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We use extensive numerical simulations based on matrix product state methods to study the
quantum dynamics of spin chains with strong on-site disorder and power-law decaying (1/rα) in-
teractions. We focus on two spin-1/2 Hamiltonians featuring power-law interactions: Heisenberg
and XY and characterize their corresponding long-time dynamics using three distinct diagnostics:
decay of a staggered magnetization pattern I(t), growth of entanglement entropy S(t), and growth
of quantum Fisher information FQ(t). For sufficiently rapidly decaying interactions α > αc we find a
many-body localized phase, in which I(t) saturates to a non-zero value, entanglement entropy grows

as S(t) ∝ t1/α, and Fisher information grows logarithmically. Importantly, entanglement entropy
and Fisher information do not scale the same way (unlike short range interacting models). The
critical power αc is smaller for the XY model than for the Heisenberg model.

The quantum dynamics of disordered spin chains, de-
termined by the competition between the many-body in-
teractions and the quench disorder, has received a great
deal of attention in recent years, with the advent of many
body localization (MBL) (see [1] and references contained
therein). In the absence of integrability, the unitary evo-
lution of these isolated quantum many-body systems may
result in thermalization, or MBL. In the former, energy
transport allows the different parts of the system to ex-
change energy and relax to a thermal state, while in the
latter such exchange of energy is not possible and the sys-
tem does not thermalize. While most works to date have
focused on systems with interactions that are short range
in real space, long range interacting systems are relatively
poorly understood. Understanding long range interact-
ing systems is however important, both conceptually and
for experimental reasons. For example, experimental sys-
tems in atomic, molecular, and optical (AMO) physics,
such as lattice gases of polar molecules [2] or magnetic
atoms [3]; and arrays of trapped ions crystals [4] or Ry-
dberg atoms [5], provide natural realizations of systems
with dipolar and tunable long range interactions respec-
tively.

It is generally believed that a localized phase can be
obtained in spin chains (at least up to rare regions [6]) as
long as the interaction falls off faster than a certain criti-
cal power law [7–9] (and sometimes even for interactions
more long range than this critical power law [10, 11]).
However, the characterization of the MBL phase in long
range interacting systems remains incomplete. Moreover,
existing numerical explorations of such problems have
mainly employed exact diagonalization (ED), which is
limited by finite size effects that can be fairly severe for
long range interacting systems.

In this paper we explore the dynamics of strongly dis-
ordered quantum spin chains with long range interac-
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Laboratory, Laurel, MD 20723, U.S.A.

tions using numerical algorithms based on matrix prod-
uct states (MPS), which allow us to probe significantly
larger system sizes than ED. We have used the proto-
col described in Ref. [12] to simulate the time evolution
with power-law interactions efficiently. We consider two
distinct models - the Heisenberg and XY spin chains -
with interactions that decay as power laws with tunable
power α. Our simulations are limited to experimentally
relevant time-scales, and system sizes of L . 40, so they
cannot address rare region issues such as those raised in
[6]. However, they can yield insight into the dynamics
of systems of relevance for AMO experiments, and also
into the broader problem of characterizing the dynamics
of spin chains with long range interactions. We focus in
particular on characterization in terms of three distinct
quantities - the decay of a staggered magnetization pat-
tern I(t), the growth of entanglement entropy S(t), and
the growth of the quantum Fisher information FQ(t). We
note in passing that these same diagnostics were explored
for nearest neighbor interacting models in Ref. [13].
Localization with Power-law Interactions We consider

a general one-dimensional (d = 1) chain of L spin-1/2
particles interacting via with two-body interactions, and
described by the Hamiltonian:

Ĥ =

L∑
i=1

εiσ̂
z
i−

L∑
ij

J⊥
|rij |α

(
σ̂xi σ̂

x
j + σ̂yi σ̂

y
j

)
+

L∑
i,j

Jz
|rij |β

σ̂zi σ̂
z
j ,

(1)
where σηi , η = {x, y, z} are the Pauli matrices. In this

system the total axial magnetization Ŝz =
∑L
i=1 σ̂

z
i is a

conserved quantity. Here rij is the separation between
the spins at sites i and j and εi are random numbers
from a uniform distribution of [−h, h] characterizing the
on-site disorder. Finally J⊥ and Jz characterize the ex-
change and direct interactions, respectively. We will fo-
cus in this work on two models: the Heisenberg model
Jz = J⊥ and α = β, and the XY model Jz = 0. In this
work we set ~ = 1.

These models have previously been explored by means
of scaling arguments [7–9], and it has been proposed that
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FIG. 1. Dynamics of imbalance I(t), von Neumann entropy S(t), and the QFI FQ(t) for α = β, Jz = J⊥, L = 30, and
h/J⊥ = 30 as a function of α. The decay of I(t) for α < 2, summarized in the right hand side panel of (a) via the quantity cα
defined in text, clearly indicates a transition from the MBL phase to a thermal phase. This is mirrored in the fast growth of
S(t) shown in (b).

in d = 1

• The Heisenberg model supports an MBL phase for
α > αc = 2

• The XY model supports an MBL phase for α >
αc = 3/2.

