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The recently introduced concept of Stokes fluctuations generalizes both the Han-

bury Brown-Twiss effect and the notion of scintillation. Here we apply this new

framework to the specific example of a Gaussian Schell-model (GSM) beam. We

derive formulas for Stokes scintillations and Stokes fluctuation correlations which

explicitly express the dependence of these quantities on the GSM source parameters.

It is found that the normalized Stokes scintillations vary significantly with position.

Also, they can be both positively or negatively correlated.



2

I. INTRODUCTION

Recent work on intensity correlations has attempted to extend the study of the Han-

bury Brown-Twiss (HBT) effect [1–3], as customarily applied to fields of research such as

astronomy and quantum optics, to the case of vector electromagnetic beams. One avenue

of investigation on this topic is to explore the possible relationship between the state of

polarization of the beam and the behavior of the observable HBT coefficient. Such calcu-

lations have been presented in [4–9]. In considering the polarization-resolved HBT effect it

seems natural to employ the traditional Stokes parameters to describe the state of polar-

ization of the beam. In fact, it is trivial to observe that the HBT coefficient itself can also

be expressed in terms of the first Stokes parameter, denoted by S0. The correlation of the

intensity fluctuations can therefore be thought of as a quantity that is directly related to the

polarization state. Recently this observation was generalized by defining the complete class

of Stokes fluctuation correlations [10]. Similarly, the scintillation coefficient, which is nothing

but the local variance of S0, can be generalized to a class of one-point correlations between

the various Stokes parameters. We refer to these generalized quantities as Stokes fluctua-

tion correlations and Stokes scintillations, respectively. Under the assumption of Gaussian

statistics, a single expression for all these quantities can be derived. In this paper we apply

the formalism that describes a generalized HBT experiment to a broad class of partially

coherent beams, namely those of the Gaussian Schell-model type. We study how the Stokes

fluctuation correlations and Stokes scintillations in the far zone are affected by the source

parameters. Both these quantities are found to display a rich behavior. For example, the

normalized Stokes scintillations vary strongly with position, and their correlations can either

be positive or negative.

A sketch for a generalized, polarization-resolved HBT experiment that could be used

to measure the quantities of interest described in this paper is shown in Fig. 1. The field

that is incident on the two detectors is spectrally filtered and passed through polarizing

elements. The elements are chosen such that each detector measures a particular spectral

Stokes parameter. In a traditional HBT experiment these filters and polarizers would be

absent.
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FIG. 1. (Color online) A polarization-resolved HBT experiment. The far-zone radiation of a source

is passed through a narrow-band spectral filter (SF) and polarizing elements (P) that cover two

intensity detectors D1 and D2. The output of the detectors is correlated and sent to a computer

(pc).

II. STOKES FLUCTUATION CORRELATIONS AND STOKES

SCINTILLATIONS

The second-order statistical properties of a partially coherent electromagnetic beam are

described by its cross-spectral density matrix, which is defined as [11]

W(r1, r2, ω) =





Wxx Wxy

Wyx Wyy



 . (1)

All the matrix elements are functions of the same three variables, and given by the expression

Wij(r1, r2, ω) = 〈E∗

i (r1, ω)Ej(r2, ω)〉, (i, j = x, y), (2)

where r1 and r2 are two points of observation, ω is the angular frequency, and the angular

brackets indicate an average taken over an ensemble of beam realizations.

The state of polarization of the beam is described by the four Stokes parameters [12].

Their average value can be expressed in terms of the cross-spectral density matrix evaluated

at r1 = r2 = r as

〈S0(r, ω)〉 = Wxx(r, r, ω) +Wyy(r, r, ω), (3a)

〈S1(r, ω)〉 = Wxx(r, r, ω)−Wyy(r, r, ω), (3b)

〈S2(r, ω)〉 = Wxy(r, r, ω) +Wyx(r, r, ω), (3c)

〈S3(r, ω)〉 = i[Wyx(r, r, ω)−Wxy(r, r, ω)]. (3d)
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All preceding equations have an explicit frequency dependence, indicating that they are

defined for a specific frequency component of the optical field. For brevity, we will no longer

display this ω dependence from now on.

