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Among many quantum key distribution (QKD) protocols, the round-robin differential phase shift
(RRDPS) protocol is unique in that it can upper-bound the amount of the information leakage
without monitoring signal disturbance. To expedite implementation of the protocol, however, the
number of pulses forming a single block should be kept small, which significantly decreases the
key rates in the original security proof. In the present paper, we refine the security proof of the
RRDPS protocol in the finite-sized regime and achieve a tighter estimation for the information
leakage with neither monitoring signal disturbance nor changing the original experimental setups.
As a consequence, we obtain better key rates in both asymptotic and finite-sized cases while keeping
the preferable features of the protocol, such as omission of phase randomization.

I. INTRODUCTION

One of the most important implications of the quan-
tum information theory is that information-theoretically
secure communication is possible by the quantum key
distribution (QKD). After the first proposal of the BB84
protocol [1], many researches have been made in the field.
In recent years, the real world implementation of the
QKD is attracting much attention. For the real world
implementation, we need careful consideration about the
finite-sized effect of the key and the imperfections of the
experimental devices because communications in the real
world are often done in limited time and with imperfect
devices. The finite-sized key rate of the QKD protocol is
especially important when we consider the communica-
tion between the ground and the satellite [2, 3] for which
the communication time is limited and therefore only a
small number of bits can be sent at a time.

The round-robin differential phase shift (RRDPS) pro-
tocol [4] is a QKD protocol which has a special property
that the required amount of privacy amplification is de-
termined only by the protocol parameters and indepen-
dent of the bit error rates. Due to this property, the
protocol is expected to be able to generate the key even
when the number of communication rounds is small, be-
cause it does not suffer from the convoluted statistical
estimation of the information leakage. The protocol can
be implemented with a light source producing a coherent
laser pulse train at the sender, and a variable-delay in-
terferometer followed by photon detection at the receiver.
A number of experimental demonstrations have already
been made [5–8]. Especially, the apparatus for the sender
can be made very simple with only binary phase mod-
ulation, and the security can be proved without phase
randomization of the optical pulses. Fewer assumptions
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on the light source in the RRDPS protocol also lead to
the robustness against the source imperfection [9].

On the other hand, the RRDPS protocol also has a few
undesirable features. The protocol assumes a variable
delay interferometer which should be switched among L
different delays actively or passively for each pulse block.
Implementing such an interferometer is costly especially
for large L. Furthermore, the asymptotic key rate of
the RRDPS protocol even with relatively large block
size (L ∼ 128) is about one-tenth of that of the decoy
BB84 protocol [10], which is a widely used and the most
studied practical QKD protocol. The key rate gets even
worse when we decrease L to simplify the implementa-
tion. Therefore, it is desired to improve the key rate
of the RRDPS protocol especially for relatively small L.
There have been intensive researches to mitigate or to
get over these problems both in theory [11–18] and ex-
periment [7, 19].

Very recently, Yin et al. shows that by directly evaluat-
ing Eve’s collective attacks, one can improve the key rate
of the RRDPS protocol with block-wise phase random-
ization without any change in the protocol [18]. It also
implies that we can decrease L to achieve the same key
rate. Unfortunately, the analysis in [18] cannot directly
be extended to the finite-sized case, and thus its usage is
limited.

In this paper, we refine the security proof of the
RRDPS protocol with a different approach and obtain
better key rates in both asymptotic and finite-sized case
without the aid of the block-wise phase randomization.
The main idea of our analysis is to utilize the information
disregarded in the original security proof, which leads to
a tighter estimation for the amount of the information
leakage, and thus neither monitoring signal disturbance
nor changing experimental setups is required. Our anal-
ysis developed here is based on the technique used in the
security proof of the differential quadrature phase shift
protocol [20], and it may be applicable to other high di-
mensional QKD protocols including other DPS-type pro-
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tocols. The obtained key rate in the asymptotic limit
with our analysis is comparable to that in [18], but we do
not require the block-wise phase randomization, and we
can also explicitly give the key rate formula in the finite-
sized case. Furthermore, we show that the RRDPS pro-
tocol outperforms decoy BB84 protocol when the number
of communication rounds is small.

The paper is organized as follows. In Section II, we
develop the refined security proof of the RRDPS proto-
col, which is the main part of this paper. We give the
definition of the protocol and subsequently construct a
compatible virtual protocol which includes a crucial dif-
ference from the original one. We further introduce an-
other auxiliary protocol which reproduces the statistics of
the phase errors in the virtual protocol, and by analyzing
it, we derive the main theorem, which gives the required
amount of the privacy amplification. In Section III, we
numerically simulate the key rates of the RRDPS pro-
tocol with our refined analysis in both asymptotic and
finite-sized case, illustrating how we determine the pa-
rameters which appear in the key rate formula. Finally,
in Section IV, we wrap up our analysis, discuss the com-
parison between the techniques developed here and the
existing ones, and refer to some remaining problems.

II. SECURITY PROOF

In what follows, h(x) := −x log x − (1 − x) log(1 − x)
denotes binary entropy function, H(X|Y )P denotes the
conditional entropy with the joint probability distribu-
tion P , and D(P‖Q) denotes the Kullback-Leibler di-
vergence. EX∼P [f(X)] denotes the expectation value
of f(X) when the random variable X obeys the prob-
ability distribution P . ‖ρ − σ‖1 = Tr|ρ − σ| is the
trace norm distance and F (ρ, σ) = ‖√ρ

√
σ‖21 is the fi-

delity between the density matrices ρ and σ. We call
{|0〉 , |1〉} as the bit basis of the qubit, and {|0X〉 =

(|0〉+ |1〉)/
√

2, |1X〉 = (|0〉− |1〉)/
√

2} as the phase basis.
The controlled-NOT (CNOT) operation between control
qubit 1 and target qubit 2 is defined as |0〉 〈0|1 ⊗ I2 +
|1〉 〈1|1 ⊗X2 = I1 ⊗ |0X〉 〈0X |2 + Z1 ⊗ |1X〉 〈1X |2, where
I denotes the identity operator, X = |0〉 〈1|+ |1〉 〈0|, and
Z = |0X〉 〈1X | + |1X〉 〈0X |. IN denotes N × N identity
matrix, and ⊕ denotes the summation modulo 2. The
base of the logarithm is taken to be 2.

A. The definition of the protocol

We first give the actual procedure of the RRDPS
protocol [4] and the assumptions for the analysis in this
paper.

Setups and assumptions: The sender Alice has a 0/π
phase modulator and an i.i.d. source of weak coherent
optical pulses. The quantum state of each optical pulse

FIG. 1. Schematics of the RRDPS protocol

is represented by a density operator σ, which has no cor-
relation with any other system. The probability that the
source emits odd numbers of photons is upper-bounded
by a known parameter psrc (e.g. psrc = 1 − 〈0|σ |0〉).
Bob has a variable delay interferometer whose delay can
be switched according to randomly generated numbers.
The photon detector can distinguish zero, one, and two
or more photons. The inefficiency and the dark counting
of the photon detectors can be included in the channel
loss. They share a public channel for announcement as
well as a quantum channel. The eavesdropper Eve can
perform arbitrary attacks allowed in the law of quantum
mechanics on the quantum channel and listen to all the
announcements of Alice and Bob made over the public
channel.

