
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Electrically driven, optically levitated microscopic rotors
Alexander D. Rider, Charles P. Blakemore, Akio Kawasaki, Nadav Priel, Sandip Roy, and

Giorgio Gratta
Phys. Rev. A 99, 041802 — Published 24 April 2019

DOI: 10.1103/PhysRevA.99.041802

http://dx.doi.org/10.1103/PhysRevA.99.041802


Electrically Driven, Optically Levitated Microscopic Rotors

Alexander D. Rider,1, ∗ Charles P. Blakemore,1 Akio Kawasaki,1, 2 Nadav Priel,1 Sandip Roy,1 and Giorgio Gratta1, 2

1Department of Physics, Stanford University, Stanford, California 94305, USA
2W. W. Hansen Experimental Physics Laboratory,

Stanford University, Stanford, California 94305, USA
(Dated: April 2, 2019)

We report on the electrically-driven rotation of 2.4-µm-radius, optically levitated dielectric mi-
crospheres. Electric fields are used to apply torques to a microsphere’s permanent electric dipole
moment, while angular displacement is measured by detecting the change in polarization state of
light transmitted through the microsphere. This technique enables greater control than previously
achieved with purely optical means because the direction and magnitude of the electric torque can
be set arbitrarily. We measure the spin-down of a microsphere released from a rotating electric
field, the harmonic motion of the dipole relative to the instantaneous direction of the field, and the
phase lag between the driving electric field and the dipole moment of the MS due to drag from
residual gas. We also observe the gyroscopic precession of the MS when the axis of rotation of the
driving field and the angular momentum of the microsphere are orthogonal. These observations
are in quantitative agreement with the equation of motion. The control offered by the electrical
drive enables precise measurements of microsphere properties and torque as well as a method for
addressing the direction of angular momentum for an optically levitated particle.

I. INTRODUCTION

The ability to manipulate microscopic objects has
found important applications in science and technology.
The interest in optical levitation of dielectric objects in
vacuum, pioneered by Ashkin and Dziedzic [1, 2], has
grown in recent times, with applications in precision mea-
surements [3–8], surface science [9] and quantum tech-
nology [10–18]. The suggestion was made in [1] that the
rotational degrees of freedom (DOFs) of an optically lev-
itated dielectric microsphere (MS) could be manipulated
using the angular momentum in circularly polarized light.
This has been realized in more recent times [19–32].

Here we present a novel technique for manipulating
the rotational DOFs of an optically levitated MS by us-
ing electric fields to apply a torque to the |d| ∼ 100 e·µm
permanent electric dipole moment [5] found in 2.4-µm ra-
dius silica MSs grown using the Stöber process [33]. The
orientation of the dipole moment follows the orientation
of the driving field so that the angular velocity, ωMS , can
be set in both magnitude and direction [34]. Using the
control afforded by electric torques, we observe the spin
down of a MS suddenly released from a rotating electric
field, measure the MS dipole moment by tuning the li-
bration frequency, test the relationship between residual
gas pressure and drag, and induce gyroscopic precession
by rapidly changing the electric field axis of rotation.
Because the electric field and dipole moment are both
known in this system, precise quantitative measurements
are possible.
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II. EXPERIMENTAL TECHNIQUES AND
PRINCIPLES

The rotational response of a trapped MS, including
an applied electric field, is described by the equation of
motion:

L̇ = T = d×E− β

I
L + Topt, (1)

where, T is the total torque, d is the electric dipole mo-
ment, E is the electric field, L is the angular momentum
related to the angular velocity by ωMS = L/I, β is the
rotational damping coefficient, I is the moment of iner-
tia, and Topt is the optical torque. The part of the optical
torque which does not average to zero over a rotation is
generally negligible compared to the electric torques used
here [35].

The angular velocity and the rotational phase of the
MS are measured optically. As the MS rotates, it couples
some of the incident linearly polarized optical power, P0,
into the cross-polarized optical power, P⊥, according to,

P⊥ = P0 sin (η/2)
2

sinφ2, (2)

where η is the phase retardation between the fast and
slow axes, and φ is the angular displacement of the MS
relative to an origin in which the fast axis is aligned with
the incident polarization [36]. The sinφ2 term implies
that the phase of the MS is encoded as a modulation of
P⊥, at twice the rotation frequency, ωMS .

