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The notion of quantum speed limit (QSL) refers to the fundamental fact that two quantum states
become completely distinguishable upon dynamical evolution only after a finite amount time, called
the QSL time. A different, but related concept is that of minimum control time (MCT), which is
the minimum evolution time needed for a state to be driven (by suitable, generally time-dependent,
control fields) to a given target state. While the QSL can give information about the MCT, it
usually imposes little restrictions to it, and is thus unpractical for control purposes. In this work
we revisit this issue by first presenting a theory of geometrical QSL for unitary transformations,
rather than for states, and discuss its implications and limitations. Then, we propose a framework
for bounding the MCT for realizing unitary transformations that goes beyond the QSL results and
gives much more meaningful information to understand the controlled dynamics of the system at
short times.

I. INTRODUCTION

Realizing the prospect of quantum-enabled technolo-
gies, such as computation and simulation, demands
an extremely high degree of precision in the control
of quantum systems. Important advances have been
made over the past years on increasing the fidelities
for one- and two-qubit operations in various quantum
computing platforms [1–3], and on precise engineering
of interactions in synthetic quantum materials [4–6].
Since any unitary operation is ultimately the result of
a continuous-time evolution of a quantum system, to
avoid errors the goal is to control these systems as fast
and accurately as possible, in order to reduce the non-
unitary effects induced by coupling to the environment.
Consequently, it is important to understand the scope
and limitations of controlled quantum dynamics at very
short times.

One fundamental limitation is imposed by the
so-called quantum speed limit (QSL). In its original
formulation [7–9], the QSL referred to the fact that
the state of a quantum system evolving according to
a time-independent Hamiltonian would require a finite
amount of time to become completely distinguishable
(i.e. orthogonal) to itself. Later on, this notion was
developed as a geometrical result generalizing to the case
of non-orthogonal states [10–12], leading up to results
for driven [13] and open quantum systems [14–16] (a
recent review article on this topic can be found on [17]).

From the perspective of quantum control, the geo-
metric QSL is a fundamental limitation to how fast we
can achieve a predefined target state or transformation.
However, a more stringent limitation is given by the
fact that, in every case of interest, we have a limited set
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of controls available. Note that, under certain assump-
tions, one can show that a system is fully controllable
[18], meaning that by suitably changing in time that
limited set of control fields one can perform any unitary
operation in the corresponding group, say SU(d) for
a d-dimensional Hilbert space. Finding the particular
shape of those fields is usually done using the tools of
quantum optimal control (QOC), which have proven to
be extremely useful and versatile in various quantum
information platforms over the past two decades [19–22].

In QOC problems, we consider a driving Hamiltonian
H[ε(t)], where ε(t) represents some time-dependent con-
trol field (or a set of them). Given a target unitary V and
the evolution time T , we aim to minimize ||U(T ) − V ||
in some appropriate metric, where U(T ) is the evolution
operator at the final time. It is expected that for each
particular target, there is a minimum control time
(MCT), i.e., the minimum value of the evolution time T
for which the optimization has (in principle) a solution.
For any given target V , the MCT will typically be
larger than the QSL time [23]. Obtaining the MCT is,
however, not an easy task. One approach consists in
performing a two-objective optimization to reduce the
error in implementing the target, while simultaneously
shortening the protocol as much as possible [24–26].
An alternative is to look for solutions within the usual
QOC scheme for different values of T [27–29]. In both
cases, the optimization becomes increasingly difficult
and computationally expensive [30, 31]. It is therefore
desirable to establish a framework that allows us to ob-
tain bounds or estimates on the minimum time required
to implement a predefined gate. Going beyond the
geometrical QSL, these bounds should take into account
a given set of resources, related to which elements of the
generating algebra we can manipulate in time.

In this paper we first explore geometric QSL bounds in
the space of unitary operations, and discuss their appli-
cation to quantum control problems. We do a thorough
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exploration of the MCT for SU(2) and SU(3) models
in order to gain insight on how the available controls in
the generating Hamiltonian restrict the unitaries that
can be achieved at a given time. Also, by studying the
short-time behavior of the time-dependent Schrödinger
equation for arbitrary control fields, we obtain bounds
on the MCT that are much more restrictive than the
geometric QSL.

This paper is organized as follows. In Section II we
revisit the geometric formulation of the QSL for states,
and then develop an analogous construction for unitary
transformations. We derive two families of bounds and
give examples for SU(2) and SU(3). In Section III
we study the MCT for these examples, and present
an analysis of the short-time behavior of quantum
systems driven time-dependent fields. This will allow
us to construct bounds on the MCT that will serve as
a refinement of the QSL results. Finally in Section IV
we discuss potential future directions of work on these
topics.

