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We show theoretically and demonstrate experimentally that collapsing elliptically-polarized laser
beams experience a nonlinear ellipse rotation that is highly sensitive to small fluctuations in the
input power. For arbitrarily small fluctuations in the input power and after a sufficiently large
propagation distance, the polarization angle becomes uniformly distributed in [0, 2π] from shot-to-
shot. We term this novel phenomenon loss of polarization. We perform experiments in fused-silica
glass, nitrogen gas and water, and observe a significant increase in the fluctuations of the output
polarization angle for elliptically-polarized femtosecond pulses as the power is increased beyond the
critical power for self-focusing. We also show numerically and confirm experimentally that this
effect is more prominent in the anomalous group-velocity dispersion (GVD) regime compared to the
normal-GVD regime due to the extended lengths of the filaments for the former. Such effects could
play an important role in intense-field light-matter interactions in which elliptically-polarized pulses
are utilized.

I. INTRODUCTION

Optical beam collapse occurs when a laser beam with
a power greater than a certain critical power Pcr propa-
gates through a transparent medium and undergoes self-
focusing [1–5]. At higher powers, competing effects such
as plasma defocusing arrest the collapse, leading to the
formation of laser filaments [6–8] that can confine light
over distances much longer than the diffraction length [9].
Self-focusing and laser filamentation are important for
applications in atmospheric remote sensing [10, 11], light
detection and ranging (LIDAR) [9, 12], high-harmonic
generation (HHG) [13–15], pulse compression [12], and
terahertz generation [16]. Additionally, collapsing waves
are of universal interest because of their relevance not
only in optics but also in a wide variety of fields, e.g.,
in Bose-Einstein condensation, surface waves dynamics,
plasma physics, and Ginzburg-Landau equations [17–20].

Through the process of self-phase modulation, the ac-
quired nonlinear phase shift of collapsing beams becomes
large and highly sensitive to small fluctuations in the in-
put power, as predicted theoretically [21, 22] and demon-
strated experimentally [23]. Furthermore, as the collaps-
ing beam evolves into a filament, the sensitivity of the
nonlinear phase shift to small fluctuations increases with
propagation disce, so that ultimately, the nonlinear phase
shift becomes uniformly distributed in [0,2π] [24]. As a
result of this loss of phase, the interference between post-
collapse beams becomes chaotic [22–26].
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While the effects of beam collapse on the electric-field
amplitude and phase have been extensively investigated
[22, 23, 27–30], limited work exists on the study of the
polarization of beams undergoing wave collapse. Most
of the work studies the effects of polarization on beam
collapse [31–37]. However, the change in the beams po-
larization itself as a result of its collapse remains largely
unexplored. Since several applications of laser filamen-
tation including HHG, THz generation and supercontin-
uum generation are polarization sensitive [38–40], inves-
tigating the polarization state of collapsing beams is cru-
cial [41–43]. In some of the studies, molecular alignment
and delayed birefringence acting on the probe were in-
vestigated [44–46]. In case of self-induced polarization
rotation of the pump, direct measurements [47] using a
rotating polarizing cube and indirect measurements [48]
using femtosecond laser-induced periodic surface struc-
tures (FLIPSS) have observed moderate rotations of the
polarization angle pre- and post- collapse. The fluctua-
tions in polarization rotation in these studies, however,
were obscured by averaging over multiple shots or pulse
periods, and the increase of the fluctuations with propa-
gation distance at powers significantly above Pcr was not
revealed. Additionally, theoretical investigations based
on these observations have not been performed.

In this Letter, we theoretically predict and experimen-
tally demonstrate an effect which we term loss of po-
larization. We show that, when an elliptically-polarized
input beam undergoes filamentation, its nonlinear ellipse
rotation can become highly sensitive to fluctuations in
the input power. Hence, its output polarization becomes
random. We show the universality of the loss of polariza-
tion effect by performing experiments with femtosecond
pulses in various media (glass, water, and nitrogen gas).
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For glass we perform experiments under conditions of
normal and anomalous group-velocity-dispersion (GVD)
and show that the loss-of-polarization effect is more pro-
nounced in the anomalous-GVD regime where filaments
tend to be significantly longer.

