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Temporal coupled mode theory has been widely used to describe the physics of resonant optical

systems.

In general, an optical system can be constraint by energy conservation, time-reversal

symmetry, and reciprocity. Most previous developments of temporal coupled mode theory made
use of all three constraints. In this paper, we consider separately the implication of each of these
constraints on the parameters of temporal coupled mode theory. For this purpose we made extensive
use of the connection between a physical system and its time-reversal conjugate. This connection
also indicates some of the non-trivial implications on the relation between the resonant properties
of a physical system and its time-reversal conjugate. We validate these implications numerically
by direct electromagnetic simulations of a guided resonance system. This work should enable the
application of temporal coupled mode theory to a wider range of resonant systems.

I. INTRODUCTION

Resonance phenomenon is ubiquitous in optics. In an
open resonant system, where the resonant mode interacts
with propagation waves, the temporal coupled mode the-
ory (TCMT) phenomenologically describes the dynamics
of the resonant system [1-12]. The TCMT descriptions
match with rigorous numerical simulations in resonant
systems quite well [4, 5, 7, 13] and has been widely used
as a guidance in the design of optical devices [14-17].

The formalism of TCMT is strongly constrained by
various symmetry constraints present in the optical sys-
tem. The three most commonly used ones are time-
reversal symmetry [18], energy conservation and Lorentz
reciprocity. For these three constraints, the presence of
any two constraints imply the third [2]. Previous devel-
opments of the temporal coupled mode theory formalism
typically assumed the presence of all three constraints
[4, 5]. On the other hand, there are a large number of
optical systems that satisfy only one of the three con-
straints. As one example, systems with gain and loss do
not conserve energy and do not satisfy time-reversal sym-
metry, but are usually reciprocal [19, 20]. As another ex-
ample, lossless magneto-optical systems conserve energy,
but break both reciprocity and time-reversal symmetry.
To provide an intuitive understanding of these systems,
it would certainly be of interest to develop the temporal
coupled mode theory formalism for systems where only
one of the three constraints is present. Along this di-
rection, Ref. [21] has recently discussed the implications
of time-reversal symmetry and energy conservation sep-
arately. In this paper, we provide a general theoretical
discussion.

For the theoretical development in this paper, we make
extensive use of the connection in terms of the physical
properties between a system and its time-reversal conju-
gate. This connection has been extensively used in the
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discussions of coherent perfect absorbers [22, 23], and for
elucidating various consequences of parity-time symme-
try [19]. Here we highlight the use of this connection in
the development of TCMT.

The paper is organized as follows. In Section II, we
first study the TCMT description of the time-reversal
conjugate system of a general single-mode resonator sys-
tem, which can have material loss or break Lorentz reci-
procity. For simplicity, we limit all of our discussions to
systems supporting a single resonance in the frequency
range of interest. Equipped with the TCMT description
of the time-reversal conjugate system, we then discuss
the constrains on TCMT separately imposed by time-
reversal symmetry, energy conservation and Lorentz reci-
procity in Sections III-V, respectively. In Section VI, we
discuss some non-intuitive relations between the original
and time-reversal conjugate systems when the original
system has material loss and satisfies Lorentz reciprocity,
and provide numerical validations. We conclude in Sec-
tion VII.

II. TCMT OF THE TIME-REVERSAL
CONJUGATE SYSTEM

We consider a general electromagnetic system (referred
to as the “original” system) as described by permittivity
€(r,w) and permeability p(r,w). In the time domain,
the electromagnetic fields in this system are described by
the Maxwell’s equations

V x E(r,t) :—%, (1a)
VxH(r,t):%, (1b)

where E, H, D, B are electric field, magnetic field,
displacement field and magnetic induction field, re-
spectively, and D(r,w) = e(r,w)E(r,w), B(r,w) =
w(r,w)H (r,w).



Starting from Eq. (1), we note that the fields
E(r,t) = E(r,—t), D(r,t) = D(r, —t),

— ~ (2)
H(r,t)=—-H(r,—t), B(r,t) = —B(r,—t),

also satisfy the same Maxwell’s equations, i.e.

V x E(r,t) = —%, (3a)
V x H(r,t) = %. (3b)

Therefore, in principle, these fields can be realized in a
physical system. We refer to such a system as the time-
reversal conjugate of the original system, or “conjugate
system” for brevity.

To see the permittivity and permeability distribution
of such conjugate system, we notice the following rela-
tions:

D(r,t) = D(r,—t) = /jo dwD(r,w)e” ™!

