involving r1, r2, s1, s2 and ρ34 represent nonequi-
librium corrections. The rest of the terms represent the
average equilibrium solution determined by N̄±. For the
boson bath case here (the chemical potential is zero), it
may be suggestive to introduce an effective temperature
Teff defined in terms of N̄(ω) = [N1(ω)+N2(ω)]/2 by the
Bose-Einstein statistics N̄(ω) = 1/(eω/Teff−1). However,
the effective temperature Teff defined this way, in general,
is not only determined by T1 and T2 of the two baths,
but also dependent on ω. This means N̄(ω), in general,
cannot be truly associated with an effective equilibrium
bath with a constant temperature Teff. But in the near
equilibrium regime (∆T = T2−T1 is small) or in the high
temperature regime (T1 and T2 are both high), we have

Teff ≈ T̄ = (T1 + T2)/2, (54)

which is a constant temperature independent of ω.
Therefore, in these regimes the average equilibrium so-
lution may be interpreted as effectively generated by an
equilibrium bath with the average temperature of the two
baths.
Our numerical calculations produce consistent results

with the analytical solution. The concurrence and the
coherence in the eigen-state representation are plotted
in Fig. 5 (a) and (b), respectively. To understand the
behavior of the concurrence in terms of the competi-
tion between |w| and

√
ad, we also plotted |w|, a, d and√

ad in Fig. 5 (c), (d), (e) and (f), respectively. The
temperature difference is restricted to a relatively small
range ∆T ∈ [0, 5] to conform to physically reasonable
temperature conditions in quantum physics experiments
and avoid possible artifacts that may arise from applying
the Bloch-Redfield equation outside its valid parameter
ranges.
As can be seen in Fig. 5 (b), the coherence in the

eigen-state representation ρ34, which represents the co-
herence induced by the nonequilibrium condition, in-
creases monotonically with the nonequilibrium condition
characterized by the temperature difference ∆T . (This
monotonic behavior continues even when ∆T becomes
large.) The analytical expression of ρ34 in Eq. (45) dic-
tates its behavior with respect to ∆T given its depen-

dence on the nonequilibrium indicators Ñ±, which vanish

FIG. 5. (Color online) The steady-state concurrence, coher-
ence in the eigen-state and bare-state representations, pop-
ulations a = ρ11 and d = ρ22 as well as

√
ad, for the cou-

pled qubit system interacting with individual boson reser-
voirs at different temperatures. The parameters are set as
ω1 = ω2 = 10, J1 = J2 = 1, λ = 6.

at equilibrium and start to increase in magnitude when
displaced from equilibrium. In Fig. 5 (b) we can also
see that for fixed ∆T , the value of |ρ34| increases with
the base temperature T1. However, as T1 becomes higher
(not shown in the figure), this behavior becomes reversed
(i.e., |ρ34| will decrease with T1) and |ρ34| becomes very
small when T1 is very high. This can be understood as
the thermal effect prevailing over the quantum effect (co-
herence) when the temperatures of both baths are high.
The concurrence, as shown in Fig. 5 (a), in general

displays non-monotonic behaviors with respect to the
temperature difference. More specifically, when the base
temperature T1 is relatively low (e.g., T1 = 1.2 and
T1 = 2 in the figure), the concurrence first increases and
then decreases with ∆T until it hits zero. When T1 be-
comes higher (e.g., T1 = 3), however, the concurrence
decreases monotonically with ∆T . Moreover, when T1 is
further increased (e.g., T1 = 5, not shown in the figure),
the concurrence vanishes completely, irrespective of the
temperature difference ∆T .
The behavior of concurrence can be understood from

the perspective of the competition between |w| (the co-

herence between |eg〉 and |ge〉) and
√
ad (the populations

on |ee〉 and |gg〉). |w| and
√
ad both increase monotoni-

cally with ∆T as shown in Fig. 5 (c) and (f), respectively.
However, how fast they increase with ∆T is dependent
on the base temperature T1 as well as the value of ∆T .
For a low base temperature, when ∆T is small, which
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implies that the temperatures of both baths are low, the
system is mainly populated on the ground state, with
d ≈ 1 and a ≈ 0 resulting in

√
ad ≈ 0, as can also

be seen in Fig. 5 (d), (e) and (f) for T1 = 1.2. In this
regime, the concurrence is dominated by the behavior
of the coherence |w| that increases with ∆T , leading to
the monotonically increasing interval of the concurrence.
When ∆T becomes larger, however,

√
ad increases faster

with ∆T than |w| does, resulting in the monotonically
decreasing interval of the concurrence until it vanishes as√
ad ≥ |w|.
For a higher base temperature (e.g., T1 = 3), even in

the small ∆T regime, the temperatures of both baths
(T2 ≥ T1) have already allowed the system to populate
less unevenly between the ground state and the excited
state, so that

√
ad is not that small as in the case T1 = 1.2

for the behavior of |w| to dominate. Instead,
√
ad in-

creases with ∆T faster than |w| in the range of ∆T con-
sidered and thus the concurrence decreases monotonically
with ∆T in this regime.

For an even higher base temperature (e.g., T1 = 5), the
ground state and the excited states will be more evenly
populated (which becomes almost uniformly distributed
in extremely high temperatures). As a result, the popu-

lation term
√
ad overrides the coherence term |w| for all

∆T , leading to vanishing concurrence irrespective of ∆T .
This is the thermal effect beating the quantum connec-
tion (entanglement) in high temperatures. This result
also suggests that, to exploit the nonequilibrium condi-
tion (in this case the temperature difference) in enhanc-
ing entanglement, the temperature of at least one bath
needs to be low enough to make sure that the thermal
effect does not dominate; otherwise it will be futile to
merely adjust the nonequilibrium condition.