Protocol 1 (actual protocol):
Before the commencement of the protocol, Alice and

Bob agree on constants L and Nem as well as a func-
tion Nfin(N) and probabilities p′(C|N,Nfin) over full-
rank N ×Nfin binary matrices C.

(i) Alice and Bob repeat the following procedures for
Nem rounds.

• Alice generates a sequence of random bits
s(1), ..., s(L), and encode them to L optical
pulses by modulating the optical phase of the

l-th pulse with eπis(l) (l = 1, ..., L). She sends
Bob the L optical pulses through the quantum
channel.

• Bob randomly selects the delay r ∈ {1, ..., L−
1} and feeds the received L pulses to the de-
layed interferometer as shown in Figure 1. He
detects photons with the two detectors at time
bins 1 through L+ r.

– If Bob detects only one photon from the
(r + 1)-th to the L-th time bin, and ob-
serves no detection at the other bins, he
records a sifted key bit zB ∈ {0, 1} accord-
ing to which photon detector has reported
the detection. He also records the un-
ordered pair (i, j), which are the positions
of the pulse pair arriving at the detected
time bin (i, j ∈ {1, ..., L}, |i− j| = r). He
announces “success”, and Alice records
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her random bit sequence (s(1), ..., s(L)).
[Success round]

– If the above condition is not satisfied,
Bob announces “failure” and Alice dis-
cards her random bits. [Failure round]

(ii) Let N be the number of the success rounds. By
proper indexing, Alice’s records are represented

by (s
(1)
1 , ..., s

(L)
1 ), ..., (s

(1)
N , ..., s

(L)
N ), and Bob’s sifted

key by zB = (zB1 · · · zBN ) and his unordered pairs
by (i1, j1), ..., (iN , jN ).

(iii) Bob announces the sequence of the unordered pairs
(i1, j1), ..., (iN , jN ).

(iv) Alice defines her sifted key zA = (zA1 · · · zAN ) by

zAk := s
(ik)
k ⊕ s(jk)

k for k = 1, ..., N .

(v) (Bit error correction) Alice chooses and announces
a bit error correcting code. She calculates the NEC-
bit syndrome for zA and encrypts it by consuming
NEC bits of the pre-shared secret key before she
sends it to Bob. With the syndrome, Bob performs
bit error correction on his sifted key zB and obtains
the reconciled key zrec

B of N bits.

(vi) (Privacy amplification) Let Nfin := Nfin(N). Alice
draws a full-rank N ×Nfin binary matrix CPA with
the probability p′(CPA|N,Nfin) and announces it.
Alice and Bob computes the final keys as zfin

A =
zACPA and zfin

B = zrec
B CPA, respectively.

For simplicity, we omitted the bit error sampling
rounds in the above protocol. In order to estimate an
upper-bound on the bit error rate ebit, Alice randomly in-
serts Nsmp sampling rounds among Nem rounds, and ac-
cording to ebit, she decides whether she aborts the proto-
col or not. Here we assume that Nsmp is negligibly small
compared to Nem. The required amount of the error
syndrome Alice sends to Bob in the bit error correction,
NEC , depends on the error correction method; here we
assume NEC = NfECh(ebit), where fEC is an error cor-
rection efficiency to satisfy the required correctness. The
net key gain per pulse of the protocol is therefore given by
(Nfin −NEC)/(NemL) = (Nfin −NfECh(ebit))/(NemL).

We evaluate the secrecy of Protocol 1 by the εsec-
secrecy condition for Alice’s final key defined as

1

2

∑
Nfin≥1

Pr(Nfin)
∥∥ρfin

AE|Nfin
− ρideal

AE|Nfin

∥∥
1
≤ εsec. (1)

Here Pr(Nfin) is the probability of obtaining Nfin, where
aborting the protocol is interpreted as Nfin = 0. The
density operator ρfin

AE|Nfin
represents the state of Alice’s

final key and Eve’s quantum system, which takes the
form of

ρfin
AE|Nfin

=
∑

zfin
A ∈{0,1}

Nfin

Pr(zfin
A ) |zfin

A 〉 〈zfin
A |A⊗ρE|Nfin

(zfin
A ).

(2)

FIG. 2. Virtual protocol of the RRDPS. In contrast to the
original security proof, here we assume that Alice measures
all but j-th of the L qubits in the phase basis.

The ideal state ρideal
AE|Nfin

is defined as

ρideal
AE|Nfin

:=

 ∑
zfin
A ∈{0,1}

Nfin

1

2Nfin
|zfin
A 〉 〈zfin

A |A


⊗ TrA

(
ρfin
AE|Nfin

)
.

(3)

B. The reduction of the protocol

We prove the secrecy condition (1) of the protocol
based on complementarity [21]. In this way of the
security proof, we introduce a virtual protocol (Protocol
2) in which Alice’s Nfin-bit final key is obtained by a
bit basis measurement on Nfin register qubits. Protocol
2 should be related to Protocol 1 such that for every
attack on Protocol 1, there exists an attack on Pro-
tocol 2 resulting in the same final state (Pr(Nfin) and
ρfin
AE|Nfin

). While the original proof [4] followed the same

technique, our construction of Protocol 2 below (see
also Figure 2) includes a modification (shown in bold
fonts) which is crucial to an improvement of the key rate.

Protocol 2 (virtual protocol):
Before the commencement of the protocol, Alice

and Bob agree on constants L and Nem as well as
functions Nfin(N), x∗(N, yN , Nfin, t), and probabilities
p(C|N,Nfin) over full-rank N ×N binary matrices C.

(i) Alice and Bob repeat the following procedures for
Nem rounds.

• Alice prepares an L-qubit register
A(1), ..., A(L), a reference R := R(1), ..., R(L),
and L optical pulses (system 1, ..., L) in the
following state:

2−L/2
L⊗
l=1

∑
s(l)=0,1

|s(l)〉A(l) eπis(l)n̂l |Ψσ〉lR(l) , (4)

where TrR

(⊗L
l=1 |Ψσ〉 〈Ψσ|lR(l)

)
= σ⊗· · ·⊗σ,

and n̂l is the photon number operator for the
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l-th pulse. She sends Bob the L optical pulses
through the quantum channel.

• Bob measures the photon number of each of
the received pulses. He also generates a uni-
formly random binary number q.

– If Bob detects only one photon in the
block and the generated random number
q is 0, he announces “success” and Alice
keeps her register qubits (A(1), ..., A(L)).
Let i be the position of the pulse with
the detection. Bob randomly selects j ∈
{1, ..., L}\{i} and records the ordered pair
(i→ j). [Success round]

– If the above condition is not satisfied,
Bob announces “failure” and Alice dis-
cards her qubits. [Failure round]

(ii) Let N be the number of the success rounds. By
proper indexing, Alice’s qubit registers are rep-

resented by (A
(1)
1 , ..., A

(L)
1 ), ..., (A

(1)
N , ..., A

(L)
N ) and

Bob’s records of ordered pairs are represented by
(i1 → j1), ..., (iN → jN ).

(iii) Bob announces the sequence of unordered pairs
(i1, j1), ..., (iN , jN ). He additionally announces the
ordered pairs (i1 → j1), ..., (iN → jN ).