= /OO dwD*(r,w)e™! (4)

— 00

= / dwe*(r,w)E*(r,w)e™"

E(r,t) = /_00 dwE*(r,w)e™! (5)
Thus,
D(r,w) = € (r,w)E(r,w), (6)

and similarly

B(r,w) = u*(r,w)f—f(r,w). (7)

Therefore, the conjugate system is defined by the permit-
tivity distribution €*(r,w) and permeability distribution
p*(r,w). For simplicity, we assume p(r,w) = po in the
following discussions, where p is the vacuum permeabil-
ity. The generalization to systems with a permeability
different from vacuum should be straightforward.

In the conjugate system, its time-dependent electro-
magnetic field is related to those of the original system by
Eq. (2), and its frequency-domain electromagnetic field
is related to those of the original system by

E(r,w) = E*(r,w), D(r,w) = D*(r,w), ®)
H(r,w) = —H*(r,w), B(r,w) = —B*(r,w).

We proceed to consider an original system consisting
of a single-mode resonator as described by a dielectric
function €(r), coupling to input and output ports, as
shown in Fig. 1(a). We assume a total of m input or
output ports. We assume that the input and output ports

(a) / (b)
e €(7)
\ N\

FIG. 1. (a) Schematic of a resonator system described by a
dielectric function €(r), coupling to multiple ports. (b) The
time-reversal conjugate system with respect to (a) is described
by a dielectric function € (7).

are made of energy conserving, time-reversal invariant,
and reciprocal materials. We do not, however, constrain
any aspect of €(r) within the resonator. This system
can be described by a temporal coupled mode theory
equation [4]:

@0 = (o )+ k"5 (9)
s_ =Cs; +da, (9b)

where a represents the amplitude of the resonant mode.
sy and s_ are both m dimensional column vectors, the
components of which are respectively the amplitudes of
the incoming and outgoing waves in the ports. & (d)
is also an m-vector, the components of which are the
coupling rates between the resonator and the incoming
(outgoing) waves in the ports. C is an m X m scattering
matrix that describes the background scattering process,
i.e. the scattering of the system in the absence of the
resonance. wy and 7y are the resonant frequency and de-
cay rate of the resonant mode, respectively. Generally,
the decay rate  consists of two parts, i.e. v = v + v,
where v, = d'd/2 is the radiative decay rate of the reso-
nant mode, and ~; is the intrinsic decay rate due to the
material loss.

The system conjugate to the original single-mode res-
onator system is described by a dielectric function €*(r).
This system can generally also be described by a tempo-
ral coupled mode theory equation:

a=(iwo —7y)a+r s, (10a)

™ EE‘Q-

_ =C5, +da, (10Db)
where every quantity in Eq. (10) has the same physical
meaning with the corresponding quantity without the ~
in Eq. (9). The mode amplitude and the amplitudes of
the incoming and outgoing waves in the conjugate system
are related to those in the original system through:

a(t) = a*(-t), (11)
5.(t) = s (1), (12)
5_(t) = s7(—). (13)



On the other hand, directly from Eq. (9), we have

%a*(—t) = (iwy +7)a*(—t) — k'8 (—t), (14a)
8*(—t) = C*s (—t) +d*a*(~t). (14b)
Substitute Egs. (11 - 13) to Eq. (14), we get
%d(t) = (iwo + v+ TC*"1d")a(t) — kTC* 15, (1),
(15a)
5_(t) = C* ', (t) — C*td*a(t). (15Db)

Comparing Eqs. (15) and (10), we obtain the relation-
ship between the TCMT descriptions of the original and
conjugate systems.

C=c1 (16)
d=-C*'d* (17)
R=—-Cl"1g* (18)
Qo = wo + Im(kfC*~1d*) (19)
7 = —v — Re(sfC*1d") (20)

Equations (16 - 20) represent one of the main results
of the paper. We note the consistency of Egs. (16 - 20)
obtained from the TCMT description above and the scat-
tering matrix descriptions of the original and conjugate
systems. The scattering matrix of a system describes the
relationship between the amplitudes of the outgoing and
incoming waves. For the original system, we have

s_=S5s4. (21)
From Eq. (21), we get
st =9""ts. (22)

On the other hand, from Egs. (12) and (13), we see that
s and s’ correspond to outgoing and incoming waves
in the conjugate system. Thus, the scattering matrix of
the conjugate system S is

S =51 (23)

The scattering matrix of the original system can be
obtained from the TCMT (Eq. (9)):

dxT

S=C+ ————.
i(w—wo) +

(24)

Similarly, the scattering matrix of the conjugate system
is obtained from Eq. (10):

di”
i(w—wo)+7 (25)

With the relations (Egs. (16 - 20)), it is easy to show
that:
~ drT
T [
iw—G0)+7

d*kf

ey 1 9

where T is the identity matrix. Thus, Eqs. (16 - 20) are
consistent with Eq. (23).

