
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Inequivalent multipartite coherence classes and two
operational coherence monotones

Yu Luo, Yongming Li, and Min-Hsiu Hsieh
Phys. Rev. A 99, 042306 — Published  3 April 2019

DOI: 10.1103/PhysRevA.99.042306

http://dx.doi.org/10.1103/PhysRevA.99.042306


Inequivalent Multipartite Coherence Classes and New Coherence Monotones

Yu Luo,1, 2, ∗ Yongming Li,1, † and Min-Hsiu Hsieh2, ‡

1College of Computer Science, Shaanxi Normal University, Xi’an, 710062, China
2Centre for Quantum Software and Information, Faculty of Engineering and Information Technology, University of Technology Sydney, Australia

(Dated: March 8, 2019)

Quantum coherence has received significant attention in recent years, but the structure of multipartite
coherent states is unclear. In this paper, we generalize important results in multipartite entanglement
theory to their counterparts in quantum coherence theory. First, we give a necessary and sufficient
condition for when two pure multipartite states are equivalent under local incoherent operations
assisted by classical communications (LICC), i.e., two states can be deterministically transformed to
each other under LICC operations. Next, we investigate and give the conditions in which such a
transformation succeeds only stochastically. Different from entanglement case for two-qubit states,
we find that the stochastic LICC (sLICC) equivalence classes are infinite. Moreover, it’s possible that
there are some classes of states in multipartite entanglement can convert into each other, while, they
cannot convert into each other in multipartite coherence. In order to show the difference among
sLICC classes, we introduce two coherence monotones: accessible coherence and source coherence,
following the logistics given in [Phys. Rev. Lett. 115, 150502 (2015)]. These coherence monotones
have a straightforward operational interpretation, namely, the accessible coherence characterizes the
proficiency of a state to generate other states via quantum incoherent operations, while the source
coherence characterizes the set of states that can be reached via quantum incoherent operations acting
on the given state of interest.

1. INTRODUCTION

Coherence originates from the “superposition” of quan-
tum states, and plays a central role in interference phe-
nomena in quantum physics and quantum information
science [1–13]. Coherence is an essential ingredient for
multipartite entanglement in many-body systems and a
necessary phenomenon of analysing physical phenom-
ena in quantum optics[14], solid state physics[15], and
nanoscale thermodynamics[16–18], even in biological
systems[19–21]. A mathematical framework of quantum
coherence as a physical resource has been proposed re-
cently [1]. There are two basic elements in coherence
theory: (1) free states and (2) free operations. Free states
in the coherence theory are those states which are di-
agonal in a fixed basis {|i〉}, which we call incoherent
states. Free operations (incoherent operations) are some
specified classes of physically realizable operations that
act invariantly on the set of incoherent states, which is
not unique due to practical implications.

Local operations assisted by classical communications
(LOCC) is helpful for understanding the structure of en-
tangled states because entanglement cannot be created by
LOCC operators. In analogy with entanglement theory,
we focus on the protocol that each party performs local
incoherent operations assisted by classical communica-
tions (LICC) [5, 6]. In LICC protocol, the local incoherent
operator cannot create global coherence so that multipar-
tite coherence remains a resource. Therefore, LICC can
be viewed as a natural setting to explore the structure of
a multipartite coherent states.
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The first aim in this paper is to understand the structure
of a multipartite coherent states. For quantum informa-
tion processing, different structures of states often have
different capabilities in state transformation. Just like the
resource of entanglement, a LOCC protocol for multi-
partite state leads to natural ways of defining equivalent
relations in the set of entangled states, as well as establish-
ing hierarchies between the resulting classes (structures).
States in different classes cannot convert into each other.
For example, GHZ states and W states belong to two
different classes via stochastic local operations and class
communications (sLOCC), which reveals the existence
of two inequivalent kinds of genuine tripartite entangle-
ment [22]. To understand the structure of multipartite
coherent states, we also consider the classification of
pure coherent states of multipartite quantum systems
under LICC, even in a stochastic setting. For multipartite
coherence, an interesting observation is: if one of the
three qubits in W state is lost, the state of the remaining
two-qubit system is still coherent, whereas the GHZ state,
which is incoherent after the loss of one qubit. This obser-
vation leads to following question: is it possible that there
are some classes of states in multipartite entanglement
can convert into each other, while, they cannot convert
into each other in multipartite coherence?
We address the questions above by focusing on the

equivalent class of puremultipartite coherent states. First,
a necessary and sufficient condition for pure multipartite
state transformations via local incoherent operations and
class communications (LICC) is presented. Second, we
investigate and give the conditions in which such a trans-
formation succeeds only stochastically, namely, stochastic
local incoherent operations and class communications
(sLICC). As an application, we investigate the two-qubit
sLICC equivalent classes, showing that equivalent classes
of bipartite coherence under sLICC are more complex
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than equivalent classes of bipartite entanglement under
sLOCC, even in the two-qubit case. This specific inco-
herent constraint of locality makes us undertand the
structure of multipartite coherence.

Becausemany coherencemeasures do not have an inter-
pretation in the context of the LICC paradigm [23]. The
another aim in this paper is to identify new operational
coherencemeasures for investigating possible LICC trans-
formations among coherent multipartite states. Inspired
by similar concepts previously investigated for entan-
glement [24], we introduce two coherence monotones:
accessible coherence and source coherence. Accessible
coherence refers to the proficiency of a state to generate
other states via free operations, and the source coherence
denotes that the set of a state of interest can be obtained
via free operations. Both coherence monotones can also
be used for single-qubit and multipartite state cases and
can be applied for other free operations, such as incoher-
ent operations (IC), LICC. For single-qubit states achieved
via physically incoherent operations (PIO) [12], strictly in-
coherent operations (SIO) [11] and IC, we obtain explicit
formulas of accessible coherence and source coherence.
We analyze pure (or mixed) states via IC and derive ex-
plicit formulas for the source coherence. These two new
coherence monotones also have a geometric interpreta-
tion. We additionally show how accessible coherence can
be computed numerically and provide examples.
This paper is organized as follows. In Sec. 2, we

first introduce the necessary notation and lemmas we
need. In Sec. 3, we will explore inequivalent classes of
multipartite coherence states. In Sec. 4, we introduce
two new operational coherence monotones: accessible
coherence and source coherence. In Sec. 5, we derive the
formula for pure states transformation via LICC and its
SIO version, and then give some examples. In Sec. 6, we
derive the formula for pure states transformation via PIO,
SIO and IC and give some examples. We summarize our
results in Sec. 7.