Another perspective to understand the behavior of the
concurrence in the near equilibrium regime (i.e., when
∆T is very small) is based on the effective temperature
in Eq. (54). In the near equilibrium regime, the nonequi-
librium corrections are very small, so that the average
equilibrium solution dominates, which means the system
behaves almost like an equilibrium one, with the equi-
librium temperature replaced by the average tempera-
ture T̄ = (T1 + T2)/2 of the two baths. With T1 fixed,
increasing T2 (thus increasing ∆T ) means the average
temperature T̄ starts to increase from T1. We have al-
ready discussed how the concurrence behaves with tem-
perature in the equilibrium boson bath case. As can be
seen in Fig. 3 (a) (the line for λ = 6), the concurrence
will start to either increase or decrease with the temper-
ature, depending on its initial value. In this particular
case (λ = 6), the temperature at which the concurrence
changes behavior from increasing to decreasing is around
T ≈ 2.4. This means for T1 < 2.4, the concurrence will
start to increase as ∆T is increased, while for T1 > 2.4 it
will start to decrease. This explains why in Fig. 5 (a) the
lines for T1 = 1.2 and T1 = 2 have an initially increasing
segment, while that for T1 = 3 does not.

In addition, we remark that our analytical solution and

numerical calculation indicate that when the base tem-
perature is not too low, as for the cases considered in
Fig. 5, the concurrence will revive when the tempera-
ture difference ∆T becomes very large and it approaches
non-vanishing values in the limit ∆T → ∞. (The ana-
lytical solution in this case can be obtained by replac-
ing N±

2 with its asymptotic form at high temperature,
T2/(ω± λ/2), and then taking the limit T2 → ∞.) How-
ever, we cannot be certain whether this is a genuine phys-
ical effect or merely an artifact created by applying the
Bloch-Redfield equation out of its range of validity. A
further investigation on this issue with solutions to the
exact dynamics is certainly worthwhile, which is, how-
ever, beyond the scope of the present paper.

B. Nonequilibrium Fermion Reservoirs

Then we consider the two coupled qubits in contact
with their individual fermion reservoirs with the same
temperature T1 = T2 but different chemical potentials
µ1 6= µ2. The nonequilibrium condition is characterized
by the chemical potential difference ∆µ = µ2 − µ1.
The analytical solution of the steady-state density ma-

trix for the fermion bath case is even simpler than that
for the boson bath case. The steady-state populations in
the eigen-state representation have the expressions

ρ11 = N̄+N̄− − R̃, (55)

ρ22 = (1− N̄+)(1 − N̄−)− R̃, (56)

ρ33 = N̄+(1− N̄−) + R̃, (57)

ρ44 = N̄−(1− N̄+) + R̃, (58)

and the steady-state coherence in the eigen-state repre-
sentation is given by

ρ34 = − Ñ+ + Ñ−

2 + iΩ′
, (59)

where

R̃ = |ρ34|2 =
(Ñ+ + Ñ−)

2

4 + Ω′2
(60)

and Ω′ = Ω/J . Accordingly, the coherence in the bare-
state representation w and the concurrence C can be cal-
culated using Eqs. (52) and (53), respectively.
The analytical solution also has the clear structure of

an average equilibrium solution (associated with N̄±) cor-
rected by nonequilibrium contributions (associated with

Ñ±). At equilibrium with µ1 = µ2 and T1 = T2, we have

Ñ± = 0 and thus ρ34 = R̃ = 0, reducing the nonequi-

librium solution to the equilibrium one. R̃ and ρ34 rep-
resent nonequilibrium corrections, while the rest repre-
sent the average equilibrium solution. We may introduce
an effective chemical potential µeff defined in terms of
N̄(ω) = [N1(ω) +N2(ω)]/2 by the Fermi-Dirac statistics
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FIG. 6. (Color online) The steady-state concurrence (a),
the coherence in the eigen-state representation (b), the co-
herence in the bare-state representation (c) for the coupled
qubit system immersed in individual fermion reservoirs with
different chemical potentials. The parameters are set as
ω1 = ω2 = 10, J1 = J2 = 1, λ = 6, T1 = T2 = 1.5.

N̄(ω) = 1/(e(ω−µeff)/T + 1) where T = T1 = T2. In gen-
eral, µ̄ is dependent on µ1 and µ2 as well as ω and T . In
the near equilibrium regime (∆µ is small), we have

µeff ≈ µ̄ = (µ1 + µ2)/2. (61)

Then the average equilibrium solution in the near equilib-
rium regime may be interpreted as being generated by an
effective equilibrium fermion reservoir with temperature
T and chemical potential µ̄.
The concurrence and the coherence in the eigen-state

and bare-state representations as functions of ∆µ for dif-
ferent values of µ1 are plotted in Fig. 6 (a), (b) and
(c), respectively. The parameters of ω and λ are the
same as those for the boson bath case. The tempera-
tures of the two fermion baths, set equal to each other
(T1 = T2 = 1.5), have the same order of magnitude as
those for the boson bath case. This is to make the fermion
bath case more or less comparable with the boson bath
case, although the nonequilibrium conditions in these two
cases are different (temperature difference versus chemi-
cal potential difference).
We first have a look at the coherence ρ34 induced by

the nonequilibrium condition illustrated in Fig. 6 (b). As

one can see, the magnitude of ρ34 increases monotonically
with the nonequilibrium condition characterized by ∆µ.
When ∆µ becomes large enough, |ρ34| approaches some
asymptotic values depending on the value of µ1. Also, for
a large base chemical potential µ1, the nonequilibrium-
induced coherence ρ34 becomes very small regardless of
the nonequilibrium condition ∆µ.
On the other hand, the concurrence shown in Fig. 6