II. THEORY AND SIMULATIONS

To theoretically explain the loss of polarization in
elliptically-polarized, collapsing beams, we consider the
nonlinear Schrdinger equations (NLSE) for propagation
in a bulk saturable Kerr medium

∂A±
∂z

= i[
∂2A±
∂x2

+
∂2A±
∂y2

+
2

3

(
|A±|2 + 2|A∓|2

)
A±

[1 + ε (|A±|2 + |A∓|2)]
], (1)

where A+(z, x, y) and A−(z, x, y) are the slowly-varying
envelopes of the clockwise and counter-clockwise circular
polarization components of the electric field, x and y are
the transverse coordinates normalized by the input beam
radius, z is the coordinate along the propagation direc-
tion normalized by the diffraction length, and ε is the
saturation parameter. The angle θ between the major
axis of the polarization ellipse and the x-axis is [48]

θ(z) = −1

2
tan−1

U

Q
, (2)

where U = −2 Im[
∫
A∗+A−dxdy] and

Q = 2 Re[
∫
A∗+A−dxdy].

An elliptically-polarized Gaussian input beam, whose
power Pin is moderately above Pcr, evolves into the cou-
pled spatial solitary waves

A±(z, x, y) = eiκ±ZR±(x, y), (3)

where R± are solutions of

−κ±R± +
∂2R±
∂x2

+
∂2R±
∂y2

+
2

3

(
|R±|2 + 2|R∓|2

)
R±

[1 + ε(|R±|2 + |R∓|2)]
= 0.

When the Gaussian input beam is elliptically-polarized,
the power of A+(0, x, y) is different from that of
A−(0, x, y). Hence, A+ and A− converge to different soli-
tary waves with ∆κ = κ+ − κ− 6= 0, and the beam accu-
mulates a polarization angle θ0 during the initial collapse
stage. The polarization rotation angle then satisfies (see
Appendix A)

θ(z) = θ0 +
∆κ

2
z. (4)

In the presence of input noise, θ0 and ∆κ become ran-
dom variables, therefore, by the loss of phase lemma [24],
the probability distribution of θ mod (2π) converges to
a uniform distribution on [0, 2π] as z → ∞. This effect
represents a complete loss of polarization. For z suffi-
ciently large so that z∆P (d∆κ/dz) � 1, even for small
changes in the input power ∆P , large changes in θ are in-
duced, making it impossible to deterministically predict

FIG. 1. Solution of Eq. (1) assuming a Gaussian initial beam
profile with Pin/Pcr = 1.73. (a) On-axis amplitude |A(z, 0)|
and beam profile vs. propagation distance z, (b) Unwrapped
on-axis phase φ for right (left) circularly-polarized component
indicated by the red-dotted (blue-solid) curve, (c) The polar-
ization angle θ(z) vs. z.

the output polarization angle. Note that, for a linearly-
polarized input beam, since |A+| = |A−|, both compo-
nents collapse into identical solitary waves with ∆κ = 0,
and so the polarization angle does not rotate at all. Ad-
ditionally, in case of purely circular polarization, only one
of A+ or A− is present [see Eq. (1)], ellipse rotation in
this case does not have meaning, and the beam remains
circularly polarized.

To demonstrate the loss of polarization phenomenon
numerically, we solve the coupled NLSE [Eq. (1)] us-
ing the split-step Fourier transform method [49] with
ε = 5×10−5 and |A+/A−|z=0 = 2.747. Both components
collapse and evolve into solitary waves, see Fig. 1(a).
The bottom plots of Fig. 1(a) show the spatial inten-
sity profile of the beam at various propagation lengths.
The difference in amplitude between the two compo-
nents in Fig. 1(a) corresponds to a difference in their
propagation constants, see Eq. (3). This is shown by
the different slopes of the on-axis accumulated phases
in Fig. 1(b) (κ− ≈ 75.82 and κ+ ≈ 26.49). Since
∆κ ≈ 49.33, theoretical prediction of the polarization
angle θ(z) ≈ z∆κ(P )/2 ≈ 24.66z by Eq. (4) agrees well
with the direct fit of θ(z) ≈ 24.47z [Eq. (2)] in Fig. 1(c),
whose slope is within 0.8% of the theoretical prediction.
To the best of our knowledge, Fig. 1 presents the first ex-
ample of a multi-component solitary wave of the NLSE
with different propagation constants for each component.