2. NOTATION AND PRELIMINARIES

We first introduce the necessary notation. We consider
a Hilbert spaceH of finite dimension d. The incoherent
basis ofH is fixed and is denoted as {|i〉}di�1 throughout
this paper. A unitary operation U is called an incoherent
unitary (IU) if U �

∑d
i�1 e iθi |i〉 〈π(i)| with π(i) being a

permutation. Given a quantum state ρ, its von Neumann
entropy is S(ρ) � −Tr ρ log ρ. For an N-partite state
|ψ〉 defined onH1 ⊗ H2 ⊗ · · · ⊗ HN , its reduced density
operator on a subset X ⊂ [N] :� {1, 2, · · · ,N} is denoted
as ρψX � TrX |ψ〉 〈ψ |, where X � [N]\X.
A general resource theory for a quantum system has

two components: free states and free operations. In the
resource theory of coherence, a free state σ (incoherent
state) can be written as σ �

∑
i σi |i〉〈i | for a fixed basis

{|i〉}. Variants of the free operations in the resource
theory of coherence have been proposed. A completely

positive and trace-preserving (CPTP) map Φ is said to
be incoherent operations (IC), if its Kraus operators Kn
are of the form Kn �

∑
i c(i) | j(i)〉 〈i | with | j(i)〉 being

a (possibly many-to-one) function from the index set
of the basis onto itself, and coefficients c(i) satisfying∑

n K†nKn � I [1]. If every Kn �
∑

i c(i) |i〉 〈π(i)|, where
π(i) is a permutation, then the corresponding operation
is a strictly incoherent operation (SIO) [11]. Lastly, the
free operation is called a physically incoherent operation
(PIO), if Kn has the form Kn � UnPn , where {Un} are IU
operators and {Pn} form an orthogonal and complete set
of incoherent projectors [12]. From their definitions, we
have following inclusion: PIO ⊂ SIO ⊂ IC.
A fundamental class of operations in entanglement

theory is Local Quantum Operations and Classical Com-
munication (LOCC), since it allows an operational defini-
tion of “entanglement” [25]. For two bipartite entangled
states |φ〉 and |ψ〉, what is the necessary and sufficient
condition for transforming |φ〉 to |ψ〉 using LOCC oper-
ations? Nielsen showed that this condition of entangle-
ment transformation is related to the algebraic theory of
ma jorization:

Lemma 1 ([26]). Given two bipartite pure states |φ〉 and |ψ〉
on the system HA ⊗ HB , |φ〉 can be converted into |ψ〉 via
LOCC if and only if λ(φ) ≺ λ(ψ), where λ(φ) denotes the vec-
tor of eigenvalues of TrB(|φ〉〈φ |). Here, for two d-dimensional
vectors x � (x1 , x2 , ..., xd) and y � (y1 , y2 , ..., yd), x ≺ y
holds if and only if for each k in the range 1, 2, ..., d,∑k

i�1 x↓i ≤
∑k

i�1 y↓i with equality when k � d, where x↓i
means that the elements xi are arranged in decreasing order.

Coherence state transformation has also been studied
in the literature, motivated by entanglement state trans-
formation. In the single party setting, Du et . al. obtained
the following necessary and sufficient condition of pure
state coherence transformation via O ∈ {SIO , IC}:
Lemma 2 ([7]). For a fixed basis {|i〉}, a pure state |φ〉
can be converted into |ψ〉 via O ∈ {SIO , IC} if and only if
λ(∆(φ)) ≺ λ(∆(ψ)), where ∆(ρ) � ∑

i 〈i | ρ |i〉 |i〉〈i |, and for
convenience, we denote ∆(|ψ〉〈ψ |) as ∆(ψ).

In the multipartite setting, the class of Local Incoherent
Operations and Classical Communication (LICC) can
be defined accordingly when the local incoherent op-
erations are IC operators [5, 6]. If the local operations
are SIO operations, we call such protocols LSICC. These
protocols have been used to study the relationship be-
tween coherence and entanglement [5, 6]. It is easy to see
the following inclusion: LSICC ⊂ LICC ⊂ LOCC. The
hierarchy of the sets has been show in Figure 1
Chitambar and Hsieh [5] studied pure state transfor-

mation under LICC and found the following:

Lemma 3 ([5]). Suppose that two bipartite pure states |ψ〉
and |φ〉 have reduced density matrices that are diagonal in
the incoherent bases for both parties and both states. Then
|φ〉 can be converted into |ψ〉 via LICC if and only if the
squared Schmidt coefficients of |ψ〉 majorize those of |φ〉, i.e.,
|φ〉 ≺ |ψ〉.
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FIG. 1: (color online). The hierarchy of LOCC, LICC and
LSICC.

Shi et al. [2] and Streltsov et al. [3] studied mixed state
transformation of single-qubit systems viaO ∈ {SIO , IC}
and obtained the following result.

Lemma 4 ([2, 3]). The state ρ �
1
2

(
1 + rz rx + iry

rx − iry 1 − rz

)
can

be coverted into σ �
1
2

(
1 + sz sx + isy

sx − isy 1 − sz

)
via SIO, IC if and

only if the following inequalities are satisfied:

s2
x + s2

y ≤ r2
x + r2

y ,

1 − r2
z

r2
x + r2

y
(s2

x + s2
y) + s2

z ≤ 1.
(1)

Lastly, we also consider LICC protocols that succeed
in coherence states transformation only stochastically.
Analogous to stochastic LOCC (sLOCC) in entanglement
theory, we call these operations stochastic LICC opera-
tions and use the notation: sLICC.

3. INEQUIVALENT CLASSES OF MULTIPARTITE
COHERENCE STATES

In this section, we will explore inequivalent classes of
multipartite coherence states. First, we will give a neces-
sary and sufficient condition for when two multipartite
coherence states can be interconverted with certainty
under local incoherent operations and classical commu-
nication (LICC). We then study the interconversion of
multipartite coherence states which only succeeds with
a strictly positive probability. This allows us to define
inequivalent classes of multipartite coherence states. The
discussion in this section closely follows the inequivalent
classes of multipartite entanglement states in [22, 27].
We start with the following lemma showing that the

number of product terms of a multipartite coherent pure

state is an sLICC monotone. Note that the number of
product terms has been shown by other authors to be IC
monotone [11, 28]. We extend this idea and show that
the number of product terms is also an sLICC monotone
for multipartite coherence. We say that two pure states
|ψ〉 and |φ〉 are O equivalent if they can be transformed
into each other by means of operations in the set O.

Lemma 5 (LICC and sLICC monotone). The number of
non-zero product terms in the fixed basis does not increase
under LICC (resp. sLICC).