For the case of a stochastic beam the Stokes parameters are not deterministic, but they are

random quantities. The fluctuations around their average value (i.e., the Stokes fluctuations)

are defined as

∆Sn(r) = Sn(r)− 〈Sn(r)〉 (n = 0, 1, 2, 3), (4)

where Sn(r) is the Stokes parameter pertaining to a single realization of the beam, and

〈Sn(r)〉 denotes its ensemble average. We can now examine how these Stokes fluctuations are

correlated. All possible pairs of their two-point correlations can be captured by introducing

a 4 by 4 Stokes fluctuation correlation matrix C(r1, r2), whose elements are

Cnm(r1, r2) ≡ 〈∆Sn(r1)∆Sm(r2)〉 (n,m = 0, 1, 2, 3). (5)

We recently showed, under the assumption that the source that generates the beam is

governed by Gaussian statistics, that these elements can be expressed as [10]

Cnm(r1, r2) =
∑

a,b

∑

c,d

σn
abσ

m
cdWad(r1, r2)W

∗

bc(r1, r2), (a, b, c, d = x, y), (6)

where σ
0 denotes the 2 by 2 identity matrix, and the Pauli spin matrices are defined as

σ
1 =





1 0

0 −1



 , σ
2 =





0 1

1 0



 , σ
3 =





0 −i

i 0



 , (7)

respectively. We remind the reader that, in contrast to the Stokes fluctuations whose cor-

relations are described by Eq. (6), the Stokes parameters themselves are related by the

inequality [12]

〈S2
0(r)〉 ≥ 〈S2

1(r)〉+ 〈S2
2(r)〉+ 〈S2

3(r)〉, (8)

with the equal sign holding only for a fully polarized beam.



5

Working out Eq. (6) for all sixteen elements results in

C00(r1, r2) = |Wxx|
2 + |Wxy|

2 + |Wyx|
2 + |Wyy|

2, (9a)

C01(r1, r2) = |Wxx|
2 − |Wxy|

2 + |Wyx|
2 − |Wyy|

2, (9b)

C02(r1, r2) = 2Re [WxxW
∗

xy +WyyW
∗

yx], (9c)

C03(r1, r2) = 2 Im [WyyW
∗

yx −WxxW
∗

xy], (9d)

C10(r1, r2) = |Wxx|
2 + |Wxy|

2 − |Wyx|
2 − |Wyy|

2, (9e)

C11(r1, r2) = |Wxx|
2 − |Wxy|

2 − |Wyx|
2 + |Wyy|

2, (9f)

C12(r1, r2) = 2Re [WxxW
∗

xy −WyyW
∗

yx], (9g)

C13(r1, r2) = 2 Im [WxyW
∗

xx +WyxW
∗

yy], (9h)

C20(r1, r2) = 2Re [WxxW
∗

yx +WyyW
∗

xy], (9i)

C21(r1, r2) = 2Re [WxxW
∗

yx −WyyW
∗

xy], (9j)

C22(r1, r2) = 2Re [WxxW
∗

yy +WxyW
∗

yx], (9k)

C23(r1, r2) = 2 Im [WxyW
∗

yx +W ∗

xxWyy], (9l)

C30(r1, r2) = 2 Im [WxxW
∗

yx −WyyW
∗

xy], (9m)

C31(r1, r2) = 2 Im [WxxW
∗

yx +WyyW
∗

xy], (9n)

C32(r1, r2) = 2 Im [WxyW
∗

yx +WxxW
∗

yy], (9o)

C33(r1, r2) = 2Re [WxxW
∗

yy −WxyW
∗

yx], (9p)

where on the right-hand side the (r1, r2) dependence of the cross-spectral density matrix el-

ements Wij has been suppressed for brevity. It is seen that, in the general case, all elements

Cnm(r1, r2) are non-zero. This means that the fluctuations of any Stokes parameter at a

position r1 are correlated with the fluctuations of all four Stokes parameters at another posi-

tion r2. As a partial check it can be verified that the expression for the first matrix element,

C00(r1, r2), is indeed equivalent to that of the usual Hanbury Brown-Twiss coefficient [4].