(iv) According to the ordered pairs (ik → jk) (k ∈
{1, ..., N}), Alice applies a CNOT operation be-

tween qubits A
(ik)
k and A

(jk)
k with A

(ik)
k being con-

trol and A
(jk)
k being target. She stores qubit A

(jk)
k

as the kth sifted key qubit, which she renames

as Ak. She then measures qubit A
(ik)
k in

the phase basis to obtain a binary outcome
bk. She also performs phase-basis measure-

ment on each of the L − 2 qubits A
(l)
k (l ∈

{1, ..., L} \ {ik, jk}) to count the number ak ∈
{0, ..., L−2} of the qubits with outcome 1. Al-
ice records yk = (ak, bk). At the end, she has N
sifted key qubits A′ := A1, ..., AN , and the sequence
yN := y1, ..., yN .

(v) Alice chooses and announces a bit error correcting
code.

(vi) Let Nfin := Nfin(N). Alice draws a full-
rank N × N binary matrix C with the prob-
ability p(C|N,Nfin) and announces N × Nfin

matrix CPA := C (INfin
O)

T
. She acts

a unitary U(C) =
∑
z∈{0,1}N |zC〉 〈z|A′ =∑

x∈{0,1}N |x(C−1)TX〉 〈xX |A′ on her sifted key

qubits, and performs phase basis measurement on
the subsystem ANfin+1, ..., AN to obtain (N−Nfin)-
bit sequence t. Using yN and t, Alice com-
putes x∗ := x∗(N, yN , Nfin, t) and acts a unitary

U ′(x∗) =
∑
x′∈{0,1}Nfin |(x′ ⊕ x∗H̃T )X〉 〈x′X |A on

the remaining Nfin qubits A := A1, ..., ANfin
(fi-

nal key qubits), where H̃ is the Nfin × N matrix
(INfin

O)C−1.

(vii) She performs bit basis measurement on the final
key qubits A and obtains the final key zfin

A .

We choose the parameters in Protocol 2 according to
those of Protocol 1 as follows. The constants L and Nem

and the function Nfin(N) are the same as those of Pro-
tocol 1. The probability p(C|N,Nfin) is chosen to satisfy∑
C:C(INfin

O)T =CPA

p(C|N,Nfin) = p′(CPA|N,Nfin). (5)

If Alice performed bit basis measurement on her reg-
ister qubits of (4), she obtains the random bit sequence
s(1), ..., s(L) with the same probability and the L optical
pulses in the same state as those in Protocol 1. In ad-
dition, all the quantum operations of Alice in Protocol
2, which are composed of permutations of the bit basis,
are equivalent to the classical information processing in
Protocol 1. (Note that U ′(x∗) dose not change the bit
basis of the qubits.) Furthermore, as shown in the origi-
nal paper [4], Bob announces unordered pairs (ik, jk) in
Protocol 2 with the same probability as in Protocol 1.
Therefore, for every attack of Eve in Protocol 1, we can
define a corresponding attack in Protocol 2 by letting
Eve ignore the ordered pairs (ik → jk). Then, by setting
the parameters as mentioned above and with the attack
by Eve as defined above, we can conclude that the final
state of Alice and Eve at the end of (vii) in Protocol 2 is
equal to ρfin

AE|Nfin
in Protocol 1.

On the other hand, let ρvirt
AE|Nfin

be the quantum state

on the Alice’s final key qubits A and Eve’s system E at
the end of (vi) in Protocol 2. If ρvirt

AE|Nfin
satisfies∑

Nfin≥1

Pr(Nfin)
(

1− F
(
ρvirt
A|Nfin

, |0X〉 〈0X |A
))
≤ η′, (6)

where |0X〉 := |0X〉⊗Nfin and ρvirt
A|Nfin

:= TrE(ρvirt
AE|Nfin

),

and Eve performs the attack as defined above, the left-
hand side of (1) is proved to satisfy

1

2

∑
Nfin≥1

Pr(Nfin)
∥∥ρfin

AE|Nfin
− ρideal

AE|Nfin

∥∥
1
≤
√

1− (1− η′)2

≤
√

2η′,
(7)

and thus Protocol 1 is
√

2η′-secret [21, 22].
The fidelity in the left-hand side of (6) is equal to

the probability that Alice obtains Nfin-bit sequence 0 :=
(0 · · · 0) when she measures ρvirt

AE|Nfin
in the phase basis.

We therefore consider the alternative procedure (vii)’ af-
ter (vi) in Protocol 2 as follows:

(vii)’ She performs phase basis measurement on the final
key qubits A and obtains the final-phase key xfin

A .
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Using xfin
A , the fidelity in (6) is given by

F
(
ρvirt
A|Nfin

, |0X〉 〈0X |A
)

= Pr(xfin
A = 0|Nfin). (8)

In order to evaluate the right-hand side, we introduce a
third protocol which faithfully simulates the statistics of
xfin
A as follows.

Protocol 3 (estimation protocol):

(i) Alice and Bob follow the step (i) of Protocol 2
except that Alice measures the L qubits in the
phase basis immediately after its preparation, and
obtains a bit sequence s(1), ..., s(L). She records

m =
∑L
l=1 s

(l) (∈ {0, ..., L}) for every round.
In the success rounds, Alice records the sequence

(s
(1)
k , ..., s

(L)
k ). Let vM be the number of rounds

with m = M , where
∑
M vM = Nem.

(ii) By proper indexing, Alice has the bit sequences

(s
(1)
1 , ..., s

(L)
1 ), ..., (s

(1)
N , ..., s

(L)
N ). Bob has the se-

quence of ordered pairs, (i1 → j1), ..., (iN → jN ).

(iii) Bob announces the sequence of unordered pairs
(i1, j1), ..., (iN , jN ). He additionally announces the
ordered pairs (i1 → j1), ..., (iN → jN ).

(iv) With the ordered pairs (ik → jk) (k ∈ {1, ..., N}),
Alice computes the following variables for k ∈
{1, ..., N}.

xk := s
(jk)
k (9)

mk :=
∑

l∈{1,...,L}

s
(l)
k (10)

uk := s
(ik)
k (11)

ak :=
∑

l∈{1,...,L}\{ik,jk}

s
(l)
k = mk − uk − xk (12)

bk := s
(ik)
k ⊕ s

(jk)
k = uk ⊕ xk (13)

yk := (ak, bk) (14)

At the end, she has a sifted-phase key xA :=
(x1 · · ·xN )(= xN ) and the sequence yN :=
y1, ..., yN as well as the sequences mN :=
m1, ...,mN and uN := u1, ..., uN .

(vi) She draws a full-rank N × N binary matrix C
with probability p(C|N,Nfin). She computes H :=

(O IN−Nfin
)C−1, H̃ := (INfin

O)C−1, and t :=
xAH

T . Using yN and t, she computes x∗ :=
x∗(N, yN , Nfin, t) and obtains the final-phase key

xfin
A = (xA ⊕ x∗)H̃T .

Since all the quantum operations of Alice in Protocol 2
are composed of permutations of the phase basis states,
Alice’s procedures of determining xfin

A in Protocol 2 with
(vii)’ and those in Protocol 3 are equivalent. (We used
the property of CNOT operation to derive (9) and (13).)