(a) has a more complicated behavior with respect to
∆µ, depending on the value of the base chemical po-
tential µ1. For small µ1 (µ1 < ω), the concurrence is a
non-monotonic function of ∆µ, which first increases and
then decreases with ∆µ. For a larger µ1 (µ1 > ω), the
concurrence decreases monotonically from its equilibrium
value as ∆µ increases. As µ1 becomes large enough (e.g.
µ1 = 22), the concurrence is significantly suppressed no
matter how large ∆µ is, similar to the behavior of the co-
herence ρ34. In addition, the concurrence also approaches
some fixed values as ∆µ grows large enough.
The common behavior of the coherence ρ34 and the

concurrence at large base chemical potential µ1 (both are
significantly suppressed regardless of ∆µ) can be under-
stood as follows. Note that ∆µ ≥ 0, which means a large
µ1 also implies a large µ2. That is, the chemical potential
of both fermion baths are large. For large chemical poten-
tials, we have N+

1 ≈ N−
1 ≈ N+

2 ≈ N−
2 ≈ 1, which implies

that the nonequilibrium indicators Ñ± ≈ 0. Therefore,
this situation is almost like an equilibrium one, regardless
of the value of ∆µ. This explains the vanishing behavior
of ρ34 at large µ1. Moreover, given that particles tend
to flow from higher chemical potentials to lower ones,
the large chemical potentials in both baths mean the two
qubits are both likely to be excited to the state |e〉 by
the particle influx from the reservoirs, so that the sys-
tem is mainly populated on the separable state |ee〉 (i.e.,
ρ11 ≈ 1), leading to diminished entanglement. This ac-
counts for the suppressed concurrence at large µ1. This
result suggests that, in order to exploit the nonequilib-
rium condition (chemical potential difference) to effec-
tively enhance steady-state entanglement, the chemical
potential of one bath needs to be low enough.
As to the asymptotic behavior of the concurrence and

the coherence for large ∆µ, this belongs to the strong
nonequilibrium regime. Notice that µ1 is fixed and large
∆µ simply means large µ2. The particular physical
condition here is that the second bath becomes satu-
rated due to its high chemical potential, so that par-
ticles mainly flow from the second bath to the system
and rarely the other way around. Mathematically, as
∆µ → ∞ (µ2 → ∞), we have N+

2 = N−
2 = 1, yielding

N̄± = (N±
1 +1)/2 and Ñ± = (N±

1 −1)/2. Inserting them
into the analytical solution, we obtain the asymptotic ex-
pressions of the steady-state solution for large ∆µ, which
depends on the value of µ1 through N±

1 . The physi-
cal condition of particle saturation in the second bath
and the asymptotic analytical solution can account for
the features of coherence and entanglement at large ∆µ.
However, as with the boson bath case, we are not certain
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whether the results in this regime are reliable.
Then we consider the opposite regime, namely, the

near equilibrium regime when ∆µ is very small. In par-
ticular, we want to understand the feature of the concur-
rence in this regime. (The coherence ρ34 is expected to
increase with ∆µ in this regime as it represents nonequi-
librium corrections.) In this regime the nonequilibrium
corrections are not significant and the solution is domi-
nated by the effective equilibrium part. This means the
system behaves almost like an equilibrium system with a
chemical potential µ̄ = (µ1 + µ2)/2. With µ1 fixed, in-
creasing ∆µ from zero is equivalent to increasing µ̄ from
µ1. From the study in the equilibrium fermion bath case
as illustrated in Fig. 4 (a), we know that the concurrence
is a non-monotonic function of µ maximized at µ = ω,
with µ < ω the increasing interval and µ > ω the de-
creasing interval. Therefore, when µ1 < ω, increasing
∆µ will increase the concurrence, while the opposite is
true when µ1 > ω, as long as ∆µ is sufficiently small for
the near equilibrium condition to hold. This explains an
important feature of the concurrence in Fig. 6 (a) that,
as ∆µ increases, there is an initially increasing interval
for µ1 < ω, while there is no such interval if µ1 > ω.

Combining the perspectives in the near equilibrium
regime and the strong nonequilibrium regime, and in-
terpolating the regimes in between the two extremes, we
can roughly account for the major features of the concur-
rence and the coherence ρ34 in the entire nonequilibrium
regime. For instance, the non-monotonic behavior of the
concurrence for µ1 < ω is explained by the fact that it
first goes up in the near equilibrium regime and that it
eventually approaches an asymptotic value lower than its
equilibrium value, which implies that it has to go down
somewhere in the middle (assuming that it is a contin-
uous function). This approach of interpolation cannot
explain more specific features in the moderate nonequi-
librium regime though. Fortunately, in our case, there
seems to be nothing bizarre in between.
The concurrence can also be investigated from the per-

spective of the competition between the coherence |w| (in
the bare-state representation) and the population

√
ad

(a = ρ11 and d = ρ22). It turns out that the quali-
tative features of the concurrence in relation to ∆µ is
captured by those of the coherence |w|, as is evident by
comparing Fig. 6 (a) and (c). For instance, |w| is also
a non-monotonic function of ∆µ for µ1 < ω. The pop-
ulation term

√
ad is a monotonic function of ∆µ, which

did not alter the qualitative features of the coherence |w|.
Hence, as far as the major features of the concurrence is
concerned, the coherence |w| comes out a winner in the

competition with the population term
√
ad.