In the above derivation, the frequency w is assumed to
be real. However, Eq. (23) can be easily extended to the
complex frequencies. If we assume the incoming waves
are at a complex frequency w in the original scattering
process in the original system, the frequency of the in-
coming waves in the time-reversed scattering process in
the conjugate system is w*. Thus, Eq. (23) becomes

S(w*) = [Sw)I ™, (27)

From Eq. (27), we find that the poles (zeros) of S in the
complex frequency plane are complex conjugate of the
zeros (poles) of S. This is consistent with the previous
study of the scattering matrices in [24].

In Sections IIT - V, we will apply the general TCMT
relations between the original and conjugate systems to
establish some of the general constraints in TCMT for
systems that satisfy time-reversal symmetry, energy con-
servation, or Lorentz reciprocity.

III. CONSTRAINTS ON THE TCMT IN
SYSTEMS WITH TIME-REVERSAL SYMMETRY

In a system with time-reversal symmetry, its permit-
tivity distribution satisfies €(r) = €*(r), and hence its
conjugate is the same system. Equations (16 - 20) be-
come:

C=cCc1, (28)
d=-C""'d*, (29)
k=—-Ct1x* (30)
wo = wo + Im(kTC*~1d"), (31)
v = —v —Re(kfC*"1d*). (32)

Thus, we can get the following constraints on the TCMT
description for systems with time-reversal symmetry.

cor =1 (33)
Cd*+d=0 (34)
CTr*+ k=0 (35)
kid =2y (36)

Equations (33 - 36) can also be derived from the prop-
erties of the scattering matrix, which can be found in
Appendix A.

IV. CONSTRAINTS ON THE TCMT IN
SYSTEMS WITH ENERGY CONSERVATION

In an energy conserving system, the permittivity of the
material is a Hermitian tensor, i.e. € = ef. Its scattering
matrix S is a unitary matrix:

STS=1. (37)



The permittivity of the time-reversed conjugate system
is € = €. The conjugate system also satisfies energy
conservation. Hence, the scattering matrix of the time-
reversal conjugate system is [25]

S=5"1=gT (38)
Based on Egs. (24), (25) and (38), we get

~ dr” T rkdT

s O T wry ™

Since Eq. (39) holds for all frequencies near the reso-
nance, the following relations must hold:

c=cT, (40)
di” = kd”, (41)
(:3():0.}0, (42)
¥ (43)
(19)

¥ =7

and (20), one can obtain

cie=1, (44)
kIC*ld* = —27. (45)

Combining Egs. (18), (17) and (45), we have
rRUd* = 27, (46)
kid =2y (47)
Moreover, energy conservation leads to [4]
d'd = 2. (48)

Thus, we can multiply both sides of Eq. (41) by d* and
apply Egs. (46) and (48) to get

d=k, (49)
K=d. (50)

From Egs. (47) and (49), we have
Kk =2y (51)

We can substitute Egs. (49) and (50) back to Egs. (17)
and (18) and use the unitary property of C' to obtain

CTd* + k=0, (52)
Cr*+d=0, (53)

which are the same as the results derived in [21].

V. CONSTRAINTS ON THE TCMT IN
SYSTEMS WITH LORENTZ RECIPROCITY

We now discuss the case of systems satisfying Lorentz
reciprocity, where the dielectric tensors of the materials

in the system are symmetric, i.e. €(r) = €’ (r). The
total scattering matrix is symmetric (S = S7) and con-
sequently,

dxT cr rkdT

C+ ————= _—
i(w—wo) +7 i(w—wo) + 7

(54)

The background scattering matrix C' is also symmetric
and de” = kd”. Furthermore, we prove, in Appendix
B, the following relation based on Lorentz reciprocity:

Kk =d. (55)

To summarize the results presented in Sections III - V,
we have derived the constraints on the TCMT imposed
separately by time-reversal symmetry, energy conserva-
tion and Lorentz reciprocity. The results are summarized
in Table I.