Proof. Suppose there are many but finite rounds in the
LICC (resp. sLICC) protocol. At the k-th round, Al-
ice performs an IC measurement and obtains a state
|ψ(k)〉 � ∑N

i�1
∑M

t�1 ψit |i〉 ⊗ |t〉 with the number of non-
zero product terms in the fixed basis of |ψ(k)〉 being NM.
Alice tells her result to Bob. Then, Bob performs an
IC measurement with outcome s at the (k+1)-th round
operation, the resulting state is |ψ(k+1)〉 ∝ Fs |ψ(k)〉 �∑N

i�1
∑M

t�1 ciψit | j(i)〉 ⊗ |t〉, where Fs �
∑

i ci | j(i)〉 〈i | and
coefficients c(i) satisfying ∑

s F†s Fs � I [1]. Since | j(i)〉
being a (possibly many-to-one) function from the index
set of the basis onto itself. It is clear that |ψ(k+1)〉 can
be expressed as a sum of product terms with no more
than MN terms. Consequently, at every round of LICC
(resp. sLICC) protocol, the number of non-zero product
terms will not increase as the LICC (resp. sLICC) protocol
continues.

Remark The number of product terms in the fixed basis
is similar to Schmidt rank in the resource theory of entan-
glement, but they do not play the same roles. Schmidt
rank, being an entanglement monotone under sLOCC,
can be used to classify the structures of entanglement,
and this classification is complete for bipartite settings.
In other words, two pure entangled states are sLOCC
equivalent iff they have the same Schmidt rank. How-
ever, the number of product terms alone, despite being
an sLICC monotone, is not sufficient to classify all the
structures of multipartite pure coherent states. Exam-
ple 3 below shows that two pure states can be sLICC
inequivalent even though they have the same number of
product terms.

Our first main result is the following, which originates
from its entanglement counterpart in [27, Corollary 1].

Theorem 6. Two multipartite pure states |ψ〉 and |φ〉 are
LICC equivalent iff they are local IU (LIU) equivalent.

Proof. It is clear that if |ψ〉 and |φ〉 are LIU equivalent,
they are also LICC equivalent since LIU operations per-
formed by each party constitute a special case of LICC
protocols.

Next, suppose that two N-partite states |ψ〉 and |φ〉
are LICC equivalent, i.e., there exists an LICC protocol
that converts |ψ〉 to |φ〉, which consists of many rounds
of local IC operations and communications between the
parties. Suppose, without loss of generality, that Alice
(A1) performs the first local IC operation, yielding the
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ensemble E � {pk , |ψk〉}. Since the reduced state of the
remaining parties can not be changed byAlice’s operation,
we have

ρ
ψ
A2 ...AN

�

∑
k

pk TrA1(|ψk〉〈ψk |), (2)

where ρ
ψ
A2 ...AN

� TrA1(|ψ〉 〈ψ |). Note that, the aver-
age entropy is unchanged [27]: S(ρψA1

) � S(ρψA2 ...AN
) �∑

k pkS(TrA1(|ψk〉〈ψk |)). From the strict concavity of
the von Neumann entropy [25], it must hold that
S(TrA1(|ψk〉〈ψk |)) � S(TrA1(|ψ〉〈ψ |)), for every k, i.e.,

|ψk〉 � UA1
k ⊗ IA2 ...AN |ψ〉 , (3)

where UA1
k is a unitary operation acting on Alice’s system.

Since, by assumption, Alice has to perform incoherent
operations, then UA1

k must be local incoherent unitary for
all k.
Alice can choose a label k with probability pk as her

“measurement result" and performs the deterministic LIU
operation UA1

k on the state |ψ〉. Other parties’ operations
follow similarly so that deterministic LIU operations of
the LICC protocol are sufficient to obtain the final the
state |φ〉. Hence, we conclude that if |φ〉 and |ψ〉 are
LICC equivalent, they are also LIU equivalent.

It is also possible that two multipartite pure states |ψ〉
and |φ〉 cannot always succeed with certainty in inter-
converting through operations in the class O, i.e., such
a transformation may only succeed stochastically. This
allows the structure of multipartite coherence states to be
understood operationally (similar to that of multipartite
entangled states): if two multipartite pure states |ψ〉 and
|φ〉 cannot be transformed to each other with non-zero
probability, they must each belong to different types of
multipartite coherence structures.

In the remainder of this section, wewill focus on sLICC.
Next we give our main result:

Theorem 7. Two multipartite pure states |ψ〉 and |φ〉 are
equivalent under sLICC if and only if they are related by local
(invertible) SIO operators.

First, we have following lemma:

Lemma 8. If E0 is an IC measurement, then IC measurements
Ei can be constructed, such that

∑
i Ei � I.

Proof. Let E1 � I − E0. Since E1 ≥ 0, we have spectral
decomposition for E1 �

∑
i λi |ψi〉〈ψi |. Setting Mi �√

λi |i〉〈ψi |, we find that Ei � M†i Mi is IC POVM for every
i.

Now, we give the proof of Theorem 7.
Proof. If |φ〉 � A1 ⊗ A2 ⊗ · · · ⊗ AN |ψ〉 holds with SIO
(invertible IC) operators Ak with k � 1, 2, ...,N , then we
can find an sLICC protocol for the parties to transform
|ψ〉 into |φ〉with a positive probability of success. Indeed,
each party k can perform anM-outcome ICmeasurement

{F(k)0 , F(k)1 , . . . , F(k)M }, where F(k)0 �

√
pk

〈ψk |A†k Ak |ψk〉
Ak with

0 < pk ≤ 1. It is easy to check that after all parties have
performed their corresponding measurements, the trans-
formation from |ψ〉 to |φ〉 will succeed with probability
p1p2 · · · pN . The analysis also holds for |φ〉 converting
into |ψ〉 by observing that |ψ〉 � A−1

1 ⊗A−1
2 ⊗ · · · ⊗A−1

N |φ〉.
Conversely, suppose that there is an sLICC protocol,

consisting of ICmeasurements F(k) performed by the k-th
party, such that |ψ〉 is transformed into |φ〉. Then there
must exist one branch of all possible protocol outcomes,
say (x1 , x2 , · · · , xN ), in which |φ〉 is obtained. Tracking
the performed measurement of each party, F(k)xk

, the cor-
responding IC operators Ak are obtained as follows:

1√
pk

IA1 ···Ak−1Ak+1 ···AN ⊗ F(k)xk
|ψ(k−1)〉

� IA1 ···Ak−1Ak+1 ···AN ⊗ Ak |ψ(k−1)〉
� |ψ(k)〉 ,

(4)

with pk � 〈ψ(k−1) | F(k)†xk
F(k)xk
|ψ(k−1)〉, |ψ(0)〉 � |ψ〉, and

|ψ(N)〉 � |φ〉. In summary,

|φ〉 � A1 ⊗ A2 ⊗ · · · ⊗ AN |ψ〉 . (5)

Lastly, Ak must be full rank (hence revertible) since the
number of non-zero product terms in |ψ〉 and |φ〉 must
be equal, a consequence of Lemma 5.

To conclude this section, we use an example to demon-
strate that the N-partite coherence states are alreadymore
versatile than entanglement when N � 2.
Example [Characterization of two-qubit coherence states]
Consider a two-qubit system with the fixed basis
{|00〉 , |01〉 , |10〉 , |11〉}. Our classification is based on
the number of product terms R in a two-qubit pure state
since this number will not be altered by invertible SIO op-
erators. The following table lists all inequivalent classes
of two-qubit states.