II. GEOMETRICAL QUANTUM SPEED LIMIT
FOR UNITARY OPERATIONS

A. QSL for pure state evolution

Let us first briefly revisit the QSL formulation for
(pure) state evolution. For that, we recall the definition
of the Fubini-Study distance between two states |ψ1〉 and
|ψ2〉 [32],

s (ψ1, ψ2) = 2 arccos (|〈ψ1|ψ2〉|) (1)

Take |ψ(t)〉 to be the state of a d−dimensional quan-
tum system that evolves according to i~ d

dt |ψ(t)〉 =
H(t) |ψ(t)〉. Consider a curve C in the complex projec-

tive space CPd, given by the set of points {|ψ(t)〉}0≤t≤T .
The length of C according to the Fubini-Study metric was
derived by Anandan and Aharonov [33], yielding

length(C) =
2

~

∫ T

0

∆E(t) dt, (2)

where ∆E(t) =
√
〈H(t)2〉 − 〈H(t)〉2 is taken over the

state |ψ(t)〉. If we look at Fig. 1, we can make the
straightforward observation that the length of C is always
larger or equal than s(T ) ≡ s (ψ0, ψ(T )), which is the
length of the geodesic path connecting those two points,
and where we have set |ψ0〉 = |ψ(0)〉. So, we have

s(T ) ≡ s (ψ0, ψ(T )) ≤ 2

~

∫ T

0

∆E(t) dt, (3)

where the equality holds if and only if the system evolves
along the geodesic path. Eqn. (3) is usually referred to

Figure 1. Schematic picture of the evolution of a quantum
system. (a) paths between an initial state |ψ(t = 0)〉 = |ψ0〉
and a final state |ψ(T )〉 in the complex projective space CPd
associated with a d-dimensional Hilbert space. (b) paths
between unitary transformations between the initial point
U(t = 0) = I and final point U(T ) in SU(d).

as the Anandan-Aharonov relation. From it, we can see
that

T ≥ ~ s(T )

2∆E
, (4)

where, formally, ∆E can be regarded as the mean value
of the function ∆E(t). Note, however, that such mean
value will depend on the specific time-dependence of the
Hamiltonian, which could be a priori arbitrary. This
is especially important in control problems, where we
seek a bound on the evolution time, before solving the
optimization problem. The right hand side of Eqn. (4)
gives a lower bound on the minimum time required for
state |ψ(t)〉 to become distinguishable from |ψ0〉 by an
amount s(T ) (in the Fubini-Study metric). Note that,
in particular, it is also a bound for the minimum time
that it should take for the system to evolve |ψ0〉 into any
target state |ψG〉 that is at a distance s(T ) from it.

Finally, note that from Eqn. (3) we can recover the
known Mandelstam-Tamm relation [8, 34] by setting
s(T ) = π (its maximum possible value) and considering a
time-independent Hamiltonian, thus obtaining T ≥ ~π

2∆E .

B. QSL for unitary transformations

We now turn to deriving an expression for the QSL
time for unitary operators. Some related work along this
line has been reported in Refs. [35–37]. We will proceed
analogously to what was described in the previous sec-
tion. Let us first define a distance between two operators
U, V ∈ SU(d) as
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S1(U, V ) = max
ψ

[s (U |ψ〉 , V |ψ〉)]

= 2 arccos

(
min
ψ
|〈ψ|U†V |ψ〉|

)
(5)

Note that this expression is a particular evaluation of
the Fubini-Study distance for states, and so it is easy
to see that it defines a proper distance for unitaries as
well. If we define W = U†V , we have that W is unitary.
This definition of distance was considered in Ref. [38],
where its shown that the minimization in Eqn. (5) can
be solved by defining δ as the minimum arclength such
that all eigenphases of W , say {ϕk}, are included in such
arc. The minimization over all states then involves two
cases. If δ ≥ π, then

min
ψ
|〈ψ|U†V |ψ〉| = 0, (6)

meaning that U and V are completely distinguishable
because there exists a state |ψ〉 such that U |ψ〉 and
V |ψ〉 are orthogonal. If δ < π, then such state
does not exist, and the optimal case (i.e. the maxi-
mum distinguishability) is achieved by choosing |ψa〉 =

(|wmin〉 − |wmin〉) /
√

2 to get

|〈ψa|U†V |ψa〉| = cos

(
δ

2

)
. (7)

Note that |wmax〉 and |wmin〉 are the eigenstates of
W corresponding to the eigenphases which are furthest
apart in the circle. With this considerations we obtain a
closed expression for the measure of distance S1:

S1(U, V ) = min (δ, π) (8)

Having defined a distance between uni-
taries, we can compute the differential element
dS1 = S1 (U(t), U(t+ dt)). We now set ~ = 1 for
the remainder of the paper. To compute dS1 we need to
look at the eigenvalues of

U(t)†U(t+ dt) = U†(t) e−iH(t)dtU(t), (9)

which are the same as those of e−iH(t)dt alone. So, if we
define

∆ε(t) = Emax(t)− Emin(t), (10)

we have that dS1 = ∆ε(t)dt. Integrating and imposing
the inequality as described before, we get

S1(T ) ≡ S1 (U(T ), I) ≤
∫ T

0

∆ε(t)dt. (11)

The inequality (11) is our first version of the Anandan-
Aharonov relation for unitary processes. Once again, if
we choose some particular (time-independent) ∆ε such

that 0 ≤ ∆ε(t) ≤ ∆ε, we can bound the integral and
write

T ≥ S1(T )

∆ε
≡ τ (1)

QSL. (12)

