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We prepare and study a two-component Mott insulator of bosonic atoms with two particles
per site. The mapping of this system to a magnetic spin model, and the subsequent study of its
quantum phases, require a detailed knowledge of the interaction strengths of the two components. In
this work, we use radio frequency (RF) transitions and an on-site interaction blockade for precise,
empirical determination of the interaction strengths of different combinations of hyperfine states
on a single lattice site. We create a map of the interactions of the lowest two hyperfine states of
7Li as a function of magnetic field, including measurements of several Feshbach resonances with
unprecedented sensitivity, and we identify promising regions for the realization of magnetic spin
models.

Ultracold atoms in optical lattices, described by a Hub-
bard Hamiltonian, are a uniquely accessible platform for
the study of quantum magnetism. A dual-component
Mott insulator with n atoms per site, in which each of the
components stands in for a magnetic spin, implements a
spin-n/2 Heisenberg model with nearest neighbor inter-
actions [1]. With first-order tunneling suppressed by on-
site interactions, only exchanges between sites that pre-
serve the overall density distribution are possible. This
superexchange of particles mediates effective spin-spin in-
teractions [2], and in analogy to the spin system, the
ground state will be determined by ratios of the on-site
intra- and inter-species interactions, which can be varied
by means of a state-dependent optical lattice [3] or by us-
ing Feshbach resonances [4]. The model with a single par-
ticle per site, corresponding to spin-1/2, has been studied
extensively in many regimes; recent successes include ob-
servation of 3D and 2D Néel ordering in fermions [5, 6],
measurements of spin correlations in 2D spin-imbalanced
systems [7] and spin-charge correlations in the presence
of hole doping [8].

In this work, we focus on a two-component, spin-1
bosonic model implemented using the two lowest hy-
perfine states of 7Li (hereafter a and b) in a cubic op-
tical lattice. Integer-spin models remain largely un-
explored using cold atoms systems, and yet they are
predicted to exhibit many interesting behaviors aris-
ing from both magnetic ordering and from beyond-
mean-field effects due to topological considerations [9–
11]. With two particles per site, the three states
of our model, |+1〉 = |aa〉, |0〉 = (|ab〉 + |ba〉)/

√
2 and

|−1〉 = |bb〉, form a spin triplet manifold on each lattice
site.1 As in the spin-1/2 system, the nearest neighbor
interactions arise from superexchange. Because of Fesh-
bach resonances, the three possible configurations have

1 Hereafter, for compactness, we will refer to these three states as
|aa〉, |ab〉, and |bb〉, using the Fock basis notation.
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FIG. 1. (color online) The three different combinations of two
hyperfine states on a lattice site have interaction energies Uaa,
Uab, and Ubb which can be tuned via Feshbach resonances. At
a given field B, the splittings will in general be unequal, giving
rise to an interaction blockade: the two possible transitions
can be individually addressed by an RF drive with frequency
ω = ωZeeman + ∆U/h̄.

on-site energies that are a function of the applied mag-
netic field B, so that one can tune the configurational en-
ergies of different distributions of spins in the lattice (Fig.
1). Quantum phase transitions are expected in regimes
where the nearest-neighbor interactions compete with on-
site interactions. Determining the relevant regions of B
for an exploration of the spin-1 Hamiltonian therefore re-
quires precise knowledge of the relative strength of the
interactions amongst the hyperfine states.

RF spectroscopy has been used in the past to mea-
sure site occupancy in a single-species Mott insulator of
ultracold bosons [12]. Here we extend this technique to
measure the differential interaction energy of two con-
fined atoms as a function of magnetic field. We begin by
preparing an n= 2 Mott insulator of 7Li in a single hy-
perfine state in a 1064nm cubic optical lattice (our appa-
ratus and BEC production are described elsewhere [13]).
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FIG. 2. (color online) Fits to representative spectra of the
transition between b and a, taken between the two bb Fesh-
bach resonances. The spectra have been plotted so that the
Zeeman-shifted peaks of the n= 1 transitions overlap. The
inset shows an example spectrum in which each point is an
average of four measurements and the fit is a sum of two
Gaussians. The crossing of the frequencies of the two peaks
corresponds to Uab−Ubb = 0.