The former hypothesis appears to be consistent with ED
studies [7] (although these are limited to system sizes L ≤
14) while the latter has yet to face stringent numerical
tests.

Here we explore the spin dynamics via extensive nu-
merical simulations using MPS based methods for sys-
tem sizes L = 20, 30, 40. We choose a Néel state initial
condition, |Ψ(0)〉 = |↑↓↑↓ . . .〉, which has been realized
with excellent fidelity in a variety of AMO platforms,
such as fermionic atoms [14] and trapped-ions [15]. We
characterize the dynamics using three observables: the
magnetization imbalance I(t), the quantum Fisher in-
formation (QFI) FQ(t), and the half-system von Neu-
mann entropy S(t). The imbalance is defined as I (t) =∑
i(−1)i+1 〈σ̂zi (t)〉 and for our initial state I(0)/L = 1.

The utility of I(t) as an observable for the MBL tran-
sition is easy to understand. In the thermal phase, re-
gardless of the initial state |ψ0〉, the system will eventu-
ally relax to a thermal state, which is completely spec-
ified by a number of global conserved quantities, such
as energy or magnetization. As such, in this phase the
system has no memory of its initial conditions. In con-
trast, in the MBL phase, the absence of transport means
that the system will retain the features of the state it
starts in. The thermal and MBL phases can also be
distinguished by how quantum correlations develop in
each phase. In order to probe this one can use the von-
Neumann entropy, S(t), and the QFI, FQ(t). In the
case of nearest-neighbor spin chains, the detailed study
presented in [15], demonstrated that in the MBL phase
both FQ(t) and S(t) grow logarithmically, while in the
thermal phase, in the absence of rare regions, one ex-
pects the ballistic growth of S(t) [16]. A similar be-
havior for the QFI is expected, however, this observable
has not been studied to the same extent. We quan-
tify the entanglement using the von-Neumann entropy,

which is defined as S(t) = −Tr (ρ̂ ln ρ̂), where ρ̂ is the
reduced density matrix obtained by tracing out half the
system. The QFI needs to be associated to a specific
operator Ô, and for pure states it can be computed as

FQ ≡ 4

(〈
Ô(t)2

〉
−
〈
Ô(t)

〉2)
= 4∆Ô(t). Given our

particular choice of initial conditions, we set Ô to be the
imbalance operator Ô = Î = 1/L

∑
i(−1)i+1σ̂zi , which

relates the QFI to the variance of the Hamming distance,
which is a quantifier of localization [15]. Furthermore, we
note that the QFI is a witness of multipartite entangle-
ment if FQ/L > 1 [17, 18].

Results Consider the Heisenberg model with power-law
interactions, characterized by α = β. In figure 1 we show
the observable dynamics at h/J = 30 for a range of α
from 0.75 to 4, averaged over 100 disorder realizations.

This places us in the strong disorder limit, and for a
system supporting localization, it corresponds to a point
deep in the localized phase. This particular parameter
choice allows us to simulate systems of up to L = 40,
up to times tJ = 30, and with long-range interactions
(α < d) [19] This is important, since MBL and ther-
mal phases can be distinguished only at long times, and
for large enough systems. For instance, the behavior of
I(t) at short times is similar in both thermal and MBL
phases and contains oscillations which we associate with
the near-resonant oscillation in the chain. Furthermore,
since the simulations are run with hard-wall boundaries
the system should be large enough to avoid the boundary
effects, while allowing for long-time dynamics to mani-
fest.

The long-time dynamics if I(t), displays an absence of
transport for α ≥ 2, as evidenced by the saturation of
I(t) to a finite value. This indicates (for the system sizes
and time scales considered) that the system has entered
the localized phase. We can quantify this saturation by
fitting the tail of the data between tJ⊥ ∼ 1 to tJ⊥ ∼ 20
to the form I(t) = cα log(t)+d0, where d0 is an arbitrary
constant. An example of the fit is shown in the left panel
of Fig. 1(a) using a thick dashed line. The slope cα is
non-zero in the thermal phase, and is consistent with
zero in the localized phase, as summarized in the right
panel of Fig. 1(a). As the interaction range is increased
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FIG. 2. Observable dynamics in the MBL phase for Heisenberg and XY models. (a) For the Heisenberg model (Jz = J⊥, and
α = β) we set L = 40 and h/J⊥ = 12. (b) For the XY model (Jz = 0) we have used L = 30 and h/J⊥ = 8. . The dashed lines

in the middle panel correspond to the fits to the functional form S(t) ∝ tbd/α. The inset in the right-most panels is a zoom on
the α = 2 displaying logarithmic growth. The dashed line is a fit to the data.

beyond a critical value αc, the system enters the thermal
phase, indicated (Fig.1) using dark and light blue lines.
Here we observe faster growth of half-chain entanglement
entropy, S(t), as well as persistent decay of I(t) over four
decades of time. A further increase in interaction range
brings us deep into the thermal phase (light and dark
red lines), where the rapid growth of S(t), and a decay of
I(t) and non-zero cα are clearly observed. These results
are consistent with α = 2 being the critical interaction
range for Heisenberg spin chains [7].