We also remark that, the entanglement in the fermion
bath case is about one order larger than in the boson
bath case in the parameter regimes considered, as can be
seen by comparing Fig. 5(a) with Fig. 6(a). This seems
to suggest that fermion baths may have an advantage
in enhancing entanglement in the nonequilibrium setting
compared to boson baths. However, one needs to be

careful with the interpretation of this result. Two dif-
ferent nonequilibrium conditions are used in the boson
bath case and the fermion bath case, namely, the tem-
perature difference accompanied by energy exchange for
the boson bath case and the chemical potential differ-
ence accompanied by particle exchange for the fermion
bath case. Hence, the difference in the results may arise
from two distinct factors, that is, different nonequilib-
rium mechanisms (energy exchange versus particle ex-
change) and different statistics (Bose-Einstein statistics
versus Fermi-Dirac statistics). Our investigation on this
issue with analytical solutions (applicable even if µ 6= 0
for boson baths) as well as numerical calculations sug-
gests that both factors played a role. We find that the
exchange of particle (induced by the chemical potential
difference) between the system and reservoirs generally
has a beneficial effect on enhancing the steady-state en-
tanglement than the exchange of energy (induced by the
temperature difference) when the statistics of the baths
is fixed. As to the statistics, one way it played a role is
that the chemical potential of boson baths can only be
negative while that of fermion baths has no such restric-
tion.

VI. ANALYTICAL SOLUTION AND

ENTANGLEMENT PHASE DIAGRAMS FOR

ASYMMETRIC QUBITS

In previous sections we investigated the steady-state
entanglement and coherence of the symmetric qubit sys-
tem (ω1 = ω2) in both equilibrium and nonequilibrium
settings. In this section we study the more general
scenario when the two qubits have an energy detuning
(ω1 6= ω2).
We have also obtained the analytical solution for the

asymmetric qubit case, which turns out to be generaliz-
able from that for the symmetric qubit case by a simple
map. By introducing

N̄± = N̄± ± Ñ± cos θ, Ñ± = Ñ± sin θ, (62)

the asymmetric qubit solution can be obtained by re-

placing N̄± and Ñ± in the symmetric qubit solution

with N̄± and Ñ±, respectively. (Recall the definitions

N̄± = (N±
1 + N±

2 )/2 and Ñ± = (N±
1 − N±

2 )/2.) More
explicitly, for asymmetric qubits coupled to boson baths,
the steady-state solution reads

ρ11 =
1

N
[
N̄+N̄− − r1r2R

]
, (63)

ρ22 =
1

N
[
(1 + N̄+)(1 + N̄−)− s1s2R

]
, (64)

ρ33 =
1

N
[
N̄+(1 + N̄−) + s1r2R

]
, (65)

ρ44 =
1

N
[
N̄−(1 + N̄+) + s2r1R

]
, (66)

ρ34 = − 1

N

[
Ñ+(1 + 2N̄−) + Ñ−(1 + 2N̄+)

2(1 + N̄+ + N̄−) + iΩ′

]
, (67)
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where N is the normalization factor and

r1 = Ñ+ + Ñ−(1 + 2N̄+ + 2N̄−), (68)

r2 = Ñ− + Ñ+(1 + 2N̄+ + 2N̄−), (69)

s1 = Ñ+ − Ñ−(3 + 2N̄+ + 2N̄−), (70)

s2 = Ñ− − Ñ+(3 + 2N̄+ + 2N̄−), (71)

R =
1

4(1 + N̄+ + N̄−)2 +Ω′2
. (72)

For asymmetric qubits coupled to fermion baths, the
steady-state solution is given by

ρ11 = N̄+N̄− − R̃, (73)

ρ22 = (1− N̄+)(1 − N̄−)− R̃, (74)

ρ33 = N̄+(1− N̄−) + R̃, (75)

ρ44 = N̄−(1− N̄+) + R̃, (76)

ρ34 = −Ñ+ + Ñ−

2 + iΩ′
, (77)

where

R̃ =
(Ñ+ + Ñ−)

2

4 + Ω′2
(78)

and Ω′ = Ω/J . The coherence in the bare-state repre-
sentation can be calculated with w = sin θ(ρ33−ρ44)/2+
cos2(θ/2)ρ34 − sin2(θ/2)ρ43 and the concurrence is given
by C = 2max(0, |w| − √

ρ11ρ22).
The symmetric qubit solutions in Eqs. (41)-(51) for bo-

son baths and Eqs. (55)-(60) for fermion baths are special
cases of the above general solution given that N̄± and

Ñ± reduce to N̄± and Ñ±, respectively, when ω1 = ω2

(θ = π/2). The structure of the maps in Eq. (62) suggests
a close connection between the detuning in the two qubits
(manifested in the mixing angle θ) and the nonequilib-

rium conditions (indicated by Ñ±). Our numerical re-
sults support such a connection.
The numerical results are presented in the entangle-

ment phase diagrams in Fig. 7 (a) for boson reservoirs
and Fig. 7 (b) for fermion reservoirs. The entanglement
phase diagrams are contour plots of the steady-state en-
tanglement, quantified by concurrence, as functions of
the nonequilibrium condition (∆T for boson reservoirs
and ∆µ for fermion reservoirs) and the energy detuning
∆ = ω1 − ω2 of the two qubits.
The symmetry in the setup of the qubits and the baths