The number of atoms is 1× 105 and the lattice depth is
35 ER in each dimension. The central n= 2 plateau, ap-
proximately 3× 104 sites, is surrounded by an n= 1 shell
containing a similar number of sites. We pulse the RF
drive for 2.9ms and monitor the number of atoms in the
other hyperfine state as a function of drive frequency. At
the frequency corresponding to the transition of a bare
atom, we observe a peak coming from the atoms on n= 1
sites. We observe a second peak from the n= 2 atoms,
which is shifted by the difference in interaction energy
between the initial state (|aa〉 or |bb〉) and the final state
(|ab〉). The pulse length corresponds to a π-pulse for the
n= 2 sites (so that we maximize the signal), which have
a Rabi frequency

√
2 greater than that of the n= 1 sites,

due to bosonic enhancement. The interaction blockade
[14] that arises from unequal interaction energies in the
three states means that one may drive the system se-
lectively between |aa〉 and |ab〉 (or |bb〉 and |ab〉). Thus
when we probe the atoms absorptively after an RF pulse
with light that is resonant only for a (or b), we measure
a single flipped atom per n= 2 site.

The frequency of the n= 1 peak corresponds to the
Zeeman shift and thus to the magnitude of the applied
magnetic field (the hyperfine constant and nuclear g-
factor for 7Li are taken from [15]). The frequency shift
of the n= 2 peak, which may be positive or negative, is a
direct measure of the differential two-body interactions.
Using this technique, we obtain RF spectra at many se-
lected bias fields from which we derive the two-body in-

teraction splittings Ubb−Uab and Uab−Uaa (Fig. 2). The
technique works equally well for attractive and repulsive
interactions, so long as the system remains in the Mott
insulating state.

The precision to which we must determine the differen-
tial interaction energies on a site as an input to a many-
body physics model is fixed by the superexchange rate,
which at Mott insulator depths for 7Li in a 1064 nm
optical lattice ranges from hundreds of hertz to several
kilohertz, depending on lattice depth and dimensionality.
Here we measure the differential interaction energies as
a function of magnetic field to a precision of about 100
Hertz, limited only by the stability of our magnetic field
(better than one part in 105 at 103 G) and the difference
in magnetic moments of the two hyperfine states (approx-
imately 33 kHz/G). As these interaction energies range
over many tens of kilohertz, the error bars are too small
to see on a full scale plot (Fig. 3a). This technique is
particularly well-suited to atoms with characteristically
large interaction energies, such as Li, because the wide
separation between singlon and doublon spin-flip reso-
nances permits the use of high Rabi frequencies, which
maximizes signal size and decreases sensitivity to mag-
netic field noise.
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FIG. 3. (color online) (a) The relative interactions Uab−Uaa

and Ubb−Uab are plotted as a function of magnetic field, mea-
sured via RF interaction spectroscopy in 35, 35, 35 ER optical
lattice. (b) The scattering lengths of the aa and bb interac-
tions are plotted as a function of magnetic field, measured
using lattice AM and shown in units of the Bohr radius a0.
Also shown as a bold dashed line is the ab scattering length,
obtained using simultaneous hyperbolic fits to the RF spec-
troscopy and lattice AM data sets. The fits are shown as
solid black lines. Dotted vertical lines indicate the position of
a resonance.