When the two spatial arguments of Cnm(r1, r2) coincide, it reduces to the Stokes scintil-

lation matrix Dnm(r), i.e.,

Dnm(r) ≡ Cnm(r, r). (10)

We note that the D00(r) element represents the usual scintillation coefficient. It can be
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derived that [10]

D00(r) =
1

2

[

〈S0(r)〉
2 + 〈S1(r)〉

2 + 〈S2(r)〉
2 + 〈S3(r)〉

2
]

, (11a)

D11(r) =
1

2

[

(〈S0(r)〉
2 + 〈S1(r)〉

2 − 〈S2(r)〉
2 − 〈S3(r)〉

2
]

, (11b)

D22(r) =
1

2

[

〈S0(r)〉
2 − 〈S1(r)〉

2 + 〈S2(r)〉
2 − 〈S3(r)〉

2
]

, (11c)

D33(r) =
1

2

[

〈S0(r)〉
2 − 〈S1(r)〉

2 − 〈S2(r)〉
2 + 〈S3(r)〉

2
]

. (11d)

From these expressions it is seen that D00(r) is greater than or equal to the other three

diagonal elements. The twelve off-diagonal elements are given by the expressions

Dpq(r) = 〈Sp(r)〉〈Sq(r)〉, (p 6= q; and p, q = 0, 1, 2, 3). (12)

It is useful to introduce a normalized version of the two correlation matrices, indicated

by the superscript N , by defining

CN
nm(r1, r2) =

Cnm(r1, r2)

〈S0(r1)〉 〈S0(r2)〉
, (13)

and

DN
nm(r) =

Dnm(r)

〈S0(r)〉
2 . (14)

The sum of the four diagonal elements of the CN(r1, r2) matrix has a distinct physical

meaning [10], namely

3
∑

m=0

CN
mm(r1, r2) = 2 |η(r1, r2)|

2 . (15)

Here η(r1, r2) denotes the spectral degree of coherence [11], the magnitude of which indi-

cates the visibility of the interference pattern produced in Young’s experiment with pinholes

located at r1 and r2. Similarly, the sum of the four normalized diagonal Stokes scintillations

satisfies the relation

3
∑

m=0

DN
mm(r) = 2. (16)

The element DN
00(r) is equal to the square of the scintillation index [13], and is bounded,

namely [14]

1

2
≤ DN

00(r) ≤ 1. (17)
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It follows from Eqs. (12) and (14) that the off-diagonal elements of the DN (r) matrix are

also not independent. For example, DN
23(r) = DN

02(r)D
N
03(r).

In the next section we calculate the Stokes fluctuation correlations and the Stokes scin-

tillations that occur in a specific type of beam.

III. GAUSSIAN SCHELL-MODEL BEAMS

The cross-spectral density matrix elements of an electromagnetic Gaussian Schell-model

(GSM) beam in its source plane, indicated by the superscript (0), are [11]

W
(0)
ij (ρ1,ρ2) = AiAjBij exp

[

−
ρ21
4σ2

i

−
ρ22
4σ2

j

−
(ρ1 − ρ2)

2

2δ2ij

]

, (i, j = x, y). (18)

The parameters Ai, Bij , σi, δij are independent of position, but may depend on frequency.