The optical trap is identical to that described in
Ref. [37] with the addition of polarization optics to mea-
sure the cross-polarized light, P⊥. One polarizing beam
splitter (PBS) is inserted before the trap to define the lin-
ear polarization of the incident light, and a second PBS
is placed after the trap to extract P⊥ and measure the
rotational phase of the MS. The remainder of the optical
system, described in Ref. [37], is capable of stabilizing
the optical trap at high vacuum.
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FIG. 1. Cross-section of the electrodes and polarization op-
tics. Each electrode is a truncated pyramid with a cone bored
in the back to allow optical and mechanical access to the trap-
ping region. The MS is levitated by an optical system iden-
tical to that described in [37], with the addition of the polar-
ization optics used to measure the rotational state of the MS.
The dashed lines denote the components inside the vacuum
chamber. The voltages on each of the six electrodes around
the trapping region are driven to exert arbitrary torques on
the MS’s permanent dipole moment. The detail to the right
shows a slice of the electric field streamlines produced by the
electrode geometry with the electrodes on the top and the
left at +V , while those on the bottom and on the right are
at −V . The convention used to define φ is also illustrated to
the bottom right.

The residual gas pressure is controlled and measured
between ∼2× 10−6 mbar and 1 mbar. The vacuum pres-
sure is tuned by introducing or removing N2 gas and is
measured by a cold-cathode gauge for pressures below
10−4 mbar, a capacitance manometer for pressures be-
tween 10−4 and 10−2 mbar, and a Pirani gauge for pres-
sures between 10−3 and 1 mbar. The cold cathode gauge
is found to affect the charge the MS, so it is only used to
measure the ∼2×10−6 mbar base pressure of the vacuum
system after an experiment. The capacitance manome-
ter does not cover the full range of vacuum pressures, so
the Pirani gauge is calibrated against the more accurate
capacitance manometer, where there is overlap. This sys-
tem is capable of measuring the pressure to an accuracy
of 10% for N2 over the range of interest [38, 39].

The trapping region of the apparatus is illustrated in
Fig. 1, which shows a cross-section of the truncated pyra-
midal electrodes used to apply torquing electric fields to

the MS. A cone is bored into the back of each pyramidal
electrode to allow optical and mechanical access to the
trapping region. The six electrodes define a cubic trap-
ping cavity 4 mm on a side. Each electrode is connected
to a high-bandwidth, high-voltage amplifier driven by a
digitally-synthesized analog signal. This apparatus is ca-
pable of producing arbitrary three-dimensional electric
fields up to 100 kV/m in magnitude at frequencies as
high as 1 Mrad/s, which limits the rotation frequencies
achieved here. To produce a spinning electric field, a
sinusoidal voltage is applied to a set of four electrodes
in a plane, with a phase offset of π/2 between successive
electrodes. A finite element analysis (FEA) is used to cal-
culate the electric field. It is found that the x component
of the field in the center of the trap, Ex, is well approxi-
mated by Ex = 0.66(∆Vx/∆x), where ∆Vx is the poten-
tial difference across a pair of electrodes, and ∆x = 4 mm
is the electrode separation. The same statement applies
to Ey and Ez.

Before performing a measurement, the MS is dis-
charged as described in Refs. [4, 9, 40]. In addition, the
MS is prepared in a state of known angular momentum
and rotational phase by dissipating any initial angular
velocity using 0.1 mbar of N2 gas. An electric field ro-
tating at ω0 = 2π rad/s with E = 41 kV/m is then
turned on to align d with E. The chamber pressure is
reduced to the base pressure of the vacuum system and
ω0 is increased at a rate of 300 rad/s2 to the desired ro-
tation frequency. Changes in the rotational dynamics in
response to changes in the electric field magnitude and
direction, as well as the damping coefficient, β, can then
be observed. The data presented here were collected with

FIG. 2. Top: typical amplitude spectrum of P⊥ for a MS
prepared in a state of angular momentum pointing along the
ẑ direction. The MS is spinning with ωMS = 100π krad/s,
driven by an electric field with E = 27 kV/m. The prominent
line with sidebands are signatures of the MS rotation, with the
position of the central line at twice the drive frequency. The
sidebands are phase modulation of the rotation frequency, as
shown in the bottom panel.
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one specific MS. Similar qualitative behavior is observed
with other MSs, and the measured dipole moment is rep-
resentative of the population.