Figure 2 shows the polarization angle θ as a function of
the input power, for various propagation distances z. The
elliptically-polarized beam undergoes negligible change in
the accumulated polarization angle for short propagation
lengths (z = 0.1) [Fig. 2(a)]. So the probability distribu-
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FIG. 2. Elliptically-polarized input beam, (a)-(c): Polar-
ization angle vs. input power at z = 0.1, 0.5 & 1.5, respec-
tively; (d)-(f): The probability distribution function (PDF)

of θ̃ = θ/π(mod 2); at z = 0.1, 0.5 & 1.5; (g): Histogram

of θ̃ at z = 1.5 for 1000 simulations with Pin/Pcr distributed
uniformly in [1.53, 1.75].

tion function (PDF) is highly localized [Fig. 2(d)]. As the
propagation distance increases (z = 0.5), these changes
increase [Fig. 2(b)], and the PDF becomes more spread-
out, i.e., the uncertainty in θ increases [Fig. 2(e)]. Ulti-
mately, at long propagation lengths (z = 1.5), θ varies
rapidly with the power [Fig. 2(c)], and the PDF ap-
proaches a uniform distribution [Fig. 2(f)]. The PDFs
in Figs. 2(d)-(f) were computed using a novel numeri-
cal method, which is more efficient and informative for a
fixed number of NLSE simulations than the Monte-Carlo
method [50]. We illustrate the loss of polarization at
z = 1.5 by plotting a histogram of 1000 simulations with
an elliptically-polarized input beam with Pin distributed
uniformly in the 10% interval around 1.65Pcr and ob-
serve that θ fluctuates across the entire range of [0,2π]
[Fig. 2(g)].

As predicted by theory, linearly-polarized beams do
not undergo loss of polarization. Indeed, our simulations
show that the polarization angle of a linearly-polarized
beam remains unchanged irrespective of Pin (simulation
results presented in Fig. A1 of Appendix B).

III. EXPERIMENTS

We experimentally investigate the stability of the out-
put polarization after the beam has undergone collapse

for different input polarizations (linear and elliptical) in
fused silica. We loosely focus pulses from an optical para-
metric amplifier (OPA) (HE-TOPAS-prime, Light Con-
version, Inc.) at a wavelength of 1550 nm (75-fs pulse
duration, 10-Hz repetition rate) into a 5-cm long glass
sample using a 50-cm focal length lens. The OPA is
pumped by a Coherent HIDRA amplifier with 800 nm,
50 fs, 10-Hz pulses. We control the input light polariza-
tion with the help of a Quarter-Wave Plate (QWP) and a
Half-Wave Plate (HWP). The input light undergoes col-
lapse inside the glass sample and is collimated by a lens
at the output. We separate the s- and p-polarization
components with a Glan prism and monitor their energy
on two InGaAs detectors. Experimental setup is shown
in Fig. 3(a). The energy of the input pulses is varied from
15 to 220 µJ.

In each single-shot measurement, the recorded mag-
nitudes of the s- and p-polarizations (P0y and P0x) are
proportional to the square of the electric field amplitude
for the y- and x-component respectively. θ can be explic-
itly calculated from these values using following equation
[51]:

tan(2θ) =
2
√
P0x

√
P0y cos(δ)

(P0x − P0y)
, (5)

where, δ is the phase offset between the x- and y-
component of the electric field, i.e. δ = 0 repre-
sents linear-polarization and δ = π/2 with E0x = E0y

represents circular-polarization. The ellipticity of the
elliptically-polarized input used in our experiment is
0.447 corresponding to a δ of 67.4◦ and cos(δ) = 0.384.
Beam collapse is indicated by the presence of white light
at the output due to the generated supercontinuum as
a result of filamentation and glass-ionization [3, 52–54].
It is also indicated in the plotted curve of output energy
in p-polarization (p-pol) versus input energy [Fig. 3(b)].
When the input energy is low, the output energy varies
linearly with input as expected. When collapse occurs,
the transmitted energy saturates due to nonlinear ab-
sorption inside the glass sample and the slope of the
output energy vs. input energy decreases as shown in
Fig. 3(b). Input energies are normalized to the maximum
energy used in our experiments (220 µJ). From both these
indicators, we determine that the beam collapse begins
at around 0.25 of the normalized energy.