It is clear in Protocol 3 that the following inequality al-
ways holds:

Pr(Nfin ≥ 1,xfin
A 6= 0) ≤ Pr(Nfin ≥ 1,xA 6= x∗). (15)

With (8), the left-hand side of the above inequality is
identified as the left-hand side of (6). Therefore, if we
can ensure

Pr(Nfin ≥ 1,xA 6= x∗) ≤ η′, (16)

the condition (6) is satisfied. The parameter η′ in (16)
can be regarded as an upper-bound on the probability
that Alice misidentifies the sequence xA (phase error pat-
terns) and computes the wrong sequence x∗ when given
the sequence yN and the syndrome t.

The bound η′ can be further related to the number
of candidates of xA, given N and yN . Suppose that a
family of sets T (N, yN ) satisfies

Pr(N ≥ 1,xA /∈ T (N, yN )) ≤ η. (17)

Suppose further that a function HPA(N) which depends
only on N satisfies,

NHPA(N) ≥ log
∣∣T (N, yN )

∣∣ for all yN , (18)

where
∣∣T (N, yN )

∣∣ is the cardinality of T (N, yN ). We

assume that the selection of HT with probability
p(C|N,Nfin) in Protocol 3 is equivalent to universal2
hashing, i.e.

∀x1,x2 ∈ {0, 1}N

Pr(x1H
T = x2H

T |N,Nfin) ≤ 2−(N−Nfin),
(19)

which amounts to require p′(C|N,Nfin) in Protocol 1 to
be dual universal2 hashing [23]. Then, by setting

Nfin(N) = max{N(1−HPA(N)− s/N), 0}, (20)

we obtain, from the union bound,

Pr(Nfin ≥ 1,xA 6= x∗) ≤ η + 2−s, (21)

because learning t = xAH
T eliminates all the wrong can-

didates in T (N, yN ) except probability no more than 2−s.
Then, from (6), (7), (21), and by identifying η′ = η+2−s,

Protocol 1 is
√

2(η + 2−s)-secret.
The conclusion of this subsection is as follows. If we

can define a family of sets T (N, yN ) which satisfies

Pr(N ≥ 1,xA /∈ T (N, yN )) ≤ η (22)

in Protocol 3 and

∀yN , log
∣∣T (N, yN )

∣∣ ≤ NHPA(N), (23)

for a function HPA(N) which depends only on N , then
by setting

Nfin(N) = max{N(1−HPA(N)− s/N), 0}, (24)

Protocol 1 can be made
√

2(η + 2−s)-secret.
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FIG. 3. The illustration of how additional information y =
(a, b) works when L = 7. The white circle denotes s(l) = 0

and the black circle denotes s(l) = 1. The pairs {(i), (ii)},
{(iii), (v)}, and {(iv), (vi)} correspond to the cases in which
Eve’s attacks are the same but different positions are chosen
for j due to the random selection by Bob.

C. The origin of the improvement

Here we give a crude explanation of why we expect
an improvement of the key rate from the introduction of
additional information yk = (ak, bk) collected by Alice
in Protocol 2. In the asymptotic limit, the ratio Nfin/N
is given by Nfin/N = 1 − HPA, where HPA is the frac-
tion for the shortening in privacy amplification, repre-
senting an upper-bound on the amount of leaked infor-
mation. In the original security proof, for the implemen-
tation without phase randomization, it is simply given by
HPA = maxh(eph), where eph is the average phase error
probability of a sifted key qubit. In this framework, the
best strategy by Eve is to make eph as high as possible. It
is simply achieved by her measuring all the photon num-
ber parities s(1), ..., s(L), followed by choosing the index i
such that s(i) = 0, as illustrated in Figure 3, (i) and (ii).
Since the index j is chosen randomly, phase error occurs
(like (i)) with probability m/(L−1) for a round, resulting
in eph = (

∑
kmk/(L− 1))/N . Hence, Eve will only have

to choose N rounds with higher values of m =
∑
l s

(l).

The introduction of yk = (ak, bk) drastically changes
Eve’s strategy. In this case, the asymptotic fraction
will be given by a conditional entropy as HPA =
max

∑
y p(y)h(eph(y)), where eph(y) is the phase error

probability conditioned on y = (a, b). As seen in Figure
3, case (i) and case (ii) have distinct values of y, and thus
no longer contributes to HPA. In order to increase the
conditional entropy, Eve must mix the case with the same
values of y, such as cases (iii) and (iv). Due to the ran-
domness of index j, these inevitably lead to occurrence of
other cases like (v) and (vi), and this continues. Notice
that these cases involve different values of m =

∑
l s

(l).
Hence simply choosing higher values ofm no longer works
for Eve, and she must find an appropriate balance over
the values of m to make the conditional entropy higher.

We emphasize here that the above constraint for Eve
is quite natural once we notice that her true objective is
not to increase the phase error probability but to learn
the optical phase difference s(i)⊕s(j) between the pair of
pulses. The value of s(i) ⊕ s(j) is encoded on the relative
phase of superposition states of (i) and (iii), and on that
of (ii) and (iv), for example. In this sense, the introduc-
tion of yk = (ak, bk) can be interpreted as providing more
precise evaluation of Eve’s ability to learn Alice’s sifted
key bits. The reduction to Protocol 3 in the previous
subsection is essentially regarded as reducing the evalua-
tion to a problem on classical random variables possessed
by Alice alone. It is nonetheless convoluted and involves
many variables and constraints, but it will be efficiently
solved by introducing Lagrange multipliers in the next
subsection.

D. The estimation of the number of phase error
patterns

In this subsection, we give an explicit construction
of T (N, yN ), a family of the set of likely phase error
patterns. The construction has free parameters ν and
ξ served as Lagrange multipliers, which will be defined
later. While any proper choice of the parameters makes
Protocol 1 secure, the key length will depend on the
choice.

In what follows, we adopt the following notations. For
a finite set W, we define PW as the set of all the proba-
bility mass functions on W. When a set Γ is associated
with W uniquely by a function fΓ : W → Γ, we denote
the distribution on Γ induced from P ∈ PW by PΓ, which
satisfies

PΓ(g) =
∑

w∈W:fΓ(w)=g

P (w) (25)

for g ∈ Γ. For a finite set Ω, the type P̃ωn ∈ PΩ for
ωn = (ω1, ..., ωn) ∈ Ωn is defined by

P̃ωn(ω) =
1

n

∣∣{i ∈ {1, ..., n} : ωi = ω}
∣∣ (26)

for ω ∈ Ω.
Let M = {0, ..., L}, U = X = {0, 1} and Y =
{(a, b)|a ∈ {0, ..., L − 2}, b ∈ {0, 1}} be the set of all
the possible values of mk, uk, xk, and yk in Protocol 3,
respectively. Let W be the finite set defined as follows:

W = {(M,U,X) ∈M×U × X : 0 ≤M − U −X ≤ L− 2} .
(27)

Let fM : W → M, fM×U : W → M×U , and fX :
W → X be the projections from the Cartesian product
M×U ×X restricted on W. Let fY : W → Y be the
function defined by

fY(M,U,X) := (M − U −X,U ⊕X). (28)

In Protocol 3, xk, uk, and mk are related to yk by

yk = fY(mk, uk, xk), (29)
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and hence yN is uniquely determined once sequences xN ,
mN , and uN are given. We denote the binomial distri-
bution with L trials by bL,p ∈ PM, where

bL,p(M) :=

(
L

M

)
pM (1− p)L−M . (30)

When Eve’s attack is fixed in Protocol 3, the joint
probability distribution of v := (v0, ..., vL), N, xN ,mN ,
and uN , denoted by P, is determined. In what follows,
Pr{·} denotes the probability under P. Regardless of
Eve’s attacks, the following three conditions hold for P.