III. OBSERVATIONS AND DYNAMICS

A typical amplitude spectrum of P⊥, in the region
around twice the drive frequency, with ω0 =100π krad/s
is shown in the top panel of Fig. 2. A clear peak which
follows the frequency, ω0, of the electric driving signal is
observed at 2ω0. The ∼ 10 ppm amplitude modulation
caused by rotation of the MS implies that the relative
phase retardation of this MS is η ∼ 10−2. The promi-
nent sidebands are caused by harmonic oscillation of the
dipole about the electric field, which can be seen by de-
modulating the phase of P⊥ relative to the electric field
carrier signal as shown in the bottom panel of Fig. 2.

A. Release from a spinning field

After initializing the MS with a definite angular mo-
mentum and phase, the conditions can be changed to ob-
serve different solutions of the equation of motion. The
simplest solution occurs when the drive electric field ini-
tially rotating about the trapping beam axis is switched
off, so that only the drag term, −(β/I)L, remains in Eq. 1
and the initial angular momentum decays according to:

L(t) = e−t/τL(0). (3)

Here, the damping time τ , is related to the damping co-
efficient by τ = I/β. This decay is illustrated in Fig. 3 at
the base pressure of the vacuum system (2×10−6 mbar).
For the first 1000 s, ωMS & 150 krad/s, the drag torque
dominates, and the data are well modeled by an exponen-
tial decay. The behavior beyond 1000 s can be attributed
to an optical torque, Topt ∼ 10−23 N·m.

The average optical torque on a birefringent particle is
given approximately by

Topt ≈
P
ωopt

(
1− cos (kr∆n) sin 2φ

)
, (4)

where P is the ∼1 mW trapping beam power,
ωopt∼1015 rad/s is the optical frequency, k∼2π/(1 µm)
is the wavenumber, r = 2.35 µm is the radius of the mir-
cosphere, ∆n is the birefringence, and φ is the degree
of ellipticity [35, 41]. The terminal angular velocity of
the microsphere can then be explained by a fluctuating
∼100 ppm degree of ellipticity in the trapping beam.

B. Libration

The simplest dynamics with the electric dipole inter-
acting with a rotating electric field can be analyzed in
the case where the electric field is rotating about a fixed
axis with the dipole lying in the same plane as the elec-
tric field. In the frame co-rotating with E, Eq. 1 reduces

FIG. 3. Time evolution of ωMS after the driving electric field
is switched off. For ωMS & 150 krad/s the angular velocity
exhibits an exponential decay. For ωMS . 150 krad/s the
dynamics are modified by torque that could be explained by
a ∼ 100 ppm degree of ellipticity in the 1 mW trapping beam
and the η ∼ 10−2 phase retardation of the MS.

to an equation of motion for φ, the angle between the
electric field and the dipole,

φ̈ = −ω0Ω sin (φ)− 1

τ
(ω0 + φ̇), (5)

where,

Ω ≡ dE/(Iω0). (6)

For sufficiently low damping, τΩ > 1, this equation has
an equilibrium solution,

φeq = − arcsin

(
1

τΩ

)
= − arcsin

(
βω0

dE

)
, (7)

and can be linearized to give harmonic oscillation at the
frequency

ωφ =
√

cos (φeq)ω0Ω =

√
cos (φeq)

E·d
I
. (8)

This results in the sidebands shown in Fig. 2. The de-
pendence of ωφ on the magnitude of the driving electric
field, E, is well-modeled by Eq. 8, as shown in Fig. 4.
The equilibrium phase lag φeq may be neglected because
τΩ � 1 at the base presssure of the vacuum system.
The fit shown in Fig. 4 extracts the ratio d/I, which
can be used to determine the dipole moment, d, if the
MS is assumed to be a uniform sphere with the radius,
rMS = 2.35 ± 0.02 µm and mass MMS = 85 ± 9 pg,
measured for this lot of MS in Ref. [42]. This proce-
dure gives I = (1.9 ± 0.2) × 10−25 kg·m2, which implies
d = 127± 14 e·µm, in agreement with Ref. [5]. The abil-
ity to measure the dipole moment from the frequency
of harmonic oscillation enables precise measurements of
torques on an optically levitated particle in high vac-
uum by balancing an unknown torque against an electric
torque.
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C. Drag from residual gas