R Classification
1 |00〉
2 a |00〉 + b |01〉, a |00〉 + c |10〉, a |00〉 + d |11〉
3 a |00〉 + b |01〉 + c |10〉, a |00〉 + b |01〉 + d |11〉
4 infinitely many (based on different ∇)

Now, we will give a detail analysis about this two-qubit
coherence states example.
Proof. From Lemma 5, we know that the classification is
restricted by the number of product terms under sLICC,
thus we list these potential equivalent classes based on
the number of product terms. The classification of the
number of product terms equal to 1 is trivial: every fixed
basis |i j〉 with i , j ∈ {0, 1} can be converted to each other
via local SIO operators.

When the number of product terms equals 2, we
can conclude the following three classes: a |00〉 + b |01〉,
a |00〉 + c |10〉, and a |00〉 + d |11〉, after considering local
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SIO operators allowed by each party. A similar method
can be used when the number of product terms equals 3.

When the number of product terms equals 4, let |ψ〉 �
a |00〉 + b |01〉 + c |10〉 + d |11〉. If |ψ〉 can be converted
to |φ〉 � a′ |00〉 + b′ |01〉 + c′ |10〉 + d′ |11〉 under sLICC,
then there exist local SIO operators A and B, such that
|φ〉 � A ⊗ B |ψ〉. Each of the SIO operators A, B can be

expressed in two forms:
(
x 0
0 y

)
or

(
0 z
w 0

)
. If A �

(
x 0
0 y

)
and B �

(
z 0
0 w

)
or A �

(
0 x
y 0

)
and B �

(
0 z
w 0

)
, we find

that ad
bc �

a′d′
b′c′ after the SIO operations. If A �

(
0 x
y 0

)
and

B �

(
z 0
0 w

)
or A �

(
x 0
0 y

)
and B �

(
0 z
w 0

)
, we find that

ad
bc �

b′c′
a′d′ after the SIO operations. Denote by ∇ �

ad
bc , we

conclude that states with the same number ∇ or 1
∇ are in

the same equivalent class under such a transformation.

We can show that it’s possible that there are some
classes of states in multipartite entanglement can convert
into each other, while, they cannot convert into each other
in multipartite coherence even in two-qubit case.

From the example above, we can see sLICC equivalent
class of |ψ〉 � a |00〉 + b |01〉 + c |10〉 + d |11〉 can form an
one-parameter family of states.

Corollary 9. Any state |ψ〉 � a |00〉+b |01〉+ c |10〉+d |11〉
which the number of product terms equals 4 is sLICC equivalent
to a state with form |ψ′〉 � α(|00〉 + |01〉 + |10〉) + β |11〉,
where β is any complex number with 0 < |β | < 1, and α is
the real number determined by normalization. That is, sLICC
equivalent class of |ψ〉 � a |00〉 + b |01〉 + c |10〉 + d |11〉 can
form an one-parameter family of states.

Proof. As discussed above, we find the following 4 oper-
ators (

α
bβ 0
0 1

d

)
⊗

(
dα
c 0
0 β

)
, (6)

(
α
bβ 0
0 1

c

)
⊗

(
0 cα

d
β 0

)
, (7)

(
0 α

bβ
1
b 0

)
⊗

(
bα
a 0
0 β

)
, (8)

(
0 α

cβ
1
a 0

)
⊗

(
0 aα

b
β 0

)
, (9)

can transform |ψ〉 � a |00〉 + b |01〉 + c |10〉 + d |11〉 to
|ψ′〉 � α(|00〉 + |01〉 + |10〉) + β |11〉, where 0 < |β | < 1

and α �

√
1−|β |2√

3
> 0. Thus, the state |ψ〉 � a |00〉 +

b |01〉 + c |10〉 + d |11〉 is sLICC equivalent to the state
|ψ′〉 � α(|00〉 + |01〉 + |10〉) + β |11〉 via those operators
above.

Remark In entanglement theory, the degree of entan-
glement can be measured by concurrence CE [29]. If
we write |ψ〉 � a |00〉 + b |01〉 + c |10〉 + d |11〉, then
CE(|ψ〉) � 2|ad − bc | [29]. Suppose that |ψ〉 and |φ〉
are sLOCC equivalent, then there exist local invertible
operators A and B, such that |φ〉 � A ⊗ B |ψ〉 [22]. Con-
sequently, CE(|φ〉) � det(A)det(B)CE(|ψ〉). There are
only two sLOCC equivalent classes: CE(|ψ〉) � 0 and
CE(|ψ〉) , 0. Equivalently, the classification depends on
either ad � bc or ad , bc. The classification of sLICC
is different from the classification of sLOCC in entan-
glement theory. As shown in the two-qubit case, sLICC
classification depends both on the number of product
terms and the number ∇ �

ad
bc . Because sLICC equivalent

class of |ψ〉 � a |00〉 + b |01〉 + c |10〉 + d |11〉 can form an
one-parameter family of states, we can further simplify ∇
as ∇ �

β
α �

3β√
1−|β |2

.

4. NEW OPERATIONAL COHERENCE MONOTONES:
ACCESSIBLE COHERENCE AND SOURCE COHERENCE

In this section, we will recall the framework for quanti-
fying the resource of coherence theory and then introduce
two new operational coherence monotones: accessible
coherence and source coherence. Our idea comes from
Schwaiger et al. [24] and Sauerwein et al. [30], in which
the authors studied similar entanglement measures: ac-
cessible entanglement and source entanglement.
Baumgratz et al. [1] proposed a seminal framework

for quantifying coherence as a resource. For a fixed basis
{|i〉}, a functional C can be taken as a coherence measure
if it satisfies the following four conditions:
(B1) C(ρ) ≥ 0 for all quantum states, and C(ρ) � 0 if

ρ ∈ I, where I is the set of incoherence states which are
diagonal in basis {|i〉};
(B2) C(ρ) ≥ C(Φ(ρ)) for all free operations Φ;
(B3) C(ρ) ≥ ∑

n pnC(ρn), where pn � Tr(KnρK†n), ρn �
1

pn
KnρK†n and Kn are the Kraus operators of an incoherent

CPTP map Φ(ρ) � ∑
n KnρK†n ;

(B4)∑i piC(ρi) ≥ C(ρ) for ρ �
∑

i piρi .
Similar to entanglement, the function C is a coherence

monotone if it satisfies condition (B1) and (B2).

4.1. Accessible coherence and Source coherence

For two given states ρ and σ in a Hilbert spaceH with
finite dimension d, we say that state ρ can reach state σ if
there exists a free operator in the set O that transforms
ρ into σ (deterministically). In this case, σ is accessible
from ρ. We denote by MOa (ρ) the set of states that can
be reached from ρ via free operations in the set O, and
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denote by MOs (ρ) the set of states that can reach ρ via free
operations in O.