1. The variable v = (v0, ..., vL) obeys multinomial dis-
tribution

Pr{v} =
Nem!∏L
M=0 vM !

L∏
M=0

(bL,podd
(M))

vM (31)

with podd satisfying

podd ≤ psrc. (32)

This property can be confirmed if we rewrite the
initial state of Protocol 3, given by (4), as

2−L/2
L⊗
l=1

∑
s(l)=0,1

|s(l)〉A(l) eπis(l)n̂l |Ψσ〉lR(l)

=

L⊗
l=1

(
|0(l)
X 〉A(l)

1 + (−1)n̂l

2
|Ψσ〉lR(l)

+ |1(l)
X 〉A(l)

1− (−1)n̂l

2
|Ψσ〉lR(l)

)
=

L⊗
l=1

(
|0(l)
X 〉A(l) Πeven

l |Ψσ〉lR(l) + |1(l)
X 〉A(l) Πodd

l |Ψσ〉lR(l)

)
,

(33)

where Π
even(odd)
l is the projection operator onto the

even (odd) photon number subspace. The proba-
bility of obtaining s(l) = 1 when measuring the l-th
qubit of (33) in phase basis, denoted by podd, is
given by

podd := Tr
(
Πodd
l |Ψσ〉 〈Ψσ|lR(l) Πodd

l

)
= Tr

(
Πodd
l σ

)
. (34)

Hence the number M =
∑
l s

(l) follows the proba-
bility bL,podd

(M). Since podd is equal to the proba-
bility of emitting odd number of photons in a pulse,
(32) holds by definition.

2. For the type P̃mN of the random variable mN ,

∀M ∈M, Pr
{
NP̃mN (M) ≤ vM

∣∣∣N ≥ 1
}

= 1 (35)

holds, which is obvious from the definition of the
type.

3. Since Bob randomly chooses jk out of {1, ..., L} \
{ik} in each success round, the probability of ob-
taining xk = 1 in the kth success round given mk

and uk is (mk − uk)/(L− 1). Therefore,

Pr
{
xN
∣∣N,mN , uN

}
=

N∏
k=1

[c(mk, uk)]xk [1− c(mk, uk)]1−xk

(36)
holds for N ≥ 1, where

c(M,U) :=
M − U
L− 1

. (37)

Let ν = {ν0, ..., νL} be the set of real non-negative
constants which satisfy νM = 0 for all M < Lpsrc. Let
PN,ν,δ1 ⊆ PW be the set of the probability mass func-
tions defined by

PN,ν,δ1 := {P ∈ PW : EM∼PM [νM ]

≤ Nem

N

(
EM∼bL,psrc

[νM ] + δ1
)}

.

(38)

From the conditions 1 and 2 of P, the type P̃mN ,uN ,xN ∈
PW in Protocol 3 belongs to PN,ν,δ1 with a high proba-
bility. More precisely, we have the following proposition
with its proof given in Appendix A.

Proposition 1. Let ν = {ν0, ..., νL} be the set of non-
negative constants which satisfy νM = 0 for all M <
Lpsrc. Suppose that η1 and δ1 satisfy

max
Q∈Q

2−NemD(Q‖bL,psrc ) ≤ η1, (39)

where the convex set Q is defined as

Q =
{
Q ∈ PM : EM∼Q[νM ] ≥ EM∼bL,psrc

[νM ] + δ1
}
.

(40)
When the random variables (v, N,mN , uN , xN ) satisfy
(31) and (35), the following inequality holds:

Pr{N ≥ 1, P̃mN ,uN ,xN /∈ PN,ν,δ1} ≤ η1. (41)

Let ξ = {ξM,U : (M,U) ∈ M× U , 0 ≤ c(M,U) ≤ 1}
be the set of real constants satisfying

∣∣ξM,U

∣∣ ≤ 1. Let

Pξ,δ2 ⊆ PW be the set of the probability mass functions
defined as
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Pξ,δ2 :=
{
P ∈ PW : E(M,U,X)∼P [(X − c(M,U)) ξM,U ]

≤ δ2
3

+

[(
δ2
3

)2

+ 2δ2E(M,U)∼PM×U
[
c(M,U) (1− c(M,U)) ξ2

M,U

]] 1
2

 .
(42)

Since the right-hand side of the inequality is a concave
function with respect to P , Pξ,δ2 is a convex subset of
PW . From the condition 3 of P, the type P̃mN ,uN ,xN ∈
PW in Protocol 3 belongs to Pξ,δ2(N) with a high proba-
bility. More precisely, we have the following proposition
with its proof given in Appendix B.

Proposition 2. Let ξ = {ξM,U : (M,U) ∈ M× U , 0 ≤
c(M,U) ≤ 1} be the set of real constants which satisfy∣∣ξM,U

∣∣ ≤ 1. Suppose that η2 and {δ2(N)}N=1,2,... satisfy

exp [−Nδ2(N)] ≤ η2. (43)

When the random variables (N,mN , uN , xN ) satisfy the
condition (36), the following inequality holds:

Pr
{
N ≥ 1, P̃mN ,uN ,xN /∈ Pξ,δ2(N)

}
≤ η2. (44)

We define the following convex set of probability mass
functions over W,

E :=
{
P : P ∈ PN,ν,δ1 ∩ Pξ,δ2(N)

}
, (45)

which satisfies

Pr{N ≥ 1, P̃mN ,uN ,xN /∈ E} ≤ η1 + η2, (46)

if (η1, δ1) and (η2, {δ2(N)}N=1,...) satisfy (39) and (43),
respectively (union bound). With E ⊆ PW , we define the
family of the set of likely phase error patterns T (N, yN )
as follows:

T (N, yN ) := {xN ∈ XN : ∃P ∈ E , PX×Y = P̃xN ,yN }.
(47)

If P̃mN ,uN ,xN ∈ E , by setting P = P̃mN ,uN ,xN , we have

PX×Y = P̃xN ,yN , and thus xN ∈ T (N, yN ). Therefore,
from (46), we also have

Pr{N ≥ 1, xN /∈ T (N, yN )} ≤ η1 + η2. (48)

Here, the upper-bound of
∣∣T (N, yN )

∣∣ is obtained by using
the following lemma.

Lemma 1 (The upper bound on the number of distinct
patterns compatible to a joint probability distribution).
Let W be a finite set, and E be a closed convex subset of
PW . Let X and Y be sets associated with W by functions
fX :W → X and fY :W → Y. For yN ∈ YN , define the
set

T (yN ) := {xN ∈ XN : ∃P ∈ E , PX×Y = P̃xN ,yN }. (49)

Then the cardinality of the set T (yN ) satisfies∣∣T (yN )
∣∣ ≤ max

P∈E:PY=P̃yN

2NH(X|Y )PX×Y . (50)

Although we have assumed specific choices of W, fX , fY ,
and E , we can generally prove Lemma 1 without such
specification, as shown in Appendix C. Since what we
need is a bound on

∣∣T (N, yN )
∣∣ independent of yN as in

(23), we use Lemma 1 with T (yN ) = T (N, yN ) and take
the maximum with all the possible sequence yN as fol-
lows:

max
yN

log
∣∣T (N, yN )

∣∣
≤ max

yN
max

P∈E:PY=P̃yN

NH(X|Y )PX×Y

≤ max
P∈E

NH(X|Y )PX×Y . (51)

Combining Proposition 1 and 2, (45), (47), (48), and
(51), we arrive at the following theorem.