(switching qubit one and bath one simultaneously with
qubit two and bath two, respectively, would not change
the physics) is important for our discussions in this sec-
tion. To highlight this symmetry, we adopt a symmetric
way of varying the parameters, which is different from
that used in the previous sections but does not change
the essential physics. More specifically, in the entangle-
ment phase diagrams, we keep fixed ω̄ = (ω1 + ω2)/2 for
the two qubits, T̄ = (T1+T2)/2 for the two boson baths,
and µ̄ = (µ1 + µ2)/2 for the two fermion baths, while
varying ∆ = ω1 − ω2, ∆T = T2 − T1 and ∆µ = µ2 − µ1,

FIG. 7. (Color online)The entanglement phase diagrams of
the system of the two coupled qubits immersed in boson baths
(a) and fermion baths (b). The parameters are set as J1 =
J2 = 1, λ = 6, ω̄ = 10 in (a) and (b); T̄ = 3 in (a); T1 = T2 =
1.5, µ̄ = 4 in (b).

respectively. The ranges for the varying parameters are
restricted by |∆| <

√
4ω̄2 − λ2 according to the rotat-

ing wave approximation, |∆T | ≤ 2T̄ to ensure that the
temperatures of both boson baths are non-negative, and
unrestricted ∆µ as the chemical potentials of the fermion
baths can be positive or negative. As one can see in Fig. 7
(a) and (b), the entanglement phase diagrams are sym-
metric with respect to the origin, reflecting the symmetry
in the setup of the qubits and the baths.

In the entanglement phase diagram for the boson bath
case in Fig. 7 (a), the entanglement has higher values in
the top-right and bottom-left corners, where its value can
reach about 0.12, roughly ten times that in the equilib-
rium case (for λ = 6 and T = 3). In the top-right corner,
∆ > 0 and ∆T > 0, that is, ω1 > ω2 and T1 < T2 (note
that ∆ = ω1 − ω2 while ∆T = T2 − T1). Accordingly,
in the bottom-left corner ω1 < ω2 and T1 > T2. This
suggests that, to enhance the steady-state entanglement
of the system by exploiting the nonequilibrium condition
and the detuning of the two qubits, it is advantageous
to couple the qubit with a higher frequency to the boson
bath with a lower temperature.

For the fermion bath case, the entanglement phase di-
agram in Fig. 7 (b) shows that the concurrence has a
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maximum within quadrant I and another maximum in
quadrant III due to the symmetric setup. The maximum
concurrence achieved is close to 0.5, about five times that
of the equilibrium fermion bath case (at µ = 4) and also
about five times the value in the phase diagram of the
boson bath base. In addition, coupling the qubit with a
higher frequency to the fermion bath with a lower chemi-
cal potential also has a beneficial effect on promoting the
steady-state entanglement.
The above observation that high entanglement is

achieved for asymmetric qubits ω2 < ω1 when T2 > T1

(boson baths) or µ2 > µ1 (fermion baths) suggests a
compensation mechanism between the detuning of the
two qubits and the nonequilibrium condition of the two
baths. A possible explanation is that the difference of the
temperature or chemical potential of the two baths may
strengthen the effective coupling between the two de-
tuned qubits, leading to elevated entanglement between
them.
We remark that there are two regions in Fig. 7 (b) with

their boundaries marked out with dashed black lines (the
locations of the boundaries are not intended to be ex-
act). In these two regions there are minor violations of
the positivity of the density matrix (ρ11 has negative val-
ues of the order 10−4), suggesting that the conditions in
these parameter regimes are outside the validity range of
the Bloch-Redfield equation. The phase diagram within
these regions are obtained by taking only the real part
of

√
ad in the calculation of the concurrence, producing

a smooth transition across the boundaries of these re-
gions. A more rigorous treatment may involve comparing
with steady-state solutions to the exact dynamics of the
system so that the validity regime of the Bloch-Redfield
equation in this case may be quantified, which is reserved
for future work. We note that all other figures in previ-
ous sections were obtained within parameter regimes that
guarantee the positivity of the density matrix.

VII. EFFECT OF SPECTRAL DENSITIES AND

CONNECTION TO ENERGY CURRENT

The results in previous sections were restricted to
balanced and frequency-independent spectral densities,
namely, J1(δ/2±Ω/2) = J2(δ/2±Ω/2) = J . It is worth-
while to investigate how more complex spectral densities
may affect those findings. In addition, the nonequilib-
rium nature of the system is also signified by the non-
vanishing energy current at steady state, characterizing
the transport features. It is of interest to explore how the
energy current is connected to the nonequilibrium con-
dition and the steady-state coherence and entanglement.
An in-depth study of these problems entails extensive ex-
position that goes beyond the scope of the present paper.
In this section we present some preliminary results on
these questions and leave more systematic investigations
for future work.

FIG. 8. (Color online) The steady-state coherence and entan-
glement for boson reservoirs (a,b) and fermion reservoirs (c,d).
The parameters are set as ω1 = ω2 = 10, ωc1 = ωc2 = 40;
(a,b) T1 = 2, T2 = T1+∆T ; (c,d) T1 = T2 = 1.5, µ1 = 4, µ2 =
µ1 +∆µ.