They can not be chosen freely, but have to satisfy several constraints, i.e.,

Bxx = Byy = 1, (19)

Bxy = B∗

yx, (20)

Bxy = |Bxy|e
iφ,with |Bxy| ≤ 1, and φ ∈ R, (21)

δxy = δyx. (22)

Furthermore, the so-called realizability conditions are [15]
√

δ2xx + δ2yy
2

≤ δxy ≤

√

δxxδyy
|Bxy|

. (23)

For the case σx = σy = σ, the source will generate a beam-like field if [16]

1

4σ2
+

1

δ2xx
≪

2π2

λ2
, and

1

4σ2
+

1

δ2yy
≪

2π2

λ2
, (24)

where λ denotes the wavelength. On propagation to a transverse plane z the matrix elements

evolve into [11]

Wij(ρ1,ρ2, z) =
AiAjBij

∆2
ij(z)

exp

[

−
(ρ1 + ρ2)

2

8σ2∆2
ij(z)

]

exp

[

−
(ρ1 − ρ2)

2

2Ω2
ij∆

2
ij(z)

+
ik(ρ22 − ρ21)

2Rij(z)

]

, (25)

where

∆2
ij(z) = 1 + (z/σkΩij)

2, (26)

1

Ω2
ij

=
1

4σ2
+

1

δ2ij
, (27)

Rij(z) = [1 + (σkΩij/z)
2]z. (28)
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When z tends to infinity we have

∆2
ij(z) ∼

z2

(σkΩij)
2 , (29)

Rij(z) ∼ z. (30)

We thus get for the far-zone elements, denoted by the superscript (∞), the expressions

W
(∞)
ij (ρ1,ρ2, z) =

AiAjBij(kσΩij)
2

z2
exp

[

−
(ρ1 + ρ2)

2(kΩij)
2

8z2

]

× exp

[

−
(ρ1 − ρ2)

2(kσ)2

2z2
+

ik(ρ22 − ρ21)

2z

]

. (31)

Let us assume, for simplicity, that the amplitude of the two spectral densities and the two

autocorrelation radii are the same, i.e.,

Ax = Ay = A, (32)

δxx = δyy = δ. (33)

This implies that

Ωxx = Ωyy = Ω. (34)

In the far zone the observation points are given by the polar angle θ ≈ tan θ = ρ/z, the

azimuthal angle is not needed. Hence we can write

W
(∞)
ij (θ, θ, z) = K2BijΩ

2
ije

−θ2k2Ω2

ij/2, (35)

W
(∞)
ij (0, θ, z) = K2BijΩ

2
ije

−θ2k2Ω2

ij
/8e−θ2k2σ2/2eikθ

2z/2, (36)

where

K2 =

(

Akσ

z

)2

. (37)

We will use these two expressions to study the far-zone scintillations and the far-zone fluc-

tuation correlations.
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FIG. 2. (Color online) The four diagonal Stokes scintillations on the far zone axis (θ = 0) as a

function of the argument φ of the coefficient Bxy. In this example λ = 632.8 nm, σ = 1 cm,

δ = 4 mm, δxy = 5 mm, and |Bxy| = 0.5. The upper straight curve is for DN
00(φ, 0), the lower one

is for DN
11(φ, 0). Of the two oscillating curves the upper one at φ = 0 corresponds to DN

22(φ, 0), the

lower one to DN
33(φ, 0).

IV. STOKES SCINTILLATIONS

On substituting from Eq. (35) into Eq. (14), while making use of Eqs. (9a)–(9p), we find

for the four diagonal far-zone normalized Stokes scintillations that

DN
00(θ) =

1

2

[

1 + α4|Bxy|
2e−θ2k2(Ω2

xy−Ω2)
]

, (38a)

DN
11(θ) =

1

2

[

1− α4|Bxy|
2e−θ2k2(Ω2

xy−Ω2)
]

, (38b)

DN
22(θ) =

1

2

[

1 + α4|Bxy|
2 cos(2φ)e−θ2k2(Ω2

xy−Ω2)
]

, (38c)

DN
33(θ) =

1

2

[

1− α4|Bxy|
2 cos(2φ)e−θ2k2(Ω2

xy−Ω2)
]

, (38d)

where α ≡ Ωxy/Ω ≥ 1. This inequality is a direct consequence of the realizability conditions