Before we proceed, let us propose an alternative way
of obtaining a QSL time. For this, note that the defini-
tion in Eqn. (8) arises from optimizing the Fubini-Study
distance over all possible states. The expression obtained
is deceptively simple, since calculating δ requires diago-
nalizing U†V , and calculating ∆ε requires diagonalizing
H(t) for all times. However, we are at liberty of defin-
ing an alternative measure of distance between unitaries,
which we obtain by dropping the maximization over all
states in Eqn. (5) and simply defining

S2(U, V ) = 2 arccos

(
1

d
|tr
(
U†V

)
|
)

(13)

As we mentioned for S1(U, V ), this alternative def-
inition is also a particular evaluation of the Fubini-
Study distance for states, where now we choose |ψ〉 =

(
∑
k |wk〉) /

√
d . We can see again that the distance de-

pends on the overlap unitary W = U†V , but only via its
trace. Note that the argument in Eqn. (13) corresponds
to the fidelity function typically considered in quantum
optimal control problems [39]. Also, note that S1 ≥ S2

by construction, since both of them are particular in-
stances of the Fubiny-Study distance, but the latter was
obtained from a maximization over all possible states.
We now proceed analogously to obtain an expression for
a QSL time. The differential element of distance is now

(dS2)
2

= 4

(
1− 1

d2
|tr
(
U(t)†U(t+ dt)

)
|2
)

=
4dt2

d
tr
(
H(t)2

)
, (14)

where we have imposed the fact that H(t) is traceless
and properties of the trace. Note that we can intro-
duce tr

(
H2
)

= ||H||2 using the usual Hilbert-Schmidt
inner product. We then obtain another version of the
Anandan-Aharonov relation for unitaries

S2(T ) ≡ S2(U(T ), I) ≤ 2√
d

∫ T

0

||H(t)||dt (15)

From this, we can again bound the integral by using
0 ≤ ||H(t)|| ≤ ||H|| and thus we get

T ≥
√
d

2

S2(T )

||H||
≡ τ (2)

QSL (16)

The obtained expressions (12) and (16) give bounds
τ iQSL (i = 1, 2) on the minimum time required for

U(t) to become distinguishable from U(0) = I by an
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amount Si(T ) and, in particular, to reach some target
transformation V ∈ SU(d) such that Si(V, I) = Si(T ).
Note that, in terms of control, both results for the QSL
time are geometric in nature: they depend on the target
process V only via its distance to identity. The actual
structure of the driving Hamiltonian does not come into
play when computing τ iQSL.

C. Examples

In this section we will use study the QSL expressions
derived above in two model systems. In Section III we
will come back to these models and consider a wide
range of control problems which will allow us to compare
the minimum control time and quantum speed limit
times in an unified setting.

We first introduce a two-level (d = 2) Hamiltonian

H2(t) =
Ω

2
(cosα(t)σx + sinα(t)σy) , (17)

where {σi}, i = x, y, z are the usual Pauli operators.
This Hamiltonian describes the dynamics of a two-level
atom driven by a resonant electromagnetic field with
a time dependent phase α(t), which in principle is
arbitrary [40]. Here Ω is the Rabi frequency, which is
constant in time and sets the energy scale of the problem.

For SU(2), it is easy to see that both metrics intro-
duced in the previous section, c.f. eqns. (8) and (13)
are equivalent, so we will drop the subindices and denote
S = S1 = S2. The model in Eqn. (17) has a few nice
properties. First, it is fully controllable: any element of
SU(2) can be implemented in finite time by suitable pick-
ing the shape of the field α(t). Also, irrespective of the
particular shape of α(t), the system evolves at “constant
speed” through state space, since

dS

dt
= ∆ε =

2√
d
||H2(t)|| = Ω, ∀ t. (18)

In order to evaluate the QSL bounds and to draw a
connection to the control problem, we introduce a family
of target unitaries

Vn(φ) = e−i
σn
2 φ, 0 ≤ φ ≤ π, (19)

where σn = n̂.~σ and n̂ is a unit three-dimensional vector.
We can calculate the distance between Vn(φ) and the
identity using Eqn. (13), obtaining

S2(Vn(φ), I) = 2 arccos

(
|cos

φ

2
|
)

= φ. (20)

Evaluating Eqn. (16) we obtain a simple QSL bound
for the SU(2) case

τQSL(φ) =
φ

Ω
(21)

This result gives us a very simple example of a general
feature of the geometric QSL. Note that Eqn. (21)
is independent of n̂. This isotropic property implies
that we obtain the same bound on the time required
to implement either x, y or z rotations, since all of
them (for a fixed angle of rotation φ) are at the same
distance from I. Note, however, that the Hamiltonian
is not isotropic: x and y rotations are easy to perform,
but z rotations require more time. We will analyze this
difference in more detail in the next section.