A. Reservoirs with the Ohmic spectrum

To investigate the effect of spectral densities, we con-
sider reservoirs with the Ohmic spectrum [79]

J1(ω) = α1ω exp(−ω/ωc1),

J2(ω) = α2ω exp(−ω/ωc2),
(79)

where α1 and α2 are the dissipation coefficients and ωc1

and ωc2 denote the cutoff frequencies. Note that, in or-
der to guarantee the validity of the Markovian approxi-
mation, the parameters in the spectral densities need to
conform with the condition {J1(ω), J2(ω)} ≪ {ω1, ω2, λ},
especially in the vicinity of ω = δ/2± Ω/2.
The steady-state coherence and entanglement are plot-

ted in Fig. 8 (a) and (b) for boson reservoirs with a tem-
perature difference and Fig. 8 (c) and (d) for fermion
reservoirs with a chemical potential difference. Com-
pared to the balanced and frequency-independent cases
shown in Figs. 5 and 6, the results in Fig. 8, obtained
with the Ohmic spectrum, are not so much qualitatively
different. However, these results do suggest that unbal-
anced couplings to the reservoirs in a particular man-
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ner may enhance the steady-state coherence and entan-
glement. More specifically, a stronger coupling between
the system and the reservoir with a higher temperature
(boson reservoirs) or chemical potential (fermion reser-
voirs) tends to increase the steady-state coherence and
entanglement. This is reflected in Fig. 8 by the fact that
the steady-state coherence and entanglement have higher
(lower) values for α2 > α1 (α2 < α1) than for α2 = α1,
when T2 > T1 or µ2 > µ1.

B. Connection to the energy current

To investigate the energy current at the nonequilib-
rium steady state, we reorganize the dissipators in the
master equation in Eq. (10) according to the labels of
each individual reservoir. More specifically, the dissipa-
tor can be rewritten as D0[ρ] + Ds[ρ] = D1[ρ] + D2[ρ],
where D1[ρ] (D2[ρ]) is the dissipator associated with
the reservoir in contact with qubit 1 (qubit 2). Here
Di[ρ] = Ni[ρ] + Si[ρ] (i = 1, 2), where the expressions
of Ni[ρ] and Si[ρ] are given in Eqs. (12) and (13). The
energy current from the i-th reservoir to the system at
the steady state is given by Ii = Q̇i = Tr{Di[ρss]Hs}
(i = 1, 2) [80–83]. Energy conservation at the steady
state dictates that I1 + I2 = 0. Thus, without loss of
generality, we only focus on the energy current I2.

In Fig. 9, for different inter-qubit coupling strengths,
we plotted the energy current as a function of the
nonequilibrium condition (temperature difference for bo-
son reservoirs in Fig. 9(a) and chemical potential differ-
ence for fermion reservoirs in Fig. 9(b)). As one can see,
I2 > 0 when T2 > T1 (boson reservoirs) or µ2 > µ1

(fermion reservoirs), indicating that an energy current
flows from the reservoir with a higher temperature or
chemical potential to that with a lower one through the
coupled qubit system, as expected. In both cases, the en-
ergy current increases with the nonequilibrium condition
and the inter-qubit coupling strength. Further compar-
ison with Fig. 5(b) and Fig. 6(b) reveals that, for both
boson and fermion reservoirs, the energy current displays
monotonic behaviors with respect to the nonequilibrium
condition, similar to the steady-state coherence. The re-
semblance is also evident in the feature of saturation at
large chemical potential difference for the fermion reser-
voir case, as seen in Fig. 6(b) and Fig. 9(b). This sug-
gests a close connection between the energy current and
the steady-state coherence (in the energy representation)
that both originate from the nonequilibrium condition
[26, 30]. In contrast, there does not seem to be a simple
correlation between the energy current and the steady-
state entanglement. This may be partly due to the fact
that the energy current is partitioned to support both
steady-state coherence and populations [30], while the
concurrence quantifying entanglement in our case is a re-
sult of the competition between the coherence and the

FIG. 9. (Color online) The energy current in the steady-
state for boson reservoirs (a) and fermion reservoirs (b) for
different inter-qubit coupling strengthes. The parameters are
set as ω1 = ω2 = 10, J1 = J2 = 1; (a) T1 = 2, T2 = T1 +∆T ;
(b) T1 = T2 = 1.5, µ1 = 4, µ2 = µ1 +∆µ.

populations as discussed in Sec. III.
VIII. CONCLUSION

In this paper, we studied the steady-state entangle-
ment and coherence of two coupled qubits each embed-
ded in a local boson or fermion reservoir, using the Bloch-
Redfield master equation beyond the secular approxima-
tion. We obtained general analytical solutions to the
steady state of the master equation, which, combined
with numerical results, allowed us to explore in detail the
behaviors of entanglement and coherence at the steady
state. Most features of the entanglement and coherence
can be accounted for by interpolating their asymptotic
behaviors in extreme conditions (e.g., the near equilib-
rium regime and the strong nonequilibrium regime) and
from the perspective that concurrence is determined by
the competition between coherence and population in the
bare-state representation.
In the equilibrium situation, we found that the entan-

glement varies non-monotonically with the temperature
or chemical potential and becomes significantly dimin-
ished if the inter-qubit coupling is too weak, while the
coherence in the eigen-state representation vanishes due
to decoherence as expected. In the nonequilibrium sit-



17

uation, there is non-vanishing steady-state coherence in
the eigen-state representation that grows monotonically
with the nonequilibrium condition (temperature differ-
ence or chemical potential difference), while the steady-
state entanglement in general behaves non-monotonically
with the nonequilibrium condition. When the base
temperature or chemical potential is high enough, the
steady-state entanglement and coherence, however, be-
come strongly suppressed irrespective of the strength of
the nonequilibrium condition. We also demonstrated in
the entanglement phase diagrams that combining the
nonequilibrium condition with the detuning of the two
qubits in a compensatory way (coupling the qubit with
higher frequency to the reservoir with lower temperature
or chemical potential) can boost the steady-state entan-
glement roughly 5 ∼ 10 times that of the corresponding
equilibrium symmetric qubit case. In addition, there is
sizable improvement in entanglement when the qubits are
coupled to fermion reservoirs exchanging particles with
the system compared to boson reservoirs exchanging en-
ergy with the system under similar conditions.