Wedefine two relatedmagnitudes: the accessible volume,
VOa (ρ) � µ(MOa (ρ)), which quantifies the volume of states
that can be reached by the state ρ, and the source volume,
VOs (ρ) � µ(MOs (ρ)), which quantifies the volume of states
that can reach ρ via free operations. Here, µ could
be an arbitrary Lebesgue measure which maps the set
of density matrices to non-negative real number such
that µ(MOa (ρ)) � 0 and µ(MOs (ρ)) reaches the maximally
source volume if ρ is an incoherent state.
The operational meaning is clear: If MOa (ρ) is larger

than MOa (ρ′), then the state ρ could potentially be more
useful than ρ′ in quantum information-processing appli-
cations. On the other hand, if MOs (ρ) is too small, then
not many states is useful than the state ρ for any potential
applications, i.e, ρ is very useful than many other states
in applying for the resource of coherence. We can then
define the accessible coherence and the source coherence
as follows:

COa (ρ) �
VOa (ρ)
Vsup,O

a

, (10)

and

COs (ρ) � 1 −
VOs (ρ)
Vsup,O

s

, (11)

where Vsup,O
a (Vsup,O

s ) denotes the maximal accessible
(source) volume according to the measure µ.

We will now show that both accessible coherence and
source coherence are coherence monotones.

Theorem 10. Both accessible coherence and source coherence
satisfy the conditions (B1) and (B2), thus they are coherence
monotones.

Proof. It is evident that if a state ρ is an incoherent state,
then µ(MOa (ρ)) � 0 and µ(MOs (ρ)) reaches the maximal
source volume, i.e., COa (ρ) � COs (ρ) � 0 if ρ ∈ I. We also
have COa (ρ) ≥ 0 and COs (ρ) ≥ 0 for all quantum states.
Condition (B1) therefore holds.
Let σρ be the state that can be reached from ρ via

free operations O. By definition, MOa (σρ) ⊂ MOa (ρ),
which means that COa (ρ) ≥ COa (σρ). On the other hand,
let ρ be the state that can be reached from ρσ via free
operations O. Then, MOs (ρ) ⊂ MOs (ρσ), which means
that COs (ρσ) ≥ COs (ρ). Condition (B2) therefore holds.
For Conditions (B3) and (B4), we can construct examples
to show they do not hold and we refer the interested
readers to Appendices A for the detailed calculation.

Remark Just as the case in entanglement theory [24, 30],
we would also be interested in the transformations be-
tween specific class of coherent states (e.g., the pure
states transformation), and the specific volumes VOa (ρ)
and VOs (ρ) are only supported on these classes. For

( )
s

M r

( )
a

M r

r

O

O

FIG. 2: (color online). In this schematic figure the source
set, MOs (ρ), and the accessible set, MOa (ρ), of the state ρ
are depicted. Any state in MOs (ρ) can be transformed to
ρ via O and ρ can be transformed into any state in

MOa (ρ) via O.

example, for single-qubit states, any state can be repre-
sented as a point on (or in) the Bloch sphere. We can
choose the superficial area on the sphere as the specific
volumes VOa (ρ) and VOs (ρ) for this pure states transforma-
tion. Meanwhile, If a pure state |ψ〉 can be transformed
to ρ �

∑
i pi |ψi〉〈ψi | via free operations O, there will

be a channel ΦO �
∑

i piΦ
O
i corresponding to O, where

ΦOi (|ψ〉) � |ψi〉 for any i. It means that the more pure
states we obtained, the more generic states will be ob-
tained. Thus, in this sense, the proficiency of a pure state
to generate other pure states characterizes its accessible
coherence.

5. SOURCE COHERENCE AND ACCESSIBLE
COHERENCE FOR PURE STATES TRANSFORMS VIA

LSICC AND LICC

In the following, we will derive explicit formulas
for source coherence of pure states transforms via
O ∈ {LSICC, LICC}. We consider representatives of
LIU classes. To obtain the source coherence, we have:

Theorem 11. The source coherence of a bipartite state
|φ〉 � ∑d

i�1
√
λi |ii〉 with sorted Schmidt vector λ(φAB) �

(λ1 , λ2 , ..., λd) is given by

COs (|ψ〉) � 1 −
∑
π∈∑d

[∑d
k�1 π(k)λk − d+1

2 ]d−1

Πd−1
k�1π(k) − π(k + 1)

, (12)

where O ∈ {LSICC, LICC}.

Proof. In this section, µ is chosen as a measure on the
set of LIU equivalence classes. In the proof of Lemma 3,



7

since the IC operators Alice and Bob used are full rank.
Thus, the local IC operators are local SIO operators. Then,
we have

First, we will show the explicit formula of source coher-
ence for pure states transforms via O ∈ {LSICC, LICC}.
From Lemma 2, we can see the source set of |ψ〉 is given
by

MOs (ψ) � {|φ〉 ∈ H s.t. λ(φ) ≺ λ(ψ)}, (13)

Because any pure states in a LIU equivalence class can
be seen as the vector λ(ψ), we can associate the set given
in Eq. (13) the following set of sorted vectors in Rd :

MOs (ψ) � {λ↓ ∈ Rd s.t. λ↓ ≺ λ(ψ)}, (14)

where d denotes the Schmidt number of |ψ〉.
The set given in Eq.(14) is a convex polytope, and as

shown in [30], the source set Eq.(14) is a simple poly-
tope [31, 32]. The simple polytope of the setMOs (ψ) is the
some as the polytope of the source set of entanglement
as shown in [30], thus the volume ofMOs (ψ) is

VOs (|ψ〉) �
1
d!

√
d

(d − 1)!
∑
π∈Σd

[∑d
k�1 π(k)λk − d+1

2 ]d−1

Πd−1
k�1π(k) − π(k + 1)

,(15)

where π denotes an element of the permutation group
Σd of d elements and O ∈ {LSICC, LICC}. Note that
for the incoherent state |ψincoh〉, the vector λ(ψincoh) �
(1, 0, 0, ..., 0) can be obtained from any other states via
O ∈ {LSICC, LICC}, and therefore its source volume is
the maximum, i.e., VOs (|ψincoh〉) � supφ VOs (|φ〉). The

volume is VOs (|ψincoh〉) �
√

d
d!(d−1)! . For a maximal cor-

related state |ψ+〉, the corresponding vector λ(ψ+) �
1√
d
(1, 1, 1, ..., 1). It is straightforward to see that the vol-

ume is VOs (|ψ+〉) � 0.
Thus, the source coherence of a pure state |φ〉 with

sorted vector λ(φ) is given by

COs (|ψ〉) � 1 −
∑
π∈∑d

[∑d
k�1 π(k)λk − d+1

2 ]d−1

Πd−1
k�1π(k) − π(k + 1)

, (16)

where O ∈ {LSICC, LICC}.