Theorem 1 (The main result). Let ν = {νM : M ∈
M} be the set of non-negative constants which satisfy
νM = 0 for all M < Lpsrc. Let ξ = {ξM,U : (M,U) ∈
M × U , 0 ≤ c(M,U) ≤ 1} be the set of real constants
which satisfy

∣∣ξM,U

∣∣ ≤ 1. Let η1 and δ1 be non-negative
numbers which satisfy

max
Q∈PM:EM∼Q[νM ]≥EM∼b[νM ]+δ1

2−NemD(Q‖b) ≤ η1, (52)

where b := bL,psrc
. Let η2 and {δ2(N)}N=1,... be non-

negative numbers which satisfy

exp [−Nδ2(N)] ≤ η2. (53)

Let HPA(N) be a function of N which satisfies

max
P∈E

H(X|Y )PX×Y ≤ HPA(N), (54)

where E is given in (45). Then, if the three conditions
(31), (35), and (36) are satisfied, there exists T (N, yN )
which satisfies

Pr{N ≥ 1, xN /∈ T (N, yN )} ≤ η1 + η2 (55)

in Protocol 3, and

∀yN , log
∣∣T (N, yN )

∣∣ ≤ NHPA(N). (56)

Combining this and the conclusion of the sec-
tion II B, we conclude that Protocol 1 can be made√

2(η1 + η2 + 2−s)-secret by setting Nfin(N) as in (24).

III. NUMERICAL SIMULATIONS

We numerically simulate the net key gain per pulse
(Nfin − NEC)/NemL = N(1 − HPA(N) − s/N −
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fECh(ebit))/NemL of the RRDPS protocol using The-
orem 1. We set

NHPA(N) = dmax
P∈E

NH(X|Y )PX×Y e, (57)

where d·e denotes the ceiling function. Since the con-
ditional entropy function is concave with respect to the
joint probability distribution P , what we need is to solve
the following constrained convex optimization problem:

maximize
P∈PW

H(X|Y )PX×Y ,

subject to EM∼PM [νM ] ≤ Nem

N

(
EM∼bL,psrc

[νM ] + δ1
)
,

E(M,U,X)∼P [(X − c(M,U)) ξM,U ]

≤ δ2(N)

3
+

[(
δ2(N)

3

)2

+ 2δ2(N)E(M,U)∼PM×U
[
c(M,U) (1− c(M,U)) ξ2

M,U

]] 1
2

,

(58)

with a proper choice of the constants ν and ξ.

First, we consider the asymptotic limit Nem, N → ∞
while the block detection rate R := N/Nem remains con-
stant. In this case, we can neglect δ1 and δ2(N), and
the optimization problem (58) is reduced to the follow-
ing simple form:

maximize
P∈PW

H(X|Y )PX×Y ,

subject to EM∼PM [νM ] ≤
EM∼bL,psrc

[νM ]

R
,

E(M,U,X)∼P [(X − c(M,U)) ξM,U ] = 0.
(59)

Here the equality of the second constraint comes from the
fact that ξM,U can be both positive and negative. Finding
the best bound on H(X|Y )PX×Y by adjusting ν and ξ is
equivalent to solving the following convex optimization

problem with the affine constraints:

maximize
P∈PW

H(X|Y )PX×Y ,

subject to PM(M) ≤ bL,psrc(M)

R
,

∀M ∈M, M ≥ Lpsrc,

P (M,U,X = 1)− c(M,U)PM×U (M,U) = 0,

∀(M,U) ∈M×U , 0 ≤ c(M,U) ≤ 1.
(60)

Since the problem is convex, if we can find
P ∗(M,U,X) > 0,ν∗, ξ∗, and λ∗ that satisfy the following
Karush-Kuhn-Tucker (KKT) condition, the maximum of
H(X|Y )PX×Y in the problem (60) is achieved at P = P ∗.



∇P

H(X|Y )PX×Y − λ∗
∑

(M,U,X)∈W

P (M,U,X)−
∑
M∈M

ν∗MPM(M)

−
∑

(M,U)∈M×U
0≤c(M,U)≤1

ξ∗M,U [P (M,U,X = 1)− c(M,U)PM×U (M,U)]


P=P∗

= 0,

ν∗M = 0, ∀M ∈M, M < Lpsrc,

ν∗M ≥ 0,
bL,psrc(M)

R
≥ P ∗M(M), ν∗M

(
bL,psrc

(M)

R
− P ∗M(M)

)
= 0, ∀M ∈M, M ≥ Lpsrc,

P ∗(M,U,X = 1)− c(M,U)P ∗M×U (M,U) = 0, ∀(M,U) ∈M×U , 0 ≤ c(M,U) ≤ 1,∑
(M,U,X)∈W

P ∗(M,U,X) = 1.

(61)

The asymptotic limit HPA of the amount of privacy am- plification HPA(N) is then given by

HPA = H(X|Y )P∗X×Y . (62)
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FIG. 4. The asymptotic key rates of the RRDPS protocol
by our new analysis (RRDPSnew, solid lines) and by the orig-
inal analysis (RRDPSorig, broken lines). The mean photon
number µ of the light source is optimized for each transmis-
sion rate. The bit error rate is set to 3%. The dotted line is
the rate of the ideal decoy-state BB84 protocol with time-bin
implementation, assuming the same bit error rate.

For the numerical simulation of the key rate, we assume
that the block detection rate R is given by

R =
1

2
ηµL exp(−ηµL), (63)

where η is an overall transmission rate of the channel
and µ is the mean photon number of each pulse from the
source. (This rate is equal to the probability of detect-
ing single photon in a block with efficiency 1/2 [4].) We
neglect the dark count rate. In addition, we assume that
the photon number distribution of each pulse is Poisso-
nian with mean µ. From (34), podd in this case is given
by

podd = e−µ
∞∑
n=0

µ2n+1

(2n+ 1)!
= e−µ sinhµ. (64)

We set psrc = podd = e−µ sinhµ. The error correction
efficiency fEC is set to 1. We numerically solved (61) and
always found a solution. Figure 4 shows the key rates vs.
transmission rates by our new analysis and by the original
analysis with the key rate of the decoy BB84 protocol
with time-bin implementation when ebit = 3%. One can
see that our new analysis improves the key rates of the
RRDPS protocol for all L compared to the original one.
Moreover, we obtain an improvement of more than one
order of magnitude in the key rate with relatively small L,
which may improve the practicality of the protocol. The
improved key rates with our analysis are comparable to
that obtained in [18], but our analysis does not require
the optical phase randomization.