Next, we introduce a three-level (d = 3) Hamiltonian

H3(t) =
Ω

2
(cosα(t)λA + sinα(t)λB) , (22)

where λA = λ1, λB = (λ2 + λ4)/
√

2, and {λi}, i =
1, 2, . . . , 8 are the usual Gell-Mann matrices for su(3) (i.e.
the Lie algebra of skew-hermitian 3 × 3 matrices). We
choose this model as a straightforward extension from the
SU(2) case to a slightly more complicated group, however
its actual physical implementation is not as clear. Some
of the properties mentioned before still hold: the system
is also fully controllable, and we show a proof of that in
Appendix A. Also, the speed of evolution in state space
is constant, since

dS1

dt
= ∆ε = Ω, ∀ t (23)

dS2

dt
=

2√
d
||H3(t)|| =

√
2

3
Ω, ∀ t (24)

Note that the two metrics are not equivalent for d = 3.
As we did before, we will introduce a family of unitaries
that will serve as targets

VX(φ) = e−iλXφ, 0 ≤ φ ≤ π (25)

where −iλX are now elements of a basis of the Lie alge-
bra, which are normalized such that tr (λXλY ) = 2δX,Y .
The elements of this basis are shown in Appendix A. Of
particular interest here will be λA, λB (already intro-
duced) and

λC = −i
√

2

5
[λA, λB ] , λD = i

√
4

17
[λA, λC ] (26)

For this system, we also calculate the QSL bounds

τ
(i)
QSL with i = 1, 2. Expressions are less transparent
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Figure 2. QSL times for the SU(3) model described by the
Hamiltonian (22) as a function of parameter φ. Results are
shown for different target unitaries VX , defined in Eqn. (25).
Left: X = A,B,D, which give the same QSL times. Right:
X = C.

than in the SU(2) case, so we show plots of them as
a function of φ and X in Fig. 2. There, we can see
that both quantities grow with φ, as expected. Note
also that picking the bigger bound (i.e. the most mean-
ingful) depends on which value of φ we are considering,
and typically we define an unified bound which is simply

τQSL = max{τ (1)
QSL, τ

(2)
QSL}.

D. Side note: classical limit of the QSL

Before we move on to analyzing how the QSL bounds
relate to the minimum control time problem, let us
explore another simple example which will further
clarify the physical meaning of the quantum speed limit.
As discussed in the previous section, the QSL time gives
the minimum time that takes for the unitary to achieve
a certain degree of distinguishability from identity.
Since the first discussions on the QSL for states it has
been noted that this notion was particular to quantum
dynamics, and it can be seen that the Mandelstam
- Tamm inequality (4) becomes trivial when ~ → 0.
Recent works have shown that one could also derive
speed limits for classical systems when the state is
characterized by some distribution ρ(x, p, t) in phase
space [41, 42]. However, it is important to stress that
this speed limit is not intrinsic to classical dynamics,
since it only arises from ignorance about the state of our
system. In quantum mechanics, a system will always
need a finite amount of time to become completely
distinguishable to its initial configuration.

Let us then explore the classical limit of the QSL for-
mulation for unitary operations. We go back to consider-

ing SU(2) rotations as in Eqn. (17), but we now choose
the spin-J representation, in which the generator takes
the form

H(t) = Ω (cosα(t)Jx + sinα(t)Jy) , (27)

where now Jn, with n = x, y, z are the usual spin oper-
ators. Analogously to Eqn. (19) we define the target as
Vn(φ) = e−iJnφ. We can calculate the distance from Vn
to the identity in a straightforward way, yielding

S2(Vn, I) = 2 arccos

(∣∣∣∣∣ sin
(
(J + 1

2 )φ
)

(2J + 1) sin φ
2

∣∣∣∣∣
)

(28)

The corresponding QSL time is then given by Eqn.
(16), where

||H(t)||2 =
J(J + 1)(2J + 1)

3
Ω2. (29)

Note that maximum distinguishability is obtained
when the unitary is orthogonal to identity, and this hap-
pens for a certain value of φ = φ⊥(J) (irrespective of the
axis of rotation)

φ⊥(J) = argmaxφ [S2(Vn, I)] =
π

J + 1
2

. (30)

We observe that φ⊥ vanishes as J →∞, which is effec-
tively the classical limit. In other words, the angle one
needs to rotate to get an orthogonal unitary becomes
smaller and smaller in this limit. Moreover, the rate
at which the system evolves in state space is given by
||H(t)|| which increases with J . Putting these results
together it can be readily seen that

τ
(2)
QSL −−−−→

J→∞
0 (31)

It can be easily shown that this results is independent
of the metric. In this way we can appreciate how the
QSL time vanishes for classical systems.

III. MINIMUM CONTROL TIME

A. Motivation

In this Section we turn our attention to the minimum
control time (MCT) problem and its relation to the QSL
time. For that, let us recall the quantum control problem
invoked in the Introduction. We consider a d-dimensional
quantum system described by a traceless Hamiltonian
H[ε(t)], where ε(t) denote the (typically) time-dependent
control fields. The system evolves according to
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i
dU(t)

dt
= H[ε(t)]U(t), with U(0) = I (32)

For a given target unitary transformation V ∈ SU(d),
we wish to study what is the minimum value of the
evolution time T for which this evolution can be such
that U(T ) = V . As mentioned before, obtaining
the actual value of this minimum control time TMCT

would require solving a time-optimal control problem.
However, our aim is to obtain lower bounds to TMCT ,
without resorting to any optimization procedure.