While RF spectroscopy in a lattice is a powerful and
precise tool for characterizing differential interactions,
another technique is necessary to measure the absolute
interaction energy (i.e. Uaa or Ubb), for these interac-
tions determine the lattice depth for the transition to the
Mott insulator in each hyperfine state. In previous stud-
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Channel abg/a0 ∆ (G) Bres (G) Bres (G) Bres (G)
RF data only Combined fit Previous works

aa -25.8(1.2) -135.9(6.9) 737.58(10) 738.29(15) 738.2(2)[16]

737.8(2)[17]

736.97(7)[18]

ab -29.8(1.3) -90.5(4.0) 794.64(07) 794.59(12)

bb -23.0(1.4) -14.9(0.9) 845.42(01) 845.45(02) 844.9(8)[16]

bb -23.0(1.4) -172.7(10.0) 893.34(12) 893.84(18) 893.7(4)[16]

TABLE I. Parameters of the Feshbach resonances in the lowest two hyperfine states of 7Li, determined with a simultaneous fit to
RF interaction and lattice AM spectroscopy data (except where specified otherwise). The reported errors in our measurements
are 1σ statistical uncertainties in the fit parameters. The AM data slightly bias the resonance positions derived from combined
fits towards higher magnetic fields, possibly due to unaccounted-for systematics. As the RF data are influenced only by two-
body, on-site effects rather than by many-body physics, the resonance positions are likely captured more accurately by the RF
data alone.

ies, lattice amplitude modulation (AM) has been used to
drive singlon-to-doublon conversion in the lowest Hub-
bard band, and the resonant frequency of this process
has been associated with the on-site interaction energy in
both repulsive [19] and attractive [20] single-component
bosonic systems. Here we employ the same technique to
map the on-site intra-species interactions of 7Li across a
broad range of magnetic fields. We modulate the lattice
depth by 30% peak-to-peak along the shallow dimension
of a 35, 35, 20 ER optical lattice and measure the en-
tropy added to the system by adiabatically ramping back
to the BEC from the Mott insulator and measuring the
recondensed fraction. While we must remain in the Mott
insulator in regions of magnetic field where the scatter-
ing length is negative in order to prevent the collapse
of the atomic cloud, data taken above but close to the
transition for either attractive or repulsive interactions
display a bias towards higher frequency [19]. While this
systematic bias prevents the collection of data for very
small scattering lengths, limiting the accuracy of our de-
termination of the background scattering length in each
channel, the locations of the resonances themselves are
not significantly affected.

We perform a simultaneous fit to both the RF differ-
ential interaction spectroscopy data and the lattice AM
spectroscopy data in order to determine the inter-species
interaction energy Uab, and to extract parameters of the
Feshbach resonances we detect (see Fig. 3b). We take
the form of the scattering length in each state to be a
hyperbola

as = abg

(
1−

∑
i

∆(i)

B −B(i)
res

)
(1)

with a background scattering length abg, width ∆(i), and

resonance locationB
(i)
res. In order to provide a useful com-

parison with existing literature, we calculate the scatter-
ing lengths

1

as
=

4πh̄2

m

1

U

∫
|ψ(r)|4d3r (2)

where U is the on-site interaction energy we measure and
ψ(r)is the calculated Wannier wavefunction on a site,
given calibration of the lattice depth by inter-band para-
metric excitation. This approximation for ψ systemati-
cally biases the scattering lengths towards lower values
because interactions modify the actual two-particle wave-
function by admixing higher bands, but the correction is
not significant as long as |as|/aHO � V 1/4/

√
2π where

aHO is the harmonic oscillator length on a site and V is
the lattice depth in recoil units [21]. For the moderate
scattering lengths considered here, we remain more than
one order of magnitude below this threshold. The com-
plete Feshbach resonance spectrum for the lowest two
hyperfine states of 7Li is plotted in (Fig. 3b) and the
parameters of the resonances can be found in Table I.

We find a single resonance in the lowest hyperfine state,
whose position is in good agreement with the most recent
measurements made using RF-spectroscopy of molecular
binding energies [16], although previous measurements
made using the modification of in-trap condensate size
due to the mean field energy of interactions have re-
ported the resonance at slightly lower magnetic fields
[17, 18, 22]. We also find a single resonance between the
a and b states, previously unmeasured, whose parameters
are particularly relevant for studies of two-component
systems. Of interest is also the double resonance in the
b state, studied previously using three-body atom loss
[23, 24] and also RF-spectroscopy of molecular binding
energies [16]. Compared to previous techniques, RF in-
teraction spectroscopy allows for the exploration of the
inter-species resonance. The method is as precise as RF
spectroscopy of molecular binding energies, but does not
require knowledge of the molecular potential in order to
extract the scattering lengths.