Scattering .
System property matrix TCMT constraints
Time-reversal CTC =1
symmetry SS* =1 r'd =2y
€ — c* Cd*+d=0
B CTh* 4+ k=0
Energy =1
T — el —
ZoEsgvation sts =1 g’:*:—':i Z a 2y
B C'd*+ k=0
Lorentz AT
reciprocity S=5T c=¢
€ — ET k=d

TABLE I. Summary of the constraints on the TCMT im-
posed separately by time-reversal symmetry, energy conser-
vation and Lorentz reciprocity.

VI. RELATION BETWEEN THE ORIGINAL
AND TIME-REVERSAL CONJUGATE SYSTEM
WITH LORENTZ RECIPROCITY

In this section we provide a numerical validation of our
theory, by exploring some of the non-trivial consequence
of Egs. (16)-(20). For a closed system, where k = d = 0,
Egs. (16)-(20) indicates that

LNL)O = Wo, (56)
¥ =- (57)

In other word, the complex resonant frequencies of the
original and the conjugate systems are complex conjugate
of each other. In contrast, for an open system, Egs. (56)
and (57) no longer hold.

Specifically, we consider a reciprocal system with loss
or gain in this section. The radiative decay rate is deter-
mined by the coupling coefficients:

v = did/2. (58)



The intrisic decay rate is thus

Vi =Y —Yr (59)

In our convention, positive decay rate represents loss,
while negative decay rate represents gain. From Egs. (17)
and (20) as well as k = d, which arises from reciprocity
(Eq. (55)), we can find the relation between the intrinsic
rates of the original and conjugate systems:

Fi+ 7% =~ — 7 + Re(d'd)

1 - -~ ..

= —i[de+ did—d'd-d'd (g
1 - -

=—5(d-d)(d-d)<0

The equality holds for closed system where d = d=0.

Suppose the original system has material loss. Its con-
jugate system hence has material gain. Equation (60)
suggests that the intrinsic gain rate of the resonance in
the time-reversal conjugate system should be larger than
the intrinsic loss rate of the resonance in the original
system. On the other hand, the non-resonant channels
in the original system with material loss cannot amplify
the input power. As a result, the eigenvalues of C' lies
either within or on the unit circle of the complex plane.
In this situation, the radiative rate of the resonance in
the conjugate system should be no less than the radiative
rate of the resonance in the original system, which can
be proven as following:

1 ~ -
Fr = Yr i[de_ de]

1 (61)
— 5dT[(CCT)—1 —1Ild > 0.

Equations (60) and (61) are non-trivial consequences
of our temporal coupled mode theory and arises due to
the openness of the system. These relations are not intu-
itively obvious. We now proceed to provide a numerical
check of these predictions, as a validation of the TCMT
formalism discussed in the paper. As a concrete physical
example, we study the guided resonance [3, 13] in a one-
dimensional grating as shown in Fig. 2(a), which consists
of a dielectric grating and a bottom slab. The relative
permittivity of the grating is 12. The relative permittiv-
ity of the bottom slab is 2—i¢;. In the simulation, we vary
€;, as well as the spacing between the grating and the bot-
tom slab (g) and the width of the top grating ridge (w)
to study the resonances in this system. An exemplary
transmission spectrum for TM-polarization is shown in
Fig. 2(c), with ¢, = 0.5, ¢ = 0, and w = 0.2[, where
l is the periodicity of the grating. The spectrum ex-
hibits multiple resonances. The electric field distribution
of one of these resonances near the frequency of 0.52¢/! is
shown in Fig. 2(b). The field shows strong concentration
in the dielectric grating region, as an indication of its
guided resonance nature. Around each resonant mode,
we numerically calculate the transmission and reflection

(a) o g™
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-05 0 05

X (um)

Transmission
o
(6)]

1 | ‘ A
0.2 0.4 0.6 0.8 1
w(2me/l)
x103 27 107
=gl (d) AR o-==(s?2uug L 9!&
o ooo° ) =
N6 ococg®l & , é§§gg§§§geg
ie i,
|2
e 0
0.5 1
Im(e)

FIG. 2. (a) Schematic of a unit cell of a dielectric grating
that supports guided resonances. The relative permittivity of
the grating (in blue) is 12. The relative permittivity of the
bottom slab (in grey) is 2 — ie;, where the imaginary part
is varied. The periodicity is [, the grating total thickness
t = 0.5l, the thickness of top grating ridge s = 0.1/, and the
bottom slab thickness b = 0.2]. To sample different resonant
modes, the gap between the grating and the bottom slab g is
varied within 0 - 0.2/, and the width of the top grating ridge
w is varied within 0.2 - 0.8/. Only TM modes at I" points are
studied. For example, with parameters ¢; = 0.5, g = 0, and
w = 0.21, the electric field of a resonance near w = 0.52x27c/l
is shown in (b), and the transmission spectrum is shown in
(c). (d) and (e) show 4 — v and 7; + ; as a function of ¢;
for different resonant modes, respectively.