Once the dipole moment is known, it is possible to
measure the drag due to residual gas and verify mod-
els of dissipation for optically levitated particles. The
equilibrium phase lag φeq between d and E is expected
to increase with the pressure P , as the drag from the
gas increases. In the molecular flow regime, the damping
coefficient, β, can be written as β = k·P , where k is a
constant that depends on the geometry of the MS, as well
as the temperature and species of residual gas [43, 44].
The argument to the arcsin in Eq. 7 can then be param-
eterized by

ω0β

dE
=
ω0k

dE
·P =

P

Pπ/2
, (9)

where Pπ/2 ≡ dE/(ω0k) is the pressure at which φeq →
−π/2, where the MS rotation loses lock with the driving
electric field (in practice fluctuations cause the MS to
lose lock before φeq reaches −π/2).

This behavior is shown in the three top panels of Fig. 5
for three different amplitudes of the driving field. It is
evident that the unlocking pressure depends on the field
amplitude and that after losing lock φeq becomes ran-
dom. Pπ/2 can be extracted from a fit for each field am-
plitude, as plotted (with additional values of the field)
in the bottom panel of Fig. 5. The linear relationship
k = dE/(ω0Pπ/2) indicates that the dissipation is pro-
portional to the residual gas pressure and there are no
significant additional sources of dissipation at pressures
' 10−2 mbar.

The fit reports k = (4.1± 0.6)× 10−25 m3s, assuming
d = 127 ± 14 e·µm. This is consistent with the value
k = 3.4 × 10−25 m3s predicted in Refs. [43, 44] for a
2.35-µm-radius MS in thermal equilibrium with 300 K N2

gas. No evidence for increased dissipation due to an ele-
vated MS temperature or surface roughness is observed.

FIG. 4. Harmonic oscillation frequency, ωφ, versus driving
electric field amplitude, E, for a MS spinning at ωMS =
100π krad/s at a pressure of 2 × 10−6 mbar. The data
is fit to Eq. 8, obtaining (d/I) = 108 ± 2 s·A/(kg·m) and
d = 127± 14 e·µm.

FIG. 5. Top three panels: Equilibrium phase, φeq, versus
chamber pressure for several magnitudes, E, of the driving
field with ωMS = 100π krad/s. For each value of E, φeq in-
creases until the MS loses lock with the field, and the phase
becomes random. For each E, a fit to Eq. 7 (with the ar-
gument in Eq. 9) is shown in red. Pπ/2 is identified by a
red diamond. Bottom panel: The linear relationship between
Pπ/2 and E, with additional E included. The slope of the
fit of E vs pmax is 639 ± 64 (kV/m)/mbar. Assuming the
dipole moment measured from the frequency of small oscilla-
tions, this gives k = β/P = (4.1 ± 0.6) × 10−25 m3s, which
is consistent with k = β/P = 3.4 × 10−25 m3s predicted in
Refs. [43, 44].

This measurement of k can be used to infer the base vac-
uum pressure in the vicinity of the MS for the spin-down
time measured in Fig. 3 from P = I/(kτ). This give
P = (4.9 ± 0.7) × 10−6 mbar, which is roughly a factor
of two greater than the pressure measured after the ex-
periment with the cold cathode gauge. This discrepancy
could be due to another source of dissipation which be-
comes significant at low pressures, inaccuracy of the cold
cathode gauge, or a real pressure difference between the
residual gas pressure in the trap and the cold cathode
gauge at the end of the measurement.