Eq. (23). It implies that the exponential functions in Eqs. (38a)–(38d) all decrease with

increasing θ. An example of how the on-axis Stokes scintillations may behave is presented

in Fig. 2. There the four diagonal scintillation coefficients are plotted as a function of φ,

the argument of the complex coeffcient Bxy which is defined in Eq. (18). Note that φ is

the expectation value of the phase difference between Ex and Ey. The first two coefficients,

D00 (which is the usual scintillation coefficient) and D11, are independent of φ whereas

the other two coefficents display a harmonic behavior. This can be understood as follows:
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the scintillations of S0 and S1 are, according to their definitions, only dependent on the

fluctuations of |Ex|
2 and |Ey|

2 and are therefore independent of the angle φ. Since the other

two Stokes parameters, S2 and S3, contain cross terms of Ex and Ey, their scintillations do

depend on φ. Notice that although the individual Stokes scintillations may vary, their sum

remains constant at two, in agreement with Eq. (16).

The off-diagonal scintillations can be expressed in terms of the average of the Stokes

parameters, as indicated by Eq. (12). Using Eqs. (3a)–(3d) we find that

S
(∞)
0 (θ) = 2K2Ω2 exp

(

−
k2Ω2θ2

2

)

. (39a)

S
(∞)
1 (θ) = 0, (39b)

S
(∞)
2 (θ) = 2K2Ω2

xy|Bxy| cosφ exp

(

−
k2Ω2

xyθ
2

2

)

, (39c)

S
(∞)
3 (θ) = 2K2Ω2

xy|Bxy| sinφ exp

(

−
k2Ω2

xyθ
2

2

)

. (39d)

Hence the six non-zero off-diagonal scintillation coefficients are

DN
02(θ) = DN

20(θ) = α2|Bxy| cosφ exp

[

−
θ2k2

2

(

Ω2
xy − Ω2

)

]

, (40a)

DN
03(θ) = DN

30(θ) = α2|Bxy| sinφ exp

[

−
θ2k2

2

(

Ω2
xy − Ω2

)

]

, (40b)

DN
23(θ) = DN

32(θ) = α4|Bxy|
2 cosφ sinφ exp

[

−θ2k2
(

Ω2
xy − Ω2

)]

. (40c)

An example is shown in Fig. 3. The behavior is quite distinct from that of the diagonal

scintillation coefficients. Whereas for our model choice the diagonal elements are always

positive, the off-diagonal scintillation coefficients can also attain negative values.

It is seen from Eqs. (40a)–(40c) that the off-diagonal Stokes scintillations, unlike their

diagonal counterparts, do not all have the same exponential dependence on the angle of

observation θ. This is illustrated in Fig. 4. When θ gets larger, all scintillation coefficients

tend to zero, but they do so from different initial, on-axis values.
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function of the argument φ of the coefficient Bxy. The parameters are the same as in Fig. 2.
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FIG. 4. (Color online) Off-diagonal Stokes scintillations in the far zone as a function of the angle

of observation θ. In this example φ = −1.0 rad. The other parameters are the same as in Fig. 2.
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V. STOKES FLUCTUATION CORRELATIONS

For the far zone field we can use Eqs. (35) and (36) to derive the diagonal correlations of

the Stokes fluctuations. The results are

CN
00(0, θ) =

1

2
exp

[

−k2θ2(σ2 − Ω2/2)
]

×

[

exp

(

−
k2Ω2θ2

4

)

+ α4|Bxy|
2 exp

(

−
k2Ω2

xyθ
2

4

)]

, (41a)

CN
11(0, θ) =

1

2
exp

[

−k2θ2(σ2 − Ω2/2)
]

×

[

exp

(

−
k2Ω2θ2

4

)

− α4|Bxy|
2 exp

(

−
k2Ω2

xyθ
2

4

)]

, (41b)

CN
22(0, θ) =

1

2
exp

[

−k2θ2(σ2 − Ω2/2)
]

×

[

exp

(

−
k2Ω2θ2

4

)