spectrum using rigorous coupled wave analysis [26] and
fit them with the TCMT to extract the TCMT parame-
ters, i.e. C, d, wy and 7. To simulate the time-reversed
conjugate system, we simply change the relative permit-
tivity of the bottom slab to 2 4 ie; and repeat the same
procedure as discussed above.

The numerically obtained 7, — 7, and 7; + ; are plot-
ted in Fig. 2 (d) and (e) respectively. Each point rep-
resents one particular resonant mode. Fig. 2(d) clearly
shows that all the points are above zero, which provides
validation for Eq. (61) numerically. In Fig. 2(e), most
of the points lie below zero, with some exceptions for
small €;. This results from the numerical error, since ~;



is obtained through subtracting two relatively large num-
bers (Eq. (59)). In spite of some small numerical errors,
the numerical results provide evidence for the validity of
Eq. (60).

VII. CONCLUSION

In conclusion, we establish a connection in the tempo-
ral coupled mode theory formalism for a resonant optical
system and its time-reversal counter part. We make use
of this connection to establish the constraint of time-
reversal symmetry, energy conservation, and Lorentz
reciprocity separately on the parameters of the tempo-
ral coupled mode theory. This connection also indicates
some of the non-trivial implications on the relation be-
tween the resonant properties of a physical system and
its time-reversal conjugate. Our work should deepen the
understanding of the temporal coupled mode theory for-
malism, and also broaden the potential scope of applica-
tion of such theory to a wider range of resonant systems.
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Appendix A: Derivation of the constraints on
TCMT from the scattering matrix

In Sections III and IV, we derive the constraints on
TCMT using the time-reversal conjugate system as an
auxiliary. In this appendix, we start from the proper-
ties of the scattering matrix to derive the constraints on
TCMT. A similar procedure is adopted in [21], and we
re-derive some of the results in [21] for completeness.

In a system satisfying time-reversal symmetry, the
scattering matrix satisfies SS* = I, where the form of the
scattering matrix as determined by the TCMT descrip-
tion is given in Eq. (24). Thus, the following relations
hold over the frequency range around the resonance.

v [er et

i —wo) -7 m} =1 (A1)

Since the background channel also satisfies the time-

reversal symmetry, we have CC* = I. Thus, Eq. (Al)
leads to

(Cd*)k! —d(CTr")T =0,

y[(Cd*)k! 4+ d(CTk*)T + kTd*dk! = 0.

(A2)
(A3)

Consider a process where the resonant mode has non-
zero amplitude at ¢ = 0, and decays with no incident

waves [4]. From Eq. (9), the outgoing waves are

s_ =da.

(A4)

In the time-reversed process, the amplitude of the res-
onance is a*, and the incoming and outgoing waves are
s+ = d*a* and s_ = 0 respectively. The time-reversed
process is described by the TCMT with the same pa-
rameters, since the system has time-reversal symmetry.
Thus, 0 = Cd*a* + da*, and we get

Cd*+d=0. (A5)

Substitute Eq. (A5) into Egs. (A2) and (A3), we obtain
CTr* + k=0, (A6)

kld = 2y. (A7)

Therefore, we reproduce the first row in Table 1.

We proceed to apply the same procedure to study sys-
tems satisfying energy conservation. The scattering ma-
trix is unitary, i.e. STS = I, and so is the background
scattering matrix CTC' = I. With the form of the scat-
tering matrix presented in Eq. (24), we have:

dxT

Cch+ + -
i(w—wo) +7

Kk*df
—i(w—jo)—i-yH }:I’ (A8)

which holds over the frequency range around the reso-
nance. Thus,

k*(CTd)T — (CTd)kT =0, (A9)

y[r*(CTd)T + (CTd)kT) + dide*kT =0.  (A10)
From Eq. (A9), we can get

Cld = ak™, (A11)

where « is a real number.