We plot normalized energies in the s- vs. p-polarization
in Fig. 3(c) to show trends in θ. For linearly-polarized
input, irrespective of whether collapse and filamentation
occurs, the curve of s- vs. p-polarized energy is linear
indicating a constant polarization angle. For elliptically-
polarized input, in the absence of beam collapse at low
powers, the s vs. p plot shows a tan2 dependence that
arises due to steady increase of θ with power, in agree-
ment with the theory (see Appendix D). At high energies,
however, s vs. p exhibits random behavior due to loss of
polarization. To further investigate this effect, the s/p
fluence ratio is calculated from each single-shot measure-
ment by taking the ratio of the corresponding detector
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FIG. 3. (a) Experimental setup. QWP: quarter wave plate, HWP: half wave plate, D1, D2, D3: InGaAs detectors (b) Energy
in the output p-polarization vs. normalized input energy for elliptically-polarized beam. We obtain a similar graph for energy
in the output s-polarization, (c) Output s-polarization vs. p-polarization for linearly- (red - left) and elliptically- (blue - right)
polarized input, (d) Plot of s/p ratio vs. input energy for linearly- (red crosses) and elliptically- (blue circles) polarized input

outputs and is plotted as a function of input energy for
elliptically- and linearly-polarized light [Fig. 3(d)]. The
fluctuations in the s/p fluence ratio are correlated to the
fluctuations in θ. The resulting plot shows two impor-
tant features. First, for elliptically-polarized input, the
s/p ratio steadily increases with input energy, showing
a rotation of the polarization ellipse, whereas for linear
input the s/p ratio stays constant, indicating a constant
polarization angle. Second, the fluctuations in s/p ra-
tio increase for elliptically-polarized input indicating in-
creased sensitivity of the output polarization angle on in-
put power. For the case of linearly-polarized input, fluc-
tuations in s/p ratio remain small and constant through-
out. These observations are in accordance with our theo-
retical prediction based on the nonlinear ellipse rotation
phenomenon [55]. Below collapse threshold (< 55 µJ or
0.25 of normalized input energy), the fluctuations for the
elliptically-polarized beam are comparable to the small
fluctuations (∼ 1◦) for the linearly-polarized beam. How-
ever, for sufficiently high input energy (> 55 µJ) i.e.
when the beam undergoes collapse, the fluctuations be-
come 6 times higher for elliptically-polarized input than
for linearly-polarized input, which agrees qualitatively
with our numerical predictions. We observe a 27◦ rota-
tion of polarization angle over the entire energy interval
in our experiment for elliptically-polarized input. The
observed fluctuations in the polarization angle are more

than 6◦ for the highest energy in our experiment. This
is significantly larger than the measurement uncertainty
(1◦), which we calculate based on the fluctuations in θ in
the linear-polarization case.

IV. EFFECT OF DISPERSION

From our analysis, see Eq. (4), and the NLSE simula-
tions [Fig. 1], we predict as the propagation distance in-
creases, the sensitivity of the output polarization angle to
the input power fluctuations increases. Researchers have
previously shown that filaments in the anomalous group-
velocity dispersion (GVD) regime are longer, more stable
and yield more collapsing events as compared to those in
the normal-GVD regime [56–59]. Thus, we expect that
the loss of polarization effect would be more prominent
in the anomalous-GVD regime. To test this hypothesis,
we performed simulations including effects of dispersion,
diffraction and nonlinearity for a material with GVD
(β2 = ±26 ps2/km) similar to glass, 75-fs pulse duration
and input power uniformly distributed between 17.4Pcr
and 19.2Pcr (further details in Appendix D). The s/p
ratio was calculated using the output polarization angle
at z = 0.05. Our simulation results are shown in Fig-
ure 4(a) and (b). For consistency with simulations in
the anomalous-GVD regime (β2 = −26 ps2/km), we use
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FIG. 4. s/p fluence ratios at the output for elliptically-
polarized input. Variance (σ) shown by dark blue shaded
region, shot-to-shot fluctuations shown by light blue shaded
region. (a),(b): Simulation results with input power varied
uniformly between 17.4Pcr and 19.2Pcr, (c),(d): experimen-
tal results in glass at 800 nm and 1500 nm respectively, input
energy varied 10% around (c) 88 µJ and (d) 176 µJ. Exper-
imental results follow the simulation trend that fluctuations
are more pronounced in the anomalous-GVD [σ = 0.084 (sim-
ulation), 0.063 (experiment)] than those in the normal-GVD
regime [σ = 0.041(simulation), 0.045(experiment)].