One of such bounds is, indeed, given by the geometric
QSL formulation studied in Section II, i.e. Eqns. (12)
and (16). Note that these expressions give the same
bound for all targets that are equidistant from the
identity, and represent a fundamental limit to how
fast the system can traverse that distance in space of
unitaries. However, a more stringent limitation to how
fast we can perform a transformation is given by the fact
that we have limited control over the system. Formally,
what this means is that only a small subset of the
d2 − 1 linearly independent generators can be directly
manipulated. As we will discuss in the following, the
relation between these directly-controlled generators and
the target V will have an important impact in the MCT.

For concreteness, consider that the Hamiltonian has
the form

H(t) =

M∑
j=1

εj(t)Hj (33)

To asses the controllability of the sys-
tem, one introduces its dynamical Lie algebra
L = spanj=1,...,M {−iHj}. Note that the elements
of this set will be given by the directly-controlled
generators {Hj} and also repeated commutators of
them, i.e. elements of the form [Hl, Hm], [Hl, [Hm, Hk]],
etc. We define the depth of each element of L as the
maximum number of commutation operators required to
generate it. If L = su(d), the system is said to be fully
controllable [18].

Given a particular target V = e−iXφ, we can quali-
tatively see that we can associate a depth in L to the
target generator X. As noted previously in Ref. [43],
we expect this depth to impact the MCT. In order
to obtain some intuition about this, let us take as an
example the two-level Hamiltonian of Eqn. (17) and the
corresponding family of target gates of Eqn. (19). In
this simple case, it is readily seen that targets of the
form Vx(φ) and Vy(φ) are easily achieved by setting the
field α(t) constant and evolving for a time φ/Ω, thus
meaning that the QSL time coincides with the MCT for
these cases. The attainability of this fundamental speed
limit is a direct consequence of having direct control of

the σx and σy in the Hamiltonian. On the other hand,
the targets Vz(φ) require explicit time-dependence of the
control fields and longer control times. In the following,
we will explore this feature with a more systematic
approach and analyze the short-time attainability of
unitary transformations involving higher-depth elements
of the dynamical Lie algebra.

B. Nested commutators and analytic bounds for
the MCT

In order to make the ideas presented in the previous
Subsection more concrete, let us rewrite the Schrödinger
equation, c.f. Eqn. (32) in an alternative way. This will
allow us to solve for the dynamics at short times for arbi-
trary driving fields. Note that no optimization problem
is defined in order to do this, so these procedure is gen-
eral. For that, we will use the formula for the derivative
of the exponential map [44]. Given a Lie group G and its
associated Lie algebra g, we can think of the exponential
as a map exp : g :→ G, such that if we have a C1 path
X(t) in g we can compute

d

dt
eX(t) = eX

1− e−adX

adX

dX

dt
. (34)

Here, adX : g → g is given by adX(Y ) = [X,Y ]. We
will also use the definition of AdA(X) = AXA−1, where
A ∈ G, and the important property that

Ad ex = eadX , X ∈ g. (35)

Let us now write the evolution operator U(t) =
e−iA(t) ∈ SU(d) such that −iA ∈ su(d). We can use
(34) to express Eqn. (32), which we will use as an start-
ing point

dA

dt
=

ad−iA
ead−iA − 1

H =

∞∑
m=0

Bm
m!

(−i)m (adA)
m
H, (36)

where {Bm} are the set of Bernouilli numbers [45]. Eqn.
(36) is a differential equation for the generator A(t) of
U(t) and will thus prove useful to analyze how different
transformations become accessible at short times.

We will consider dimensionless units by introducing
H = Ωh and t = s

Ω . We then introduce a Taylor expan-
sion of the Hamiltonian and the generator in the time
variable

A(s) =
∑
n=1

A(n)sn (37)

h(s) =
∑
n=0

h(n)sn. (38)

With this we can express Eqn. (36) as∑
n

nA(n)sn−1 =
∑
m

(−1)m
Bm
m!

∑
k

(∑
n

snadA(n)

)m
h(k)sk.

(39)
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Collecting powers of s we get the following set of equa-
tions up to O(s2)

A(1) = h(0) (40)

2A(2) = h(1) − iB1

1!
adA(1)h(0) (41)

3A(3) = h(2) − iB1

1!

(
adA(1)h(1) + adA(2)h(0)

)
−B2

2!
ad2
A(1)h

(0) (42)

These equations can be solved iteratively and give

A(1) = h(0) (43)

A(2) =
1

2
h(1) (44)

A(3) =
1

3
h(2) +

i

12
[h(0), h(1)] (45)

In Appendix B we extend this analysis up to O(s4).
Note that Eqn. (45) involves the commutator of different
terms in the Hamiltonian, which will determine the
appearance of depth-1 elements of the dynamical Lie
algebra in the evolution of A(t), but only in terms
proportional to s3 or higher.