The region between the two bb resonances provides an
opportunity to vary the interaction energy of a |bb〉 site
with respect to that of an |aa〉 or |ab〉 while keeping the
latter two relatively constant. We even find a point, near
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FIG. 4. (color online) Rabi oscillations of doublons (a) exactly
at and (b) far away from the magnetic field at which the inter-
actions are degenerate, as in (3). The measured atom number
is normalized to the total number of n= 2 sites. The system
is initially prepared in state b and we detect the total num-
ber of atoms in state a after applying a resonant RF drive.
Decaying sinusoidal fits determine the Rabi frequencies to be
1.68(4) kHz and 2.30(1) kHz respectively, consistent with the
expected

√
2 ratio in Rabi frequency between resonant three-

level and two-level systems. The time constant for the deco-
herence away from degeneracy is 10.2 ms. The oscillations in
(a) seem to decay faster because this data was taken at the
closest magnetic field to the degeneracy point which is per-
mitted by the present resolution limit of our magnetic field
setpoint, so that we ultimately observed beating between two
nearly-equal but off-resonant Rabi frequencies.

849 G, where

2Uab = Uaa + Ubb (3)

so that the transitions from |aa〉 to |ab〉 and |ab〉 to |bb〉
occur at the same frequency. The interaction blockade
vanishes and it is possible to rotate around the entire
spin-1 Bloch sphere. This point is characterized by Rabi
oscillations with twice the amplitude (i.e. full contrast on
all doubly occupied sites) but

√
2 lower Rabi frequency

than when the two transition frequencies are different
and the RF drive is resonant with only one of them
(Fig. 4). Moreover, for two sites connected by tunnel-
ing, the degeneracy condition (3) also means that the
superexchange process corresponding to |+1〉L |−1〉R ⇒
|0〉L |0〉R becomes resonant. This degeneracy implements
a special point in the spin-1 Heisenberg model: it is the
point where the spin-spin interactions are isotropic, and
where the on-site anisotropy, which biases the system to-
wards local pairing, completely vanishes.

As much as RF interaction spectroscopy in a lattice
enables precise measurements of scattering lengths, it is
also a tool for state preparation and diagnostics. Start-
ing with an n= 2 Mott insulator in a single hyperfine
state, one can prepare the fully paired state |ab〉 on ev-
ery doubly-occupied lattice site by means of a π-pulse or
a Landau-Zener sweep. Figure 4b demonstrates coher-

ent preparation of this fully paired state, or Spin Mott
state, which has a large gap and is a promising starting
point for adiabatic state preparation, in analogy to the
band insulator in fermions [3]. Full diagnostics of dou-
bly occupied sites can be realized using transitions to a
third hyperfine state, by selectively measuring the num-
ber of doublons in different configurations of hyperfine
states. We therefore expect this method to prove useful
in studies of strongly interacting multi-component cold
atoms systems, especially when the relative interaction
strengths can be modified with Feshbach resonances or
with a spin-dependent lattice.

In conclusion, we have developed a technique to pre-
cisely determine the relative on-site interaction energies
of different configurations of two-component bosons in
an optical lattice, and have demonstrated that technique
using 7Li over a broad range of magnetic fields. We have
improved the precision parameters of three previously
observed Feshbach resonances, and report the first ob-
servation of an inter-species Feshbach resonance in 7Li.
The identification of a magnetic field which provides for
a degeneracy of differential interactions paves the way
for future investigation of a spin-1 bosonic system, which
is predicted to include spin-ordered phases such an XY-
antiferromagnet, a Z-paramagnet, and topologically pro-
tected phases such as the Haldane phase.
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