For a bipartite state |φ〉 with Schmidt decomposition
|φ〉 � ∑d

i�1
√
λi |φA

i 〉 |φ
B
i 〉, if the Schmidt bases |φA

i 〉 and
|φB

i 〉 are incoherent basis, both source entanglement and
source coherence (via O ∈ {LSICC, LICC}) will have
identical volume. However, the source entanglement
and source coherence (via O ∈ {LSICC, LICC}) will have
different volumes if the Schmidt bases |φA

i 〉 and |φ
B
i 〉 are

not incoherent basises.
Note that, for a state |ψ〉 � ∑

i
√
λi |i〉 and its “max-

imally correlated" state |ψ′〉 � ∑
i
√
λi |ii〉, λ↓(∆(ψ)) �

λ↓(ψ′). This implies that both accessible coherence and
source coherence are the same for those two states.
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FIG. 3: (color online). The source set (blue), Ms(|ψ〉),
and the accessible set (red), Ma(|ψ〉), of the state |ψ〉 are
depicted. Meanwhile, the source set (cyan), Ms(|φ〉),
and the accessible set (magenta), Ma(|φ〉), of the state
|φ〉 are depicted. Here, the x-axis represents the basis
vectors |00〉, the y-axis represents the basis vectors |01〉
and the z-axis represents the basis vectors |11〉. In the
figure, |ψ〉 �

√
0.5 |00〉 +

√
0.3 |11〉 +

√
0.2 |22〉 and

|φ〉 �
√

0.5 |00〉 +
√

0.3 |01〉 +
√

0.2 |02〉. The source sets
(accessible sets) are indeed difference between these two

states.

Next, we will give two examples to derive the formula
of accessible coherence and source coherence in the case
of LICC and LSICC transformations.
Example [LICC and LSICC transformations of qitrit-
qutrit pure states]

Consider the following two pure states |ψ〉 �
√

a |00〉 +√
b |11〉 +

√
c |22〉 and |φ〉 �

√
a |00〉 +

√
b |01〉 +

√
c |02〉

with a ≥ b ≥ c ≥ 0 and c � 1 − a − b. Observe that |ψ〉
can be represented as a point in the x-y plane, where the
x-axis represents the basis |00〉 and the y-axis represents
the basis vector |01〉. Similarly, |φ〉 can be represented
as a point in the x-z plane, where, in addition, the z-axis
represents the basis vector |11〉. The accessible volume
and the source volume are

VOa (|ψ〉) � VOa (|φ〉) �
1
2 [(1 − a)2 − b2], (17)

VOs (|ψ〉) � VOs (|φ〉) �
1
2 [(a + b)2 − b2], (18)

where O ∈ {LSICC, LICC}. Thus, the accessible coher-
ence and the source coherence are

COa (|ψ〉) � COa (|φ〉) � (1 − a)2 − b2 , (19)
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FIG. 4: (color online). The source set (blue), Ms(|ψ〉),
and the accessible set (red), Ma(|ψ〉), of the state |ψ〉 are
depicted. Any state in Ms(|ψ〉) can be transformed to
|ψ〉 via LSICC and LICC and |ψ〉 can be transformed
into any state in Ma(|ψ〉) via LSICC and LICC. In the

figure, |ψ〉 �
√

0.6 |01〉 +
√

0.4 |10〉.

COs (|ψ〉) � COs (|ψ〉) � 1 − (a + b)2 + b2. (20)

Figure 3 shows the accessible set and the source set are
difference between |ψ〉 and |φ〉.
Example [LICC and LSICC transformations of two-qubit
pure states]

Let |ψ〉 �
√

a |01〉 +
√

b |10〉, where a + b � 1. We
consider the state |ψ′〉 �

√
a |00〉 +

√
b |11〉 with Schmidt

coefficients a and b. It is then straightforward to find that
the accessible volume and source volume are

VOa (|ψ〉) �
√

2(x − 1
2 ), (21)

VOs (|ψ〉) �
√

2(1 − x), (22)

where x ≥ y and x , y ∈ {a , b} and O ∈ {LICC, LSICC}.
Figure 4 shows this state transformation, thus the accessi-
ble coherence and source coherence are

COa (|ψ〉) � COs (|ψ〉) � 2(1 − x). (23)

6. SOURCE COHERENCE AND ACCESSIBLE
COHERENCE FOR PURE STATES TRANSFORMS VIA

PIO, SIO AND IC

First, we will discuss source coherence for pure states
transformation via O ∈ {SIO , IC}. The method of this
proof is similar to the proof of Theorem 11. Note that µ is

chosen as a measure on the set of IU equivalence classes.
From Lemma 2, the source set of |ψ〉 is given by

MOs (ψ) � {|φ〉 ∈ H s.t. λ(∆(φ)) ≺ λ(∆(ψ))}, (24)
Because any pure states in a IU equivalence class can

be seen as the vector λ(∆(ψ)), we can associate the set
given in Eq. (24) the following sets of sorted vectors in
Rd :

MOs (ψ) � {λ↓ ∈ Rd s.t. λ↓ ≺ λ(∆(ψ))}, (25)

where d denotes the rank of ∆(ψ); these sets are hence
supported on states of the same dimensions as ∆(ψ).
Then, the set given in Eqs. (25) is also a simple poly-

tope [30]. Thus the volume ofMOs (ψ) is

VOs (|ψ〉) �
1
d!

√
d

(d − 1)!
∑
π∈Σd

[∑d
k�1 π(k)λk − d+1

2 ]d−1

Πd−1
k�1π(k) − π(k + 1)

,(26)

where π denotes an element of the permutation group
Σd of d elements and O ∈ {SIO , IC}. Note that for
the incoherent state |ψincoh〉, the vector λ(∆(ψincoh)) �
(1, 0, 0, ..., 0) can be obtained from any other states via
O ∈ {SIO , IC}, and therefore its source volume is the
maximum, i.e., VOs (|ψincoh〉) � supφ VOs (|φ〉). The vol-

ume is VOs (|ψincoh〉) �
√

d
d!(d−1)! . For a maximally coher-

ent state |ψ+〉, the corresponding vector λ(∆(ψ+)) �
1√
d
(1, 1, 1, ..., 1). It is straightforward to see that the vol-

ume is VOs (|ψ+〉) � 0.
Thus, we have following result for a pure state with

sorted vector λ(∆(φ)) ∈ Cd :

Theorem 12. The source coherence of a pure state |φ〉 with
sorted vector λ(∆(φ)) is given by

COs (|ψ〉) � 1 −
∑
π∈∑d

[∑d
k�1 π(k)λk − d+1

2 ]d−1

Πd−1
k�1π(k) − π(k + 1)

, (27)

where O ∈ {SIO , IC}.