Similar to the derivation for the time-reversal symme-
try case, here, we consider again the process that the
resonance has a non-zero amplitude at ¢ = 0, and decays
at t > 0 with no incident waves [4]:

d ,
0= (iwog — ¥)a, (A12)
s_ = da. (A13)

Since energy is conserved, the decay per unit time for
the energy in the resonance should be equal to the power
carried by the outgoing waves, i.e. 4|a|? = —s's_. So,
we get
d'd = 2. (A14)
Substitute Egs. (A11) and (A14) into Eq. (A10), we find
that « = —1 and
Cld+rk* =0. (A15)
Based on the unitarity of C, Egs. (A14) and (A15) lead
to
Kik =27, (A16)
Cr*+d=0. (A17)
We have therefore re-derived the second row of Table I
based on the scattering matrix.



Appendix B: Derivation of kK = d in a Lorentz
reciprocal system

In this Appendix, we derive k = d in a Lorentz recipro-
cal system. We construct two field solutions to Maxwell’s
equations. In the first case, the electromagnetic fields (E
and H) are excited by a current density distribution J,
which excites a waveguide mode in port /. In the second
case, the electromagnetic fields (E and H) are excited by
a current density distribution J, which is a dipole source
located within the resonator.

We can assume that each port coupling to the res-
onator is tapered to be a weakly guided waveguide far
away from the resonator. Thus, the guided mode resem-
bles a plane wave locally and satisfies the approximation
h; =~ n; x e;/n;, where 7; is the impedance of the weakly
guided waveguide connecting port 4, n; is the unit vector
normal to the waveguide cross section, and e;, h; are the
normalized waveguide mode, such that

1
fRe/ e; x bl -dS = 1. (B1)
27 4,

With the approximation that h; ~ n; x e;/n; and proper
choice of the phase such that e; is real, the normalization
equation becomes

1
—/ ele;dS =1.
2n; J a,

In the first case, the current density amplitude is J =
—2e;/m % §(z — z1), lying on one cross section at z; of
the waveguide connecting to port [, with frequency w,
where z parameterizes the distance along the waveguide.
The incident power from port [ has amplitude unity, i.e.
S4i = 03. Thus, the amplitude of the resonant mode in
the first case is

(B2)

Kl

i(w—wo) +7 (B3)

a; =

We can further set the current oscillation frequency equal
to the resonant frequency of the single-mode resonator.
Then, a; = k;/v. Suppose the electric field distribution
of the resonant mode is Ey(r). The field E excited by
the current J is approximately
E(r) = &a1 Ey(r), (B4)
where £ = (%fEg(r)Re[e(r)]Eo(r)dr)71/2 is a coeffi-
cient for energy normalization.
In the second case, the field is excited by a dipole lo-
cated at ro oscillating at the resonant frequency wy, as

described by a current density J = Jyd(r —73). Suppose
that the dipole mainly excites the resonant mode. The
field E(r) is proportional to Eqy(r), i.e. E(r) = (Ey(r)
[27, 28], where ( is a coefficient. The amplitude of the
resonant mode in this case is as = (/£. The total energy
decay rate is equal to the power radiated from the dipole
source. Thus,

1

—§RG[C*E3(7”2)J2] = 2[¢P¢ 72, (B5)
where 7 is the total decay rate and £ is the energy normal-
ization coefficient. We can choose the global phase for the
field distribution of the resonant mode such that Eg(r2)
is real and positive along the direction of the dipole cur-
rent Jy. Then we can find ¢ = —(£2/47)EL (ry)J from
Eq. (B5). The field in this case is

1
E(r) = —EEQEE(Tz)Jon(T) (B6)
Comparing Egs. (B4) and (B6), we can find that the
amplitude of the resonant mode in the second case is

ag = —%ng(Tg)JQ. (B?)

Consequently, the amplitudes of the outgoing waves are

1
5= = diay = — LB (r2)Jods (BS)

And the field in the waveguide connecting port [ is s_;e;.
In a system satisfying Lorentz reciprocity, the two sets
of field solutions (E, H) and (E, H), respectively ex-

cited by current J and J, satisfy the following relation
[29].

/ (ExFI—ExH)-dsz/dV(E-J—E-j) (B9)
ov

By putting reciprocal absorption materials far away from
the resonator and waveguides, the left hand side of
Eq. (B9) vanishes. Substitute the fields and currents in
the first and the second cases into Eq. (B9),

[ 1= B e D] ][ - ~el = €2 B (ra) 2.

dy m
(B10)
With the normalization condition (Eq. (B2)), we find
that
d; = Ky, (B11)

where [ can be any one of the ports. Consequently, we
show that d = k.
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