Our study suggests some viable strategies that may
be used to benefit the optimization of the steady-state
entanglement in the coupled qubit system, which include
the following: use sufficiently strong inter-qubit coupling;
maintain the temperature or chemical potential of one
bath at a relatively low level; keep the temperature dif-
ference or chemical potential difference of the two baths
at a moderate level; couple the qubit with a higher fre-
quency to the bath with a lower temperature or chemi-
cal potential; implement a stronger coupling between the
system and the reservoir with a higher temperature or
chemical potential; couple the qubits to fermion reser-
voirs exchanging particles with the system over boson
reservoirs exchanging energy with the system. These
strategies are intended to be used as general guidelines
which need to be supplemented with more detailed anal-
ysis of the steady-state entanglement in relation to the
inter-qubit coupling strength, the detuning of the two
qubits, the nonequilibrium condition etc as done in this
work, in order to achieve optimized results of enhanced
steady-state entanglement.

There is a possibility that our results on the nonequilib-
rium enhanced steady-state entanglement and coherence
may be experimentally tested in the foreseeable future.
For the case of boson reservoirs, the coupled-qubit system
can be realized by superconducting charge qubits [84],
and the nonequilibrium condition indicated by the tem-
perature difference of the reservoirs can be adjusted by
tuning diluted magnetic refrigerators. The nonequilib-
rium condition may also be created by coupling the
qubits to reservoirs with different coupling strengths. On
the other hand, the fermion reservoir case can be ex-
perimentally realized using hybrid circuit-QED [85], in
which semiconducting quantum dots define the qubits
that are coupled to the leads serving as electron reser-
voirs [86, 87]. The nonequilibrium condition character-
ized by the chemical potential difference can be created

by the bias voltage of the leads. Furthermore, quantum
state tomography has been widely applied in reconstruct-
ing the density matrix of quantum systems. In particular,
the schemes to reconstruct the density matrix of the two-
qubit system have been proposed [88, 89]. The steady-
state entanglement and coherence can thus be obtained
from the experimentally reconstructed steady-state den-
sity matrix. Therefore, there is a good chance the theo-
retical and numerical results presented in this paper can
be tested against experiments in the near future.
The approach in this study and some of the gen-

eral guidelines proposed for the coupled qubit system
may be extended to more general settings to optimize
the nonequilibrium steady-state entanglement and co-
herence, which may have potential applications in quan-
tum communication and the design of quantum devices
working in noisy nonequilibrium environments. In future
work, we intend to quantify the range of validity of the
Bloch-Redfield master equation used in this study and
compare the results here with those based on exact dy-
namics of the system with the non-Markovian effects fully
taken into account. A more systematic investigation on
the influence of spectral densities in the non-Markovian
regime as well as the connection to the energy current
will also be considered.
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Appendix A: The quantum master equation in

terms of the density matrix elements

The operator form of the quantum master equation in
Eqs. (10)-(13) in the main text can be written in terms
of the density matrix elements in the eigen-state repre-
sentation as follows:

d

dt
ρij =

∑

lk

Mlk
ijρlk, (A1)

where

M11
11 = −2[sin2

θ

2
(Γ−

1 + Γ+
2 ) + cos2

θ

2
(Γ+

1 + Γ−
2 )], (A2)

M33
11 = 2(sin2

θ

2
γ−
1 + cos2

θ

2
γ−
2 ), (A3)

M44
11 = 2(cos2

θ

2
γ+
1 + sin2

θ

2
γ+
2 ), (A4)
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M34
11 = M43

11 =
1

2
sin θ(γ+

1 + γ−
1 − γ+

2 − γ−
2 ), (A5)

M22
22 = −2[sin2

θ

2
(γ−

1 + γ+
2 ) + cos2

θ

2
(γ+

1 + γ−
2 )], (A6)

M33
22 = 2(cos2

θ

2
Γ+
1 + sin2

θ

2
Γ+
2 ), (A7)

M44
22 = 2(cos2

θ

2
Γ−
2 + sin2

θ

2
Γ−
1 ) (A8)

M34
22 = M43

22 = −1

2
sin θ(Γ+

1 + Γ−
1 − Γ+

2 − Γ−
2 ), (A9)

M11
33 = 2(sin2

θ

2
Γ−
1 + cos2

θ

2
Γ−
2 ), (A10)

M22
33 = 2(cos2

θ

2
γ+
1 + sin2

θ

2
γ+
2 ), (A11)

M33
33 = −2[sin2

θ

2
(γ−

1 + Γ+
2 ) + cos2

θ

2
(γ−

2 + Γ+
1 )], (A12)

M34
33 = M43

33 = −1

2
sin θ(γ+

1 − Γ−
1 − γ+

2 + Γ−
2 ), (A13)

M11
44 = 2(cos2

θ

2
Γ+
1 + sin2

θ

2
Γ+
2 ), (A14)

M22
44 = 2(sin2

θ

2
γ−
1 + cos2

θ

2
γ−
2 ), (A15)

M44
44 = −2[cos2

θ

2
(γ+

1 + Γ−
2 ) + sin2

θ

2
(γ+

2 + Γ−
1 )], (A16)

M34
44 = M43

44 = −1

2
sin θ(γ−

1 − Γ+
1 − γ−

2 + Γ+
2 ), (A17)

M11
34 = M11

43 =
1

2
sin θ(Γ+

1 + Γ−
1 − Γ+

2 − Γ−
2 ), (A18)

M22
34 = M22

43 = −1

2
sin θ(γ+

1 + γ−
1 − γ+

2 − γ−
2 ), (A19)

M33
34 = M33

43 = −1

2
sin θ(γ−

1 − Γ+
1 − γ−

2 + Γ+
2 ), (A20)

M44
34 = M44

43 = −1

2
sin θ(γ+

1 − Γ−
1 − γ+

2 + Γ−
2 ), (A21)

M34
34 = (M43

43)
∗ = − sin2

θ

2
(γ−

1 + Γ−
1 + γ+

2 + Γ+
2 )

− cos2
θ

2
(γ+

1 + Γ+
1 + γ−

2 + Γ−
2 )− iΩ.