(β2 = +26 ps2/km) in the normal-GVD-regime simu-
lations. However, our normal-GVD regime experiments
were performed with a laser at 800 nm, where β2 for
glass is slightly different (+35 ps2/km). In the normal-
GVD regime, calculated shot-to-shot fluctuations (indi-
cated by light blue shaded region in the plots) in the
output polarization angle were 4.9◦; whereas those in
the anomalous-GVD regime were about 7.8◦ (1.6 times
larger). We also performed corresponding experiments
in glass with pulses at 800 nm (normal-GVD regime,
β2 = +35 ps2/km) and at 1500 nm (anomalous-GVD
regime, β2 = −26 ps2/km). Figures 4(c) and (d) show
our experimental results for the normal and anomalous-
GVD regime, respectively. Measured shot-to-shot fluc-
tuations in the output polarization angle for the normal-
GVD regime were 4.3◦, whereas those in the anomalous-
GVD regime were 6◦ (1.4 times larger). Experimental
results follow the trend predicted in simulations and con-
firm our hypothesis that the output polarization angle
is more sensitive to the input power in the anomalous-
GVD regime than in the normal-GVD regime. In all the
plots in Fig. 4, the input power (energy) is varied by 10%
[±5%].

V. UNIVERSALITY

This increase in fluctuations occurs in all media when-
ever there is filamentation of elliptically-polarized beams.
To demonstrate this, we performed experiments in glass,
liquid water, and in nitrogen gas at 23 bar pressure, using
800 nm, 50-fs pulses at a 10-Hz repetition rate (normal-
GVD regime). In all these cases, we compare output
s/p ratio fluctuations for elliptically-polarized input and
linearly-polarized input for fixed 10% fluctuations in in-
put energy. We observed that at low pulse energies (be-
low the collapse threshold), the fluctuations in s/p ra-
tio for both input polarizations are identical. On the
other hand, above the collapse threshold, fluctuations in
s/p ratio in case of elliptically-polarized input are 2-4
times higher than the fluctuations in case of linearly-
polarized input. This indicates that θ is more sensitive to
input power fluctuations for elliptically polarized light as
compared to linearly polarized light, in agreement with
the loss of polarization theory. (Plots presented in fig-
ures A2, A3 and A4 of Appendix E).

VI. SUMMARY AND OUTLOOK

In conclusion, we theoretically show that the loss of
polarization angle increases with propagation distance
and ultimately leads to a complete loss of polarization
angle for collapsing beams of elliptical-polarization. We
provide experimental evidence for this effect by measur-
ing a significant increase in the fluctuations of the po-
larization angle in a glass sample. We demonstrate that
the loss of polarization effect is more prominent in the
anomalous-GVD regime. Such behavior is universal and
should occur in all systems that exhibit multiple collapse
of elliptically-polarized beams. Furthermore, this work
can be extended to study beam polarization for multi-
filamentation. In this case, the loss of polarization ef-
fect could lead to spatial de-polarization of the beam
due to unequal polarization rotation in each filament.
Recent work shows that light with different spatial pro-
files such as vortex Airy beams and axially asymmetric
beams have controllable and designable collapse dynam-
ics that are robust against random noise [60–63], and it
is expected that the loss-of-polarization effect could also
occur in such beams. Our work has implications for ap-
plications that depend upon the beam polarization being
deterministic for collapsing beams traveling over long dis-
tances, such as in filamentation for remote sensing and
HHG.
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APPENDIX

A. Derivation of euqation (4)

Substituting (3) into (2) yields

U = −2Im[

∫
A∗+A−dxdx] = 2 sin(zκ+−zκ−)

∫
R+R−dxdy

And

Q = 2Re[

∫
A∗+A−dxdx] = 2 cos(zκ+−zκ−)

∫
R+R−dxdy

. Therefore, denoting ∆κ = κ+ − κ−, we have by (2),

θ(z) = −1

2
tan−1

U

Q
= − tan−1(tan(z∆κ)) =

∆κ

2
z.

Finally, adding θ0, the polarization rotation angle accu-
mulated during the initial collapse stage, yields (3).

B. Polarization angle θ vs. input power for
linear-polarization (right-side plot)

Simulation results for polarization angle as a function
of input power at z = 1.5 for Linear (right side plot) and
elliptical (left side plot) input polarization. Note: Left
side plot is Fig. 2(c) in the main text elliptical input case
shown for comparison with the linear input case.