+ α4|Bxy|
2 cos(2φ) exp

(

−
k2Ω2

xyθ
2

4

)]

, (41c)

CN
33(0, θ) =

1

2
exp

[

−k2θ2(σ2 − Ω2/2)
]

×

[

exp

(

−
k2Ω2θ2

4

)

− α4|Bxy|
2 cos(2φ) exp

(

−
k2Ω2

xyθ
2

4

)]

. (41d)

It is easy to show, given the constraints on the source parameters as outlined in Sec. III,

that these coefficients all decay exponentially as a function of the angle θ. The angular

dependence of the four diagonal Stokes fluctuations coefficients is plotted in Fig. 5. The

first coefficient, CN
00(0, θ), represents the usual HBT effect (blue curve). Clearly, as can be

seen from Eqs. (41a)–(41d), for our particular choice of a GSM beam, this coefficient is

larger than the other three diagonal Stokes fluctuation correlations. As described above in

Eq. (15), the sum of the these four coefficients is directly related to the modulus of the

spectral degree of coherence η(0, θ). This quantity is therefore also plotted. It is seen that

its angular half-width exceeds that of the four Stokes fluctuation correlations.

A direct calculation shows that only six off-diagonal elements of the C matrix are non-
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FIG. 5. (Color online) The far-zone diagonal Stokes fluctuation coefficients CN
nn(0, θ) as a function

of the angle θ. The argument of the coefficient Bxy is taken to be φ = −1.0 and the other

parameters are the same as in Fig. 2. The dashed black curve indicates the modulus of the spectral

degree of coherence η(0, θ). The curves at θ = 0 represent, in descending order, CN
00(0, θ), C

N
33(0, θ),

CN
22(0, θ), and CN

11(0, θ).

zero, with only three of them being independent, namely

CN
02(0, θ) = CN

20(0, θ)

= α2 exp[−k2θ2(σ2 − Ω2/2)] exp[−k2θ2(Ω2 + Ω2
xy)/8]|Bxy| cosφ, (42a)

CN
03(0, θ) = CN

30(0, θ)

= α2 exp[−k2θ2(σ2 − Ω2/2)] exp[−k2θ2(Ω2 + Ω2
xy)/8]|Bxy| sinφ, (42b)

CN
23(0, θ) = CN

32(0, θ)

=
1

2
α4 exp[−k2θ2(σ2 − Ω2/2)] exp[−k2θ2Ω2

xy/4]|Bxy|
2 sin(2φ). (42c)

Not coincidentally, the non-zero off-diagonal elements of CN
nm occur for the same values of

n and m as those of the DN
nm matrix. They also express the same functional dependence on

the modulus of Bxy and its angle φ.

VI. CONCLUSIONS

Studies of the polarization properties of random electromagnetic beams, such as [14, 17–

19] have typically concentrated on the degree of polarization, the Hanbury Brown–Twiss

effect and scintillation. Recently the two concepts of the HBT effect and scintillation were

generalized to so-called Stokes fluctuation correlations and Stokes scintillations. We exam-
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ined the behavior of these sixteen new quantities in the far zone of a random beam that is

generated by a Gaussian Schell-model source. It was found that the different correlations

and scintillations have varying spatial distributions, and that their dependence on the source

parameters differs significantly. Our results also illustrate that these quantities may non-

trivially depend on the average phase difference φ between the two electric field components

of the beam. For the specific model chosen here, for example, DN
22(r) and DN

33(r) vary si-

nusoidally with respect to φ, and the off-diagonal scintillation coefficients may be negative.

Furthermore, the classical HBT coefficient is larger than the other three Stokes fluctuation

correlation coefficients.

Our work shows that the HBT effect is just one of many correlations that occur in a

random electromagnetic beam. These generalized HBT correlations can all be determined

from intensity measurements and their values can then be used to characterize a beam in

more detail than was previously done based on a single “classical” HBT measurement. They

may also find application in inverse problems in which source parameters are reconstructed

from far-zone observations.
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