In order to analyze how restricting the available terms
in the Hamiltonian is reflected in this equations, we in-
troduce a set {χµ}, µ = 1, . . . , d2 − 1 such that {−iχµ}
is an orthogonal basis of su(d), normalized such that
tr (χµχν) = δµν . We can then expand

A(n)(s) =

d2−1∑
µ=1

a(n)
µ (s)χµ (46)

h(n)(s) =

M∑
µ=1

ε(n)
µ (s)χµ, (47)

Here, the key point is that the number of elements in
the expansion of h(s), M , is typically much smaller than
d2 − 1. From now on we will specialize in the simplest
non-trivial case, where we have M = 2 orthogonal terms,
to develop bounds and estimates on the MCT. General-
izations to higher number of terms can be pursued with
the same formalism. Thus we can write

h = εA(s)χA + εB(s)χB , (48)

and also define

χC =
−i
fABC

[χA, χB ] (49)

where fABC is the corresponding structure constant of
the group. Note that χC is the only depth-1 element
in the algebra (to avoid confussion we are using capital
letters A,B, . . . for the values of the greek-letter indices

µ, ν), and that {χA, χB , χC} form an orthogonal set. We
can then write the explicit form of the short-time solution
from Eqns. (43)-(45).

aA(s) = ε
(0)
A s+

1

2
ε
(1)
A s2 +

1

3
ε
(2)
A s3 (50)

aC(s) = −fABC
12

(
ε
(0)
A ε

(1)
B − ε

(1)
A ε

(0)
B

)
s3, (51)

which are valid up to O(s3) (the solution for aB is iden-
tycal to the one for aA). From these its easy to de-
rive bounds for the evolution time. Let us first assume
the case of phase control, where εA(s) = E cosα(s) and
εB(s) = E sinα(s). Then, from Eqn. (50) it follows that
the time sA needed to achieve aA(sA) = β obeys

sA ≥
β

E
. (52)

Similarly, the time sC for which aC(sC) = β follows
the inequality

sC ≥

√
12β

fABCE2
(53)

Finally, in Appendix B we derive an analogous inequal-
ity associated to a depth-2 element of the algebra χD,

sD ≥
(

18β

fABCfACDE3

) 1
3

. (54)

These inequalities are the main analytical results of
this paper. They are valid for short times (i.e. s �
1) and they apply to any Hamiltonian of the form (48)
with controls bounded by E. Note that the proposed
bounds depend on the structure constants of the group,
which give information about how fast i.e. χC can be
generated by alternating in time χA and χB . To get
clearer sense of the information these bounds give on the
minimum control time, we will apply them to the two
model systems introduced in Section II. For SU(2) we
identify A = x and C = z to obtain

Tx ≥
φ

Ω
≡ τx(φ) (55)

Tz ≥
√

12φ

Ω
≡ τz(φ) (56)

These two bounds are a refinement of the geometrical
QSL bound of Eqn. (21). Note that τx = τQSL, as ex-
pected from the previous discussion, and that τz > τQSL.
In this way, the new bounds are more restrictive than
the QSL, and thus are more meaningful to bound the
MCT. This is achieved thanks to the fact that we have
used information about the available controls in the
Hamiltonian. It is important also to remark that we
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Figure 3. Numerical calculation of the MCT. We show the
optimized functional value as a function of the total evolution
time T given to the optimal control algorithm. The MCT
is estimated here as the minimum value of T for which the
infidelity JT reaches 10−5. Results are shown for a specific
example, given by the SU(2) model with the target parameter
φ = π

2
. The number of time steps is set to Nts = 30, and the

results do not change significantly upon increasing this value.

have not solved any optimization to get to these results:
the expressions obtained are completely independent of
the actual shape of the control field α(s).

For the SU(3) model we will proceed to compare these
bounds directly with the numerical results for the MCT
in the next section.

C. Numerical results for the MCT

In this Section we compare the analytical bounds of
Eqns. (52)-(54) with numerical results of the MCT for
both models discussed throughout this paper. First, we
briefly describe the methodology to estimate (or rather,
upper bound) the MCT, which has been applied to a
wide variety of systems in several works over the past
decade. Examples include Landau-Zener models [27, 29],
one-dimensional chains of interacting spin- 1

2 particles
[46], entangling transformations in superconducting
qubits [47] and neutral atoms [48].

The procedure is as follows. Given the Hamiltonian
H[ε(t)] and a target unitary transformation V , we fix
the total evolution time T and define an optimization
functional

JT = 1− 1

d2
|tr
(
V †U(T )

)
|2, (57)

which is the infidelity between the target and U(T ),
the unitary evolution operator generated by H(t) at
t = T . For each T and starting from a random initial

Figure 4. Minimum control time (MCT) for the SU(2) model.
Results are shown for the targets Vx(φ) and Vz(φ) and com-
pared with the different bounds studied in this paper. Black
dotted lines shows the geometric QSL time, while the red
dashed line shows the short-time bound Tz derived in Section
III. Full red line shows the analytical result for the MCT for
this particular model, derived in Ref. [50].

control field ε(0)(t) we use the GRAPE algorithm
[39, 49] to find the optimum field ε∗(t) that minimizes
JT . In practice, the time variable is divided into Nts
steps, such that the optimization is carried over the
Nts variables that parameterize the piecewise-constant
control field. Starting from a suitably large value of T ,
once the optimum is found, that solution is fed as an
initial seed for the next step, where T is now reduced.
This procedure is repeated for several random initial
fields and, in each case, the best attained infidelity
is recorded. A typical set of results arising from this
procedure is shown in Fig. 3. We then calculate Tmin
as the minimum value of T such that the functional
achieves a certain threshold, which is set to 10−5

throughout this paper. Notice that the optimized
JT follows a sharp transition at T = Tmin, and so the
the results are quite insensitive to the choice of threshold.