Next we simulated the key rates in the finite-sized
case by solving (58) with a heuristic choice of ν and

ξ. Regardless of Nem, we used {ν∗M : M ∈ M} and
{ξ∗M,U : (M,U) ∈ M× U , 0 ≤ c(M,U) ≤ 1}, which are

obtained as the solutions of (61), to define

ν := {ν∗M : M ∈M},

ξ :=

{
ξ∗M,U

ξmax
: (M,U) ∈M×U , 0 ≤ c(M,U) ≤ 1

}
,

(65)
where ξmax is defined as

ξmax := max{
∣∣ξ∗M,U

∣∣ : (M,U) ∈M×U , 0 ≤ c(M,U) ≤ 1}.
(66)

This heuristic choice of ν and ξ becomes optimal when
Nem, N → ∞, i.e. in the asymptotic limit. We set the
required correctness εcor and the required secrecy εsec to
εcor = εsec = 10−15. We assumed that the bit error cor-
rection efficiency fEC = 1.2. Furthermore, for simplicity,
we set

η1 = η2 = 2−s =
ε2

sec

6
, (67)

in order to satisfy εsec =
√

2(η1 + η2 + 2−s). We deter-
mined the values of δ1 and {δ2(N)}N=1,... by numerically
solving

η1 = max
Q∈PM:EM∼Q[νM ]≥EM∼b[νM ]+δ1

2−NemD(Q‖b), (68)

η2 = exp [−Nδ2(N)] , (69)

where b := bL,psrc
. When we solved the optimization

problem, we used the “minimize” function of the scipy

FIG. 5. The key rates of the RRDPS protocol in finite-sized
case with block length L = 63. The horizontal axis shows the
total number of pulses which Alice emits. The transmission
rate is set to be 10−2, and ebit = 3%. The mean photon
number of the light source is optimized for each number of
pulses. The red broken line is the rate of the three-state decoy
BB84 protocol with time-bin implementation under the same
condition [24], and the dotted line is that under the bit error
rate 1.5%.
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library in Python with the “SLSQP” method. Figure 5
shows the key rates vs. the total emitted pulses of the
RRDPS protocol with our analysis and with the original
analysis, and of the decoy BB84 protocol. (The number
of total emitted pulses is given by NemL in the case of
the RRDPS protocol.) Since the sampling cost Nsmp is
negligible only when we allow a margin for the estimation
of ebit, we expect that the actual bit error rate should be
lower than 3%. For this reason, we have also plotted
the rate with ebit = 1.5% for the decoy BB84 protocol.
Comparison of these rates shows that the improvement
of the key rates over the original proof survives up to
fairly small number of total emitted pulses at which the
decoy BB84 protocol fails to produce a key.

IV. DISCUSSION

In this paper, we proposed a refined security proof of
the RRDPS protocol, which improves the key generation
rate without any change in the protocol itself. The crux
of the improvement is an observation that the estimation
of the phase error pattern in the virtual protocol can be
aided by additional information yN , which was ignored
in the original security analysis. The pair of parameters
yk = (ak, bk) are related to the parity of the number of
emitted photons in each of the L pulses forming the k-th
block (see (9)-(14)). The parameter bk is associated with
the pulse pair from which the sifted key bit is extracted,
while the parameter ak is with the rest of L − 2 pulses.
It is interesting that not only bk but also ak contributes
to the improvement of the key rate.

The use of additional information related to the emit-
ted numbers may look similar to the tagging technique
[25] used for the (decoy) BB84 protocols with a practi-
cal source, where the latter uses the information whether
the each pulse contains multiple photons (tagged) or not
(untagged). There are, however, a couple of differences.
One is the conceptual difference arising from the timing
at which the tag is defined. In the case of the BB84
protocols, a tag is defined when the optical phase ran-
domization is applied to the pulse before it leaves the
sender. As a result, we can easily analyze the statisti-
cal properties of the tags without regard to the Eve’s
attack. In contrast, yk = (ak, bk) in our case should be
dubbed an ex post facto tag, because it is defined only
after the positions of the pair of pulses are announced by
Bob. The analysis on the statistical properties of the ex
post facto tags are not straightforward and often requires
special techniques to extract a property that is indepen-
dent of Eve’s attack [20]. In our case, it is solved by
introducing a third protocol (Protocol 3) solely for this
purpose. From the viewpoint of implementation, the ex
post facto tag has an advantage that it does not require
optical phase randomization.

Another difference is a rather technical one that be-
comes significant in analyzing the finite-sized case. In
contrast to the tag for the BB84 protocols which takes

two values (multiple photons or not) or three values (mul-
tiple photons, single photons, or vacuum), our tag yk
takes

∣∣Y∣∣ = 2(L − 1) values. As a result, the number of

rounds with a specific value y ∈ Y of tag, NP̃yN (y), is
much smaller than N . In addition, the constraint (36)
essentially dictates connection between the events whose
tags take different values. In such a case, it is not wise
to derive a statistical bound separately for each value of
y ∈ Y and then to combine those bounds by using the
union bound. Instead, here we introduced Lagrange mul-
tipliers and derived an inequality for a combined prop-
erty directly, as in Proposition 1 and 2. For counting the
number of phase error patterns, the bound in Lemma 1
that is independent of the size

∣∣Y∣∣ will be quite useful for
mitigating finite-sized effects.

Although the above strategy succeeded in showing that
the improvement persists up to a relatively small total
number of emitted pulses, we see in Figure 5 that the
rate is eventually surpassed by the original analysis when
the total number is further decreased. We may ascribe it
to either or both of the following two reasons. One is the
fact that we did not optimize the values of the Lagrange
multipliers and substituted the values in the asymptotic
limit instead. The other is the use of a Bernstein’s in-
equality in the proof of Proposition 2, which affects the
key rate through the definition of Pξ,δ2(N) in (42). It re-
mains to be open whether we can replace it with a tighter
bound while keeping the convexity of Pξ,δ2(N).

We emphasize here that our focus in the present pa-
per was on the simplest implementation of the sender’s
apparatus, namely, the use of the protocol without block-
wise phase randomization in the original proposal, as it
is. A natural question is that how the situation changes
if we combine block-wise phase randomization with our
analysis. On one hand, the aid of block-wise phase ran-
domization does not seem to change the key rate so much
considering that the key rate with our analysis is com-
parable to that with [18] in which the block-wise phase
randomization is used. On the other hand, PN,ν,δ1 may
be significantly narrowed by the additional photon num-
ber constraint which is the consequence of the block-wise
phase randomization. We leave it for the future research.
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Appendix A: Proof of Proposition 1

Let Pv ∈ PM be defined as Pv(M) := vM/Nem. From
the condition (31) and the fact that Q is a convex set, we
can apply the special case of the Sanov’s theorem [26, 27]
to Pv as follows:

Pr {Pv ∈ Q} ≤ max
Q∈Q

2−NemD(Q‖bL,podd
). (A1)

Let bnorm be the constant given by

bnorm :=
∑

M :M<Lpsrc

bL,podd
(M). (A2)

Let q ∈ PM be the probability mass function which is
defined as

q(M) :=


bL,psrc(M)

bnorm
∀M < Lpsrc

bL,psrc
(M)− bL,podd

(M)

bnorm
∀M ≥ Lpsrc,

(A3)
which is well-defined since bL,psrc

(M) ≥ bL,podd
(M) holds

for all M ≥ Lpsrc, and
∑
M∈M q(M) = 1. We define the

stochastic map S : PM → PM as follows:

∀P ∈ PM, S(P )(M ′) :=
∑
M∈M

Pr(M ′|M)P (M), (A4)

where

Pr(M ′|M) :=

{
q(M ′) ∀M < Lpsrc

δM ′M ∀M ≥ Lpsrc.
(A5)

It is easy to observe that

bL,psrc = S(bL,podd
). (A6)