(A22)

M22
11 = M11

22 = M44
33 = M33

44 = M43
34 = M34

43 = 0. (A23)

Note that among all the off-diagonal elements of the den-
sity matrix, only ρ34 and ρ43(= ρ∗34) are relevant here, as
the rest of them are decoupled and approach zero in the
steady state.

Appendix B: Method of solving the steady-state

density matrix

Writing the relevant density matrix elements as a vec-
tor |ρ〉 = (ρ11, ρ22, ρ33, ρ44, ρ34, ρ43)

T , the quantum mas-
ter equation can be reformulated in the following vector-
matrix form

d

dt
|ρ〉 = M|ρ〉. (B1)

The vector |ρ〉 can be partitioned into its population and
coherence components, |ρ〉 = (ρp, ρc)

T . Accordingly, the
matrix M has the partitioned form

M =

[
Mpp Mpc

Mcp Mcc

]
. (B2)

The steady state satisfies the equation M|ρ〉 = 0, which
reads

{
Mppρp +Mpcρc = 0
Mcpρp +Mccρc = 0

. (B3)

The second equation yields ρc = −M−1
cc Mcpρp (assum-

ing Mcc is invertible), which expresses ρc in terms of ρp.
Plugging it back into the first equation, one arrives at an
equation involving only the population component:

A ρp = 0, (B4)

where

A = Mpp −MpcM
−1
cc Mcp. (B5)

The equation A ρp = 0 has a reduced dimension com-
pared to M|ρ〉 = 0, which makes it easier to solve ana-
lytically. In our case here A is a 4 × 4 matrix. Proba-
bility conservation ensures that each column of A adds
up to zero, implying that its determinant is zero (its
rank less than n). Typically, physical conditions may
ensure that the rank of A is n − 1 (in our case 3), so
that the equation A ρp = 0 has a unique solution up to
normalization, which can be obtained as follows. Choose
any row of A, for instance, the first row, with the el-
ements (A11, · · · ,A1i, · · · ,A1n). Then the i-th compo-
nent of the solution ρp is proportional to the cofactor
(i.e., signed minor) of the matrix entry A1i. The propor-
tionality factor is fixed by the normalization condition.
With ρp obtained, the coherence component is calculated
with ρc = −M−1

cc Mcpρp. Thus one obtains all the rele-
vant steady-state density matrix elements. More detailed
explanations can be found in Ref. [30].
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20

Thermal production, protection, and heat exchange of
quantum coherences, Phys. Rev. A 97, 032117 (2017).

[40] Marko Z̆nidaric̆, Entanglement in stationary nonequilib-
rium states at high energies, Phys. Rev. A 85, 012324
(2012).

[41] X. Wang, Entanglement in the quantum Heisenberg XY
model, Phys. Rev. A 64, 012313 (2001).

[42] X. Wang, Effects of anisotropy on thermal entanglement,
Phys. Lett. A 281, 101 (2001).

[43] M. C. Arnesen, S. Bose, and V. Vedral, Natural thermal
and magnetic entanglement in the 1D Heisenberg model,
Phys. Rev. Lett. 87, 017901 (2001).

[44] D. Gunlycke, V. M. Kendon, V. Vedral, and S. Bose,
Thermal concurrence mixing in a one-dimensional Ising
model, Phys. Rev. A 64, 042302 (2001).

[45] M. Orszag and M. Hernandez, Coherence and entangle-
ment in a two-qubit system, Advances in Optics and Pho-
tonics 2, 229 (2010).

[46] L. Duan, H. Wang, Q.-H. Chen, and Y. Zhao, Entan-
glement dynamics of two qubits coupled individually to
Ohmic baths, J. Chem. Phys. 139, 044115 (2013).

[47] F. Benatti, R. Floreanini, and U. Marzolino, Entangling
two unequal atoms through a common bath, Phys. Rev. A
81, 012105 (2010).

[48] F. Benatti, R. Floreanini, and U. Marzolino,
Environment-induced entanglement in a refined weak-
coupling limit, Europhys. Lett. 88, 20011 (2009).

[49] X. Cao and H. Zheng, Non-Markovian disentanglement
dynamics of a two-qubit system, Phys. Rev. A 77, 022320
(2008).

[50] A. Kato and Y. Tanimura, Quantum heat transport of
a two-qubit system: Interplay between system-bath co-
herence and qubit-qubit coherence, J. Chem. Phys. 143,
064107 (2015).

[51] X. Zhao, J. Jing, B. Corn, and T. Yu, Dynamics
of interacting qubits coupled to a common bath: Non-
Markovian quantum-state-diffusion approach, Phys. Rev.
A 84, 032101 (2011).

[52] J. B. Brask, G. Haack, N. Brunner and M. Huber,
Autonomous quantum thermal machine for generating
steady-state entanglement, New J. Phys. 17, 113029
(2015).
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