Using the procedure outlined in the above paragraph,
we have numerically calculated the MCT for several
cases of interest. In Fig. 4 we show results corresponding
to SU(2) for the family of targets in Eqn. (19), specif-
ically Vx(φ) (which are identical to those of Vy) and
Vz(φ). There, we can see that minimum time to achieve
z-rotations is considerably bigger than the minimum
time required to perform x-rotations, as expected.
The dependence with the angle of rotation φ, which
determines how far away the target transformation is
from the identity, is also different for both cases.

Together with the numerical results, in Fig. 4 we
have plotted the geometric QSL bound of Eqn. (21),
and the short-time bounds Tz in Eqn. (56) and Tx
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(which coincides with τQSL here). We can verify here
that the MCT for Vx saturates the QSL bound. The
MCT for Vz, on the other hand, is considerably bigger
than the QSL time, but it matches the short-time bound
we have proposed. Note that the MCT in this case
actually surpasses Tz for targets that further away from
identity. This is reasonable since the inequality (55)
is strictly valid for Ωt � 1. However, Tz estimates
the actual MCT much more accurately than the QSL.
This property is useful, since it allows to provide a
higher-level estimation to the MCT before solving any
intrincate time-optimization problem. Note that, for
this particular model, an actual analytical calculation
for the MCT was proposed and solved in Ref. [50].
The result, which roughly coincides with the numerical
estimates, is also shown in the plot.

We now turn our attention to the SU(3) model.
Results for the MCT are shown in Fig. 5 (a). Here we
have analyzed targets corresponding to depths 0 (VA),
1 (VC) and 2 (VD) in the dynamical Lie algebra of the
Hamiltonian (22). Comparing to the SU(2) example,
the situation is now considerably more complicated.
Interestingly, we note that the depth does not imply an
hierarchy in the MCT, i.e., for large enough φ, the target
VD(φ) is achievable in a shorter time than VC(φ), albeit
the former being associated with a higher depth. Nev-
ertheless, when analyzing targets close to identity, i.e.
when φ � 1 we do observe such hierarchy which is well
predicted by our analysis in the beginning of this section.

Fig. 5 (a) also shows the relevant bounds computed
for this problem. Note that, apart from τQSL = TA
(which is the simplest case), the other bounds are not
saturated. This is expected in the general case, since
the aim of this analysis is to bound or estimate the
MCT, and obtaining its precise value implies solving
an optimization. Nonetheless, the short-time bounds
TC and TD do give valuable information: first, they are
much better bounds than the QSL time. From Fig. 5
(b), which shows the same data as (a) but in a log-log
plot, we can see that both of them predict very well the
order of magnitude of the MCT. Note that this is very
relevant, since the geometric QSL time can be almost
two orders of magnitude below the MCT, as in the
case of VD. The short-time bounds also predict nicely
the power law behaviour of the MCT for small φ, the
exponent being the inverse of the associated depth of
the target plus one. This behavior, which holds in the
perturbative limit, can also be inferred by looking at the
Magnus expansion for A(s), and noting that terms with
depth k commutators involve k + 1 time integrals.

Figure 5. Minimum control time (MCT) for the SU(3) model.
Results are shown for the targets VA(φ), VC(φ) and VD(φ) and
compared with the different bounds studied in this paper. (a)
Black dotted line shows the geometric QSL time, while the
red dashed and blue dash-dotted lines show the short-time
bounds TC and TD derived in Section III. (b) Same data as
in (a) displayed in a log-log plot. Thin full lines indicate a
power law fit of the form y = bxa for each case. The inverse
powers obtained are displayed in the legend, together with
the correlation coefficient R2.

IV. SUMMARY AND OUTLOOK

In this paper we have explored the relation between
the geometric quantum speed limit and the minimum
control time for unitary transformations in finite-
dimensional quantum systems. In order to do this,
we have first taken the QSL formalism for pure-state
evolution and constructed inequalities that bound the
evolution time of U(t), the unitary evolution operator.
While these inequalities are universally valid, we point
out that, in the context of quantum control problems,
more stringent limitations arise due to limited control
over the system. Following this key observation, we
systematically analyzed the short-time behaviour of the
time-dependent Schrödinger equation, which allowed us
to derive a new family of bounds that explicitly show
the role of the so-called Dynamical Lie Algebra on the
minimum control time. We have applied our results
to SU(2) and SU(3) models and show how, even in
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low-dimensional systems, the proposed bounds can give
much more information on the MCT than the geometric
QSL.

We point out that the bounds proposed in Sect.
III are general, although its explicit calculation for
higher-dimensional systems and higher-order depths will
become intricate. Nevertheless, we expect that they
would give much better estimates for the MCT than
the QSL in any case. These estimates on the MCT are
important since they give a baseline over which we can
use quantum optimal control to refine results.