Furthermore, since (i) S(P )(M) ≥ P (M) and νM ≥ 0
for all M ≥ Lpsrc, and (ii) νM = 0 for all M < Lpsrc, we
have

∀P ∈ PM, EM∼S(P )[νM ] ≥ EM∼P [νM ]. (A7)

Therefore, from the definition of Q in (40), we have

∀Q ∈ Q, S(Q) ∈ Q. (A8)

Combining (A6) and (A8) with the monotonicity prop-
erty of the Kullback-Leibler divergence under the
stochastic map [28], we have

min
Q∈Q

D(Q‖bL,podd
) ≥ min

Q∈Q
D (S(Q)‖S(bL,podd

))

≥ min
Q∈Q

D(Q‖bL,psrc
). (A9)

From (A1) and (A9), we have

Pr {Pv ∈ Q} ≤ max
Q∈Q

2−NemD(Q‖bL,psrc ). (A10)

On the other hand, since the random variables
(v, N,mN ) obey (35) and νM (M ∈M) are non-negative,
we have

∀M ∈M,

Pr

{
νM P̃mN (M) ≤ νM

Nem

N
Pv(M)

∣∣∣∣N ≥ 1

}
= 1,

(A11)
and hence

Pr

{
EM∼P̃mN

[νM ] ≤ Nem

N
EM∼Pv [νM ]

∣∣∣∣N ≥ 1

}
= 1.

(A12)
Combining (A12) with the definition of Q, we have

Pr
{
N ≥ 1,EM∼P̃mN

[νM ]

≥ Nem

N
(EM∼bL,psrc

[νM ] + δ1)

}
≤ Pr

{
N ≥ 1,

Nem

N
EM∼Pv [νM ]

≥ Nem

N
(EM∼bL,psrc

[νM ] + δ1)

}
≤ Pr{Pv ∈ Q}, (A13)

where the first inequality follows from (A12). Combining
this with (A10), we have

Pr

{
N ≥ 1,EM∼P̃mN

[νM ] ≥ Nem

N
(EM∼bL,psrc

[νM ] + δ1)

}
≤ max

Q∈Q
2−NemD(Q‖bL,psrc ).

(A14)
Then (39) implies (41).

Appendix B: Proof of Proposition 2

We use one of the Bernstein’s inequalities [29], which
is stated as follows. Let X1, ..., XN be independent zero-
mean random variables. Suppose that

∣∣Xk

∣∣ ≤ 1 for all k.
Then, for all non-negative t,

Pr

(
1

N

N∑
k=1

Xk ≥ t

)
≤ exp

[
− Nt2

2
N

∑
k E[X2

k ] + 2
3 t

]
(B1)

holds.
For fixed values of N(≥ 1),mN , uN , the condition

(36) determines the conditional statistics of N vari-
ables {Xk := (xk − c(mk, uk)) ξ(mk, uk)}k=1,...,N , where
ξ(M,U) := ξM,U . They are independent and zero-mean.
Furthermore, since

∣∣ξ(mk, uk)
∣∣ ≤ 1 and 0 ≤ c(mk, uk) ≤

1 hold,
∣∣Xk

∣∣ ≤ 1 also holds for all k. Thus, (B1) holds if
we interpret Pr(·) and E[·] as the conditional probability
and the conditional mean. Using the definition of the
type, we can rewrite the sums over index k as
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N∑
k=1

Xk =
∑

(M,U,X)∈W

(X − c(M,U)) ξM,UNP̃mN ,uN ,xN (M,U,X)

= NE(M,U,X)∼P̃mN,uN,xN
[(X − c(M,U)) ξM,U ] , (B2)

and

N∑
k=1

E[X2
k ]

=
∑

(M,U)∈M×U

{
[(0− c(M,U)) ξM,U ]

2
(1− c(M,U)) + [(1− c(M,U)) ξM,U ]

2
c(M,U)

}
NP̃mN ,uN (M,U)

=
∑

(M,U)∈M×U

c(M,U) (1− c(M,U)) ξ2
M,UNP̃mN ,uN (M,U)

= NE(M,U)∼P̃mN,uN
[c(M,U)(1− c(M,U))ξ2

M,U ]. (B3)

We choose t to be

t =
δ2(N)

3
+

[(
δ2(N)

3

)2

+
2δ2(N)

N

∑
i

E[X2
k ]

] 1
2

, (B4)

which satisfies

t2 = δ2(N)

(
2

N

∑
i

E[X2
k ] +

2

3
t

)
. (B5)

Substituting (B2), (B3), (B4) to (B1), we obtain the following:

Pr
{
E(M,U,X)∼P̃mN,uN,xN

[(X − c(M,U)) ξM,U ]

≥ δ2(N)

3
+

[(
δ2(N)

3

)2

+ 2δ2(N)E(M,U)∼P̃mN,uN

[
c(M,U) (1− c(M,U)) ξ2

M,U

]] 1
2

 ≤ exp [−Nδ2(N)] .

(B6)
Then (43) implies (44).

Appendix C: Proof of Lemma 1

For yN ∈ YN , define a set

EX×Y(yN ) := {PX×Y : P ∈ E , PY = P̃yN }. (C1)

Since E is a closed convex set, EX×Y(yN ) is also a closed
convex set. Using the set, we can rewrite T (yN ) as

T (yN ) := {xN ∈ XN : P̃xN ,yN ∈ EX×Y(yN )}. (C2)

Consider a probability mass function Q(x, y) given by

Q(x, y) :=
∣∣X ∣∣−1

P̃yN (y). (C3)

Then we have∑
xN∈T (yN )

QN (xN , yN ) =
∣∣X ∣∣−N P̃NyN (yN )

∣∣T (yN )
∣∣ (C4)

Let

P ∗ := arg min
P∈EX×Y(yN )

D(P‖Q). (C5)

Then, we have (Pythagorean theorem [28])

D(P‖Q) ≥ D(P‖P ∗) +D(P ∗‖Q) for ∀P ∈ EX×Y(yN ).
(C6)

For (xN , yN ) ∈ XN ×YN with P̃xN ,yN ∈ EX×Y , we have

logQN (xN , yN )− logP ∗N (xN , yN )

= −ND(P̃xN ,yN ‖Q) +ND(P̃xN ,yN ‖P ∗)
≤ −ND(P ∗‖Q), (C7)

and hence ∑
xN∈T (yN )

QN (xN , yN )

≤ 2−ND(P∗‖Q)
∑

xN∈T (yN )

P ∗N (xN , yN )

≤ 2−ND(P∗‖Q)
∑

xN∈XN

P ∗N (xN , yN )

= 2−ND(P∗‖Q)P̃NyN (yN ). (C8)
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Combined with (C4), we have

|T (yN )| ≤ 2−ND(P∗‖Q)+N log |X |. (C9)

On the other hand, for P ∈ EX×Y(yN ),

D(P‖Q) =
∑

(x,y)∈X×Y

P (x, y) log
P (x, y)

Q(x, y)

=
∑

(x,y)∈X×Y

P (x, y) log
P (x|y)

Q(x|y)

= log |X | −H(X|Y )P , (C10)

and hence

D(P ∗‖Q) = min
P∈EX×Y(yN )

D(P‖Q)

= log |X | − max
P∈EX×Y(yN )

H(X|Y )P . (C11)

Combining (C1), (C9), and (C11) leads to (50).
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