FIG. A1. Simulation results for polarization angle as a func-
tion of input power (θ/2π vs. Pin/Pcr) at z = 1.5 for Linear
(elliptical) input polarization shown by red dashed (blue solid)
line in the right (left) plot.

Polarization angle for elliptically polarized input varies
by more than 2π when input power is changed in the
10% interval around 1.65Pcr whereas polarization angle
for linearly polarized input remains unchanged for the
same variation in input power.

C. Explanation of steady increase of θ with power
for elliptical-polarization

The polarization angle θ due to nonlinear ellipse rota-
tion can be given by [55],
θ = 1

2∆nωc z, where ∆n ≡ B
2n0

(|A−|2 − |A+|2). Here B
is a material-dependent constant and n0 is the refractive
index. For a given ellipticity, in the linear propagation
regime, |A−|2 ∝ input power (Pin) and |A−|2 ∝ Pin, so,
∆n ∝ Pin. Thus, assuming negligible losses, θ ∝ Pin.

At powers below critical power Pcr , the propagation
of light in the medium is linear and the losses are low.
Therefore at these conditions, θ increases with the input
power, leading to steady increase of s/p ratio as shown
in Fig. 3(d) for elliptical-polarization.
tan2 dependence: Output s-polarization is corre-
lated to sin2(θ) and p-polarization is correlated to
cos2(θ). Therefore, with steadily increasing θ, the
plot of s-polarization vs. p-polarization in Fig. 3(c)
shows a quadratic looking tan2 dependence for elliptical-
polarization, at low input energies.

D. Details of simulations with dispersion

The simulations to study the effects of anomalous vs.
normal GVD were carried out using a modified form of
Eq. (1) including effects of group-velocity dispersion:

∂A±
∂z

= i[
∂2A±
∂x2

+
∂2A±
∂y2

−β2
2

∂2A±
∂t2

+
2

3

(
|A±|2 + 2|A∓|2

)
A±

[1 + ε (|A±|2 + |A∓|2)]
],

Since our pulses have a moderate spectral bandwidth,
the effects of higher-order dispersion and self steepening
can be neglected. Additionally, it was shown by Shim
et al. [23] that the loss of phase effect occurs for a wide
variety of nonlinear saturation terms, including higher-
order Kerr nonlinearities and plasma defocusing. Similar
conclusions can be drawn about the loss of polarization
phenomenon that we introduce in this manuscript.

E. Additional plots for different materials

Below we present data obtained by performing exper-
iments in glass, liquid water, and high pressure nitrogen
gas (23 bar) in the normal-GVD regime. In each figure
(Fig. A2, A3 and A4), left two subplots show results for
linearly-polarized input and right two subplots show re-
sults for elliptically-polarized input. We used 800 nm,
50-fs pulses at a 10-Hz repetition rate at different in-
put energies (below and above collapse threshold in each
case). In the experiment, we compare output s/p ratio
fluctuations for elliptically-polarized input and linearly-
polarized input for fixed fluctuations (10%) in input en-
ergy. These fluctuations in s/p ratio directly correspond
to fluctuations in output polarization angle θ.
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FIG. A2. Results in glass for fluctuations in normalized s/p
ratio over 200 consecutive shots

FIG. A3. Results in water for fluctuations in normalized s/p
ratio over 200 consecutive shots

FIG. A4. Results in high pressure nitrogen gas for fluctua-
tions in normalized s/p ratio over 200 consecutive shots
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R. Bourayou, and R. Sauerbrey, Physical Review Letters
92, 225002 (2004).

[27] S. Varma, Y.-H. Chen, and H. M. Milchberg, Physical
Review Letters 101, 205001 (2008).

[28] G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, Optics
Letters 29, 1772 (2004).

[29] Z.-Q. Hao, J. Zhang, T.-T. Xi, X.-H. Yuan, Z.-Y. Zheng,
X. Lu, M.-Y. Yu, Y.-T. Li, Z.-H. Wang, W. Zhao, and
Z.-Y. Wei, Optics Express 15, 16102 (2007).

[30] G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián,
J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz,
Physical Review Letters 112, 223902 (2014).

[31] Y. Shi, A. Chen, Y. Jiang, S. Li, and M. Jin, Optics
Communications 367, 174 (2016).

[32] N. A. Panov, V. A. Makarov, V. Y. Fedorov, and O. G.
Kosareva, Optics Letters 38, 537 (2013).
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[57] L. Bergé and S. Skupin, Physical Review E 71, 065601
(2005).
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