Finally we wish to point out some interesting poten-
tial generalizations of this work. First, it is important to
asses the role of drift terms in the Hamiltonian, i.e. terms
over which we have no control and are typically constant
in time. These is the usual case for two-qubit systems in
most quantum computing platforms, where the two-body
(entangling) interaction is usually fixed by the specifica-
tions of the device. It would be interesting to address this
in connection to the Zermelo navigation problem [51, 52].

Second, the short-time bounds presented here are derived
from a perturbative analysis, but it would be interesting
to study if we can develop a theoretical description that
goes beyond the QSL and connects with the time-optimal
control problem using the tools of differential geometry.
In particular, in Refs. [26, 53] the time-optimal control
problem is casted as the problem of finding the geodesic
between identity and the target unitary in an appropri-
ate metric. Solving the geodesic equation is in general
hard, but following a perturbative approach might lead
to results similar to those presented in this paper, albeit
in a geometrical picture, thus providing a more formal
connection between the notions of QSL and MCT.
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Appendix A: Controllability of the SU(3) model

Here we explicitly show that the SU(3) model of Eqn.
(22) is fully controllable. As discussed in Sect. III,
to prove this we have to show that its dynamical Lie
algebra L equals su(3). Following the procedure outlined
in [18], we start from the depth-0 elements of L, namely

λA = λ1, λB = (λ2 + λ4)/
√

2 (already introduced in
the main text), we calculate all the possible nested
commutators and check that we can form a set of
d2 − 1 = 8 linearly independent elements.

The only depth-1 element will be related to the com-

mutator of these two operators,

[λA, λB ] ∝ λC =

√
4

5

(
λ3 +

1

2
λ7

)
. (A1)

Depth-2 elements are given by

[λA, [λA, λB ]] ∝ λD =
4√
17

(
λ2 +

1

4
λ4

)
(A2)

[λB , [λA, λB ]] ∝ λE = − 5
√

2

2
√

17

(
λ1 +

3

5
λ5

)
Finally, the depth-3 elements are

[λA, [λA, [λA, λB ]]] ∝ λF =
4
√

4√
65

(
λ3 +

1

8
λ7

)
(A3)

[λA, [λB , [λA, λB ]]] ∝ λG = λ6

[λB , [λA, [λA, λB ]]] ∝ λG = λ6

[λB , [λB , [λA, λB ]]] ∝ λH =
1√
65

(
13

2
λ3 + 4λ7 +

3
√

3

2
λ8

)
It can be readily verified that the set of eight opera-

tors {λX} ∈ L with X = A,B, . . . ,H are linearly inde-
pendent. Since all of these are elements of su(3), then it
follows that L = su(3), meaning that the system is fully
controllable.

Appendix B: Perturbative solution to Schrödinger
equation

Continuing to collect powers of s in Eqn. (39) up to
s4 we obtain the following solutions

A(4) =
1

4
h(3) +

i

12
[h(0), h(2)] (B1)

A(5) =
1

5
h(4) +

i

20

(
3

2
[h(0), h(3)] +

1

3
[h(0), h(2)]

)
+

1

120

(
1

2
[h(1), [h(0), h(1)]]− 1

3
[h(0), [h(0), h(2)]]

)
+

i

720
[h(0), [h(0), [h(0), h(1)]]]

For the particular case discussed in the main text,
where the Hamiltonian has M = 2 terms coupling
to the operators χA and χB , we can define χD =
−i

fACD
[χA, χC ]. If tr

(
χ2
D

)
= 1 and assuming that now the

set {χA, χB , χC , χD} is orthonormal, we get an equation
for aD(s)

aD(s) =
fABCfACD

120
F (ε)s3 +O(s4), (B2)

where

F (ε) = ε
(0)
A

(
1

2
ε
(1)
A sε

(1)
B s− 1

3
ε
(0)
A ε

(2)
B s2

)
−ε(0)

B

(
1

2
ε
(1)
A sε

(1)
A s− 1

3
ε
(0)
A ε

(2)
A s2

)
(B3)
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Following the phase control models discussed in this
work, we take εA(s) = E cosα(s) and εB(s) = E sinα(s).
Then, it can be shown that

|F (ε)| ≤ 20

3
E3. (B4)

Combining Eqns. (B2) and (B4), we can see that the
time sD for which aD(sD) = β follows the inequality

sD ≥
(

18β

fABCfACDE3

) 1
3

, (B5)

which is Eqn. (54) in the main text.

Finally, note that if the two generators appearing in
the Hamiltonian are orthogonal, then we can always
associate the depth-0 and -1 elements of L to elements
of an orthogonal basis. However, this is not generally
true for depths higher than one. That is actually the
case in the SU(3) model, where λD is not orthogonal
to λB . Nevertheless, we can always generate an or-
thogonal basis by using the Gram-Schmidt process. If
χD is the orthonormalized element corresponding to
λD ∝ χ̃D, then an estimate on the minimum time such
that ãD(sD) = β is obtained by replacing fACD with
ηDfACD, where ηD = tr (χDχ̃D).