D. Gyroscopic precession

When the electric field rotation axis and the angular
momentum are not aligned, the dynamics are complex
and depend sensitively on the initial conditions. For Ω�
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FIG. 6. Top three panels: Spectra of the cross-polarized light
intensity, P⊥, for a MS precessing about the x̂ axis while
spinning at ωMS = 100π krad/s). The modulation of the
cross-polarized light occurs predominantly at twice the pre-
cession frequency, denoted by red diamonds. Bottom panel:
Ω for different E. The slope of the fit (red line) provides
(d/I) = ω0Ω/E = 106± 2 s·A/kg·m, which is consistent with
the measurement of d/I from the frequency of small oscilla-
tions.

ω0, and a field E(t) = E·(cos (ω0t)ẑ−sin (ω0t)ŷ), rotating
about the x̂ axis, an approximate solution is given by,

L(t) = L· {cos [(Ω/2)t] ẑ + sin [(Ω/2)t] ŷ} (10)

and,

d(t) = −d·
{

cos [ω0(Ω/2)t] x̂

+ sin [(ω0 + Ω/2) t] cos [(Ω/2)t] ŷ

+ sin (Ω/2) ẑ
}
,

(11)

in the absence of dissipation.
The angular momentum vector L, undergoes left-

handed precession about the electric field axis of rotation
at an angular frequency Ω/2. The factor of 1/2 is due to
the fact that the torque is averaged over a rotation of the
MS. This behavior is observed as a low-frequency mod-
ulation of the cross-polarized light most prominently at
twice the precession frequency. The amplitude spectra
for a precessing MS driven by a range of electric fields

magnitudes are shown in Fig. 6, in which the MS is spin-
ning at ω0 = 100π krad/s. The low-frequency amplitude
modulations of the cross-polarized light are larger than
those for rotation about the trapping beam axis because
of the coupling with the feedback used to stabilize the mi-
crosphere at low frequencies. As expected, the precession
frequency is proportional to the magnitude of the driv-
ing electric field and the slope of Ω vs E, which implies
(d/I) = 106 ± 2 s·A/kg·m, is consistent with the value
of (d/I) = 108 ± 2 s·A/kg·m from the measurement of
libration.

IV. CONCLUSION

We have demonstrated electrically driven rotation of
optically levitated particles. Although it would be tech-
nically challenging to reach the ∼1 GHz rotation frequen-
cies achieved with optical rotation [21], electrically driven
rotation offers precise control over the direction and mag-
nitude of the torque, making the quantitative measure-
ments presented here possible. This is in contrast to op-
tically driven rotation, where the coupling to the optical
torque depends on the geometry and birefringence of the
trapped particle, as well as the exact optical properties of
the laser beam used to apply the torque. The ability to
measure and control system parameters has implications
for the field of optical levitation and manipulation.

The libration of an optically levitated dipole trapped
in an electric field is a degree of freedom that can be
exploited for cooling and precision measurement. Libra-
tion of a dipole trapped in a rotating electric field can be
cooled by simple phase modulation of the electric field
driving the rotation. MSs made from materials with
larger dipole moments could also be used to couple to
and measure oscillating electric fields near the rotation
frequency. After the dipole coupling to an electric field is
measured from the libration frequency, torques measured
from the phase lag of the rotation can be calibrated into
physical units.

Background forces arising from electric fields coupling
to a MS dipole moment have been the limiting factor in
several measurements with optically levitated MSs [4, 5].
The techniques presented here provide new tools to con-
trol and measuring the orientation of a MS’s dipole mo-
ment, which could be used to mitigate these background
forces by averaging over a rotation of the dipole. This
would not be possible with optical rotation because the
dipole is not guaranteed to be orthogonal to the axis of
rotation.

The measurement of drag torque versus residual gas
pressure demonstrates a technique for precise quantita-
tive torque measurements with optically levitated MSs
and validates a model for the drag on a levitated parti-
cle in the molecular flow regime. These techniques could
be used to measure the optical properties of a levitated
particle by balancing electric and optical torques.

Finally, the demonstration of gyroscopic precession in-
duced by misalignment between the angular momentum
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and the electric field rotation axes demonstrates a tech-
nique for measuring the orientation of the angular mo-
mentum for an electrically driven MS. This opens the
way to applications in the area of microscopic gyroscopes,
with rotational drag which may be engineered to be at
or beyond the level of current mechanical gyroscopes and
the possibility of sensing torques at microscopic length
scales.
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