Next, we will explicitly calculate the accessible co-
herence and the source coherence for low-dimensional
states.
For a single-qubit state, we calculate the coherence

monotones by choosing different free operations, i.e.,
PIO, SIO and IC.
Example [Single-qubit state transformation via SIO and
IC]

If the set measure µ denotes the volume of these trans-
form range above, for O ∈ {SIO , IC}, we find that COa (ρ)
and COs (ρ) in the qubit case is:

VOa (ρ) � 2

√
r2

x + r2
y

1 − r2
z

arcsin
√

1 − r2
z + 2|rz |

√
r2

x + r2
y ,(28)

and
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FIG. 5: (color online). As shown in the figure, the source
set (blue corlor), Ms(ρ), and the accessible set (red

corlor), Ma(ρ), of the state ρ are depicted. Any state in
Ms(ρ) can be transformed to ρ via IC and SIO and ρ can
be transformed into any state in Ma(ρ) via IC and SIO. In

the figure, the single-qubit ρ has the Bloch vector
( 12 , 0,

√
2

2 ).

VOs (ρ) �
2 arcsin

√
1 − r2

x − r2
y − 2

√
1 − r2

x − r2
y

√
1 − r2

z − 2
√

r2
x+r2

y

1−r2
z

arcsin |rz | + 2|rz |
√

r2
x + r2

y r2
x + r2

y + r2
z , 1,

2 arcsin |rz | − 2|rz |
√

1 − r2
z r2

x + r2
y + r2

z � 1.
(29)

Note that
√

r2
x + r2

y is the l1-norm coherence of ρ. The supremumofVOa (ρ) is in the case z0 � 0, thusVsup,O
a (ρ) �

π. Combine Vsup
a with Va , we have

COa (ρ) �
2
π
(

√
r2

x + r2
y

1 − r2
z

arcsin
√

1 − r2
z + |rz |

√
r2

x + r2
y). (30)

If ρ is pure state, we have

COa (ρ) �
2
π
(arcsin

√
1 − r2

z + |rz |
√

1 − r2
z ). (31)

We also have Vsup
s � π, and note that 1 − arcsin |rz | �

arcsin
√

1 − r2
z , thus

COs (ρ) �
1 − 2

π (arcsin
√

1 − r2
x − r2

y −
√

1 − r2
x − r2

y

√
1 − r2

z −
√

r2
x+r2

y

1−r2
z

arcsin |rz | + |rz |
√

r2
x + r2

y) r2
x + r2

y + r2
z , 1,

2
π (arcsin

√
1 − r2

z + |rz |
√

1 − r2
z ) r2

x + r2
y + r2

z � 1.
(32)

For SIO and IC, accessible coherence and source coher-
ence are consistent in the pure state case.

Example [Single-qubit state transformation via PIO]

As shown in [2], a single-qubit ρ �
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FIG. 6: (color online). As shown in the figure, the source
set (blue corlor), Ms(ρ), and the accessible set (red

corlor), Ma(ρ), of the state ρ are depicted. Any state in
Ms(ρ) can be transformed to ρ via PIO and ρ can be
transformed into any state in Ma(ρ) via PIO. In the

figure, the single-qubit ρ has the Bloch vector ( 12 , 0, 3
4 ).

1
2

(
1 + rz rx + iry

rx − iry 1 − rz

)
coverted into σ �

1
2

(
1 + sz sx + isy

sx − isy 1 − sz

)
via PIO should satisfy the

following equalities:

s2
x + s2

y ≤ r2
x + r2

y , (33)

s2
x + s2

y

r2
x + r2

y
≤ (sz − 1)2
(1 − rz)2

, (34)

and

s2
x + s2

y

r2
x + r2

y
≤ (sz + 1)2
(1 − rz)2

. (35)

Since µ is chosen as measure on the IU equivalence
class, we can consider the transform range on the x − z

plane, which is a convex hexagon with six vertexes:
(±z ,±

√
r2

x + r2
y), and (±1, 0) (More precisely, the IU equiv-

alence classes of states are considered on the first quad-
rant, but we consider the x − z plane here, since the
symmetry does not affect the ratio VO(ρ)

Vsup ).
The volume of accessible set VPIO

a (ρ) is the square of
these six vertexes:

VPIO
a (ρ) � 2|rz |

√
r2

x + r2
y + 2

√
r2

x + r2
y . (36)

Since 2|rz |
√

r2
x + r2

y + 2
√

r2
x + r2

y ≤ r2
x + r2

y + r2
z +

2
√

r2
x + r2

y , the maximal accessible volume can be reached

with r2
x + r2

y � r2
z �

1
2 and Vsup,PIO

a (ρ) � 1+
√

2. Thus, we
have:

CPIO
a (ρ) �

2|rz |
√

r2
x + r2

y + 2
√

r2
x + r2

y

1 +
√

2
. (37)

On the other hand, a single-qubit ρ �

1
2

(
1 + rz rx + iry

rx − iry 1 − rz

)
can be transformed from

σ �
1
2

(
1 + sz sx + isy

sx − isy 1 − sz

)
via PIO should satisfy

following equalities:

s2
x + s2

y ≥ r2
x + r2

y , (38)

s2
x + s2

y

r2
x + r2

y
≥ (sz − 1)2
(1 − rz)2

, (39)

s2
x + s2

y

r2
x + r2

y
≥ (sz + 1)2
(1 − rz)2

, (40)

and

s2
x + s2

y + s2
z ≤ 1. (41)

The volume of source set VPIO
a (ρ) is:

VPIO
s (ρ) �


2Q1 + 2[sin 2 arcsin t − sin 2 arcsin

√
r2

x + r2
y] − S1

√
r2

x + r2
y + r2

z ≥ 1,

2Q2 − 2
√

r2
x + r2

y

√
1 − (r2

x + r2
y) − S2

√
r2

x + r2
y + r2

z ≤ 1, r2
x + r2

y , 0,
π r2

x + r2
y � 0,

(42)

where Q1 � arcsin t − arcsin
√

r2
x + r2

y , Q2 �
π
2 − arcsin

√
r2

x + r2
y , t �

2
√

r2
x+r2

y (1−|rz |)
(r2

x+r2
y )+(1−|rz |)2

, S1 � 2(|rz | +
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(r2
x+r2

y )−(|rz |−1)2

(r2
x+r2

y )+(|rz |−1)2 )(
2
√

r2
x+r2

y (1−|rz |)
(r2

x+r2
y )+(1−|rz |)2

−
√

r2
x + r2

y) and S2 �
2 |rz |

1−|rz |

√
r2

x + r2
y .

Obviously, when r2
x + r2

y � 0, VPIO
s (ρ) � Vsup,PIO

s � π.
Thus we have:

CPIO
s (ρ) �


2
πQ1 +

2
π [sin (2 arcsin t) − sin (2 arcsin

√
r2

x + r2
y)] − 1

πS1

√
r2

x + r2
y + r2

z ≥ 1,
2
π [π2 − arcsin

√
r2

x + r2
y] − 2

π

√
r2

x + r2
y

√
1 − (r2

x + r2
y) − 1

πS2

√
r2

x + r2
y + r2

z ≤ 1, r2
x + r2

y , 0,
1 r2

x + r2
y � 0,

(43)
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FIG. 7: (color online). As shown in the figure, the source
set (blue), Ms(|ψ〉), and the accessible set (red), Ma(|ψ〉),
of the state ρ are depicted. Any state in Ms(|ψ〉) can be

transformed to |ψ〉 via SIO and IC and |ψ〉 can be
transformed into any state in Ma(|ψ〉) via SIO and IC. In

the figure, |ψ〉 �
√

0.5 |00〉 +
√

0.3 |01〉 +
√

0.2 |10〉.

where Q1 � arcsin t − arcsin
√

r2
x + r2

y .
Example [two-qubit pure state transformation via SIO
and IC]
Consider a two-qubit pure state |ψ〉 �

√
x0 |00〉 +√

x1 |01〉 + √x2 |10〉 with x0 + x1 + x2 � 1. As shown
in Figure 7, since every qutrit pure state can be repre-
sented as a point in the x− y plane, the accessible volume
and source volume are

VOa (|ψ〉) �
1
2 [(1 − x)2 − y2], (44)

VOs (|ψ〉) �
1
2 [(x + y)2 − y2], (45)

where x ≥ y ≥ z, x , y , z ∈ {x0 , x1 , x2} and O ∈
{SIO , IC}.
The accessible coherence and source coherence are

COa (|ψ〉) � (1 − x)2 − y2 , (46)

COs (|ψ〉) � 1 − (x + y)2 + y2. (47)

7. CONCLUSION

In this paper, we have generalized important results in
multipartite entanglement theory to their counterparts
in quantum coherence theory. First, we gave a necessary
and sufficient condition for when two pure multipartite
states are equivalent under LICC, i.e., two states can
be deterministically transformed to each other under
LICC operations. Next, we investigated and gave the
conditions in which such a transformation succeeds only
stochastically. Different from entanglement case for two-
qubit states, we find that the sLICC equivalence classes
are infinite. Thus, it’s possible that there are some classes
of states in multipartite entanglement can convert into
each other, while, they cannot convert into each other in
multipartite coherence. These results above may help
us understand the structure of multipartite coherence
states and also help us to know how to use coherence as
a resource in the multipartite coherence systems.
The other contribution of our paper is: in order to

show the difference among sLICC classes, we introduced
accessible coherence and source coherence as two co-
herence monotones. These coherence monotones have
straightforward operational interpretations and can be
applied in many scenarios (such as PIO, IC, LICC, LS-
ICC). We also analyzed pure (or mixed) states via IC
and derived explicit formulas for the source coherence.
We also showed how the accessible coherence can be
computed numerically and gave examples. Moreover, we
would like to connect these monotones with applications.
An interesting option is to study the role of these mono-
tones as figures of merit for known quantum information
protocols. This could then lead to the identification of
the most relevant multipartite states and maybe allow
us to devise new applications of multipartite coherence.
Finally, we hope these operational monotones will assist
with understanding general quantum resource theories.
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Appendix A: COa (ρ) and COs (ρ) are coherence monotones
that do not satisfy condition (B3) and (B4)

In this section, we will first discuss the accessible
coherence COa (ρ). For condition (B1), we can see that if
ρ ∈ I, then COa (ρ) � 0. For condition (B2), it is easy to see
that MOa (Φ(ρ)) ⊂ MOa (ρ) for any incoherent operations
Φ, thus COa (ρ) ≥ COa (Φ(ρ)).
Now, we will show that COa (ρ) that do not satisfy

condition (B4). A single-qubit state ρ can be represented

as ρ �
1
2

(
1 + z te−iθ

te iθ 1 − z

)
, where −1 ≤ z ≤ 1, 0 ≤ t ≤

1, and 0 ≤ θ ≤ π. Since accessible coherence COa (ρ)
satisfies condition (B2), without loss of generality, we can

always consider the state as ρ �
1
2

(
1 + z t

t 1 − z

)
, where

t2 + z2 ≤ 1. We can see ρ � λ1 |λ1〉 〈λ1 | + λ2 |λ2〉 〈λ2 |,
where λ1 �

1+
√

t2+z2

2 , λ2 �
1−
√

t2+z2

2 and

|λ1〉 �
t
2

z +
√

t2 + z2

t2 + z2 + z
√

t2 + z2
|0〉+ t

2
t

t2 + z2 + z
√

t2 + z2
|1〉 ,

|λ2〉 �
t
2

z −
√

t2 + z2

t2 + z2 − z
√

t2 + z2
|0〉+ t

2
t

t2 + z2 − z
√

t2 + z2
|1〉 .

Let t � z � 0.1, we can find COa (ρ) − λ1COa (|λ1〉) −
λ2COa (|λ2〉) � 0.0994. Thus, COa is not convex.
For condition (B3), consider a general amplitude damp-

ing channel [25]withE0 �
√

p

(
1 0
0

√
1 − γ

)
,E1 �

√
p

(
0 √γ
0 0

)
,

http://dx.doi.org/10.1103/PhysRevLett.94.173602
http://dx.doi.org/10.1103/PhysRevLett.94.173602
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E2 �
√

1 − p

(√
1 − γ 0
0 1

)
and E3 �

√
1 − p

(
0 0
√
γ 0

)
. Let

p � 0.99 and γ � t � z � 0.5, we can find COa (ρ) −∑
n COa (ρn) � −0.1912, thus condition (B3) does not hold.
We will now show that COs (ρ) does not satisfy con-

dition (B4). Let t � z � 0.1, we can find COs (ρ) −
λ1COs (|λ1〉) − λ2COs (|λ2〉) � 0.6930. Thus, COs is not
convex. For condition (B3), consider a general ampli-

tude damping channel [25] with E0 �
√

p

(
1 0
0

√
1 − γ

)
,

E1 �
√

p

(
0 √γ
0 0

)
, E2 �

√
1 − p

(√
1 − γ 0
0 1

)
and E3 �

√
1 − p

(
0 0
√
γ 0

)
. Let p � 0.99 and γ � 0.8, t � z � 0.4,

we find that COs (ρ) −
∑

n COs (ρn) � −0.2123, thus the
condition (B3) does not hold.


	Inequivalent Multipartite Coherence Classes and New Coherence Monotones
	Abstract
	Introduction
	Notation and Preliminaries
	Inequivalent Classes of Multipartite Coherence States
	New operational coherence monotones: Accessible coherence and Source coherence
	Accessible coherence and Source coherence

	Source coherence and Accessible coherence for pure states transforms via LSICC and LICC
	Source coherence and Accessible coherence for pure states transforms via PIO, SIO and IC
	Conclusion
	Acknowledgments
	References
	CaO() and CsO() are coherence monotones that do not satisfy condition (B3) and (B4)