While the large disorder facilitated our numerical sim-
ulations of long-range interactions over longer times and
system sizes larger than those accessible via exact di-
agonlization, the slow growth of entanglement in this
regime makes it hard to clearly identify the functional
form of S(t). In figure 2(a) we study the dynamics of I(t),
S(t), and FQ(t) in the localized regime but at a lower dis-
order strength h/J = 12. The results, particularly the
behavior of the imbalance, confirm that the system is in-
deed in the localized phase where I(t) saturates to a finite
value, with no significant finite-size effects. These results
were obtained for system size L = 40 and 100 disorder
realizations. We find no significant finite size effects in
the imbalance. This is illustrated in Fig. 3(a) where we
compare the imbalance for two different systems sizes.

The next two panels of Fig.2(a) show the dynamics
of the entanglement entropy and the quantum Fisher in-
formation for L = 40. Previous studies of models with
nearest-neighbor interactions, have identified FQ(t) as an
experimentally accessible observable for identifying the
MBL transition [15]. In the presence of short-range in-
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ment entropy, S(t) at h/J⊥ = 12 and α = 2.5 for the Heisen-
berg model. While I(t) does not display finite-size effects, the
rate of growth of S(t) increases with system size.
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teractions both observables grow as ∝ log(t). However
we find that the functional form of these two observables
deviate sharply in the presence of power-law interactions.
In the localized phase FQ(t) ∝ log(t) (see inset), while

the entanglement entropy S(t) ∝ tbd/α, as shown using
the dashed lines, with b ≈ 0.8. We note that theoretical
studies [20] predict S(t) to grow with the same functional
form but with b = 1. The deviation of our results from
the theoretical predictions may be attributed to the in-
sufficient size of the system as compared to the strength
of the disorder, enhancing the finite-size effects in our
results. This is evidenced by Fig. 3(b) which compares
the dynamical behavior of S(t) for L = 30 and L = 40.
While the power-law growth is observed for both system
sizes, the entropy grows at a faster rate for the larger
system size.

Thus far we have shown that three very different ob-
servables, namely I(t), FQ(t), and S(t) can be used to
identify the localized phase. However, these three ob-
servables have different dynamical behaviors and their
utility varies. Fundamentally these observables differ by
their support: I(t) is a single body observable, while for
a pure state FQ(t) is given by the variance of a particular
operator and thus contains only two point correlations,
while S(t) has contribution from up to L/2 point correla-
tions. As a result the transition is signaled differently in
each observable: since S(t) contains higher order corre-
lations spanning the full system, its behavior is modified
by the power-law form of interactions, while the behav-
ior of FQ(t) and I(t) is virtually unchanged compared to
what is observed for nearest-neighbor interactions. De-
spite this shortcoming, the utility of FQ(t) and I(t) stems
from their accessibility in experimental systems.

So far we have considered systems described by Hamil-
tonian (1) and α = β. However, Ref. [8] argued that the
robustness of MBL phase to power-law interactions dif-
fers considerably for the XY model. Specifically, it pre-
dicted that the system will support an MBL phase only
for α ≥ αc = 3d/2. In figure 4 we show the dynamics of
I(t) and S(t) for L = 30 and h/J = 30, in panels (a) and
(b), respectively.

In contrast to the Heisenberg model with similar pa-
rameters (see Fig. 1) the localized phase persists at α < 2.
In fact, our simulations show that αc ≈ 1, below which
the imbalance shows significant decay, accompanied by a
rapid growth of the entanglement entropy S(t).

We note that there is some tension between our nu-
merical results, which observe αc ≈ 1 for the XY model,
and the theoretical prediction of αc,th = 3d/2 with d = 1.
This may be due to finite size effects and/or limited simu-
lation times. We note that the constraint αc,th = 3d/2 is
only strictly applicable in the thermodynamic limit where
L→∞. For a finite-size system one can derive additional
requirements tabulated in Ref. [8]. In particular, the ar-
guments advanced therein require a minimum system size

of Lc = (h/J)
2d(d+αc)
α(3d−2αc) , equivalent to L ∼ 106 − 1013 for

α = 1− 1.25, which is unaccessible both numerically and
experimentally (at least in AMO systems).

Finally we repeat the analysis done for the Heisenberg
model in Fig. 2(a), now for the XY Hamiltonian. Since
the MBL phase in the XY Hamiltonian is more robust
we are able to simulate the dynamics at lower disorder
strengths easily. In Fig. 2(b) we plot the three observ-
ables, S(t), I(t), and FQ(t) at h/J = 8 for L = 30 for
α = 2, 2.5, and 3. As expected for the MBL phase, the
imbalance shows no decay. Similar to the Heisenberg
case, we find that the entanglement entropy grows as a
power law with time, S(t) ∝ tbd/α, with b = 0.8 provid-
ing the best fit to all three curves, while the Fisher infor-
mation shows slow logarithmic grown, indistinguishable
from the MBL phase manifesting in systems with nearest
neighbor interactions.

Conclusions While disordered systems with nearest-
neighbor interactions are known to feature a many-body
localized phase, robust numerical evidence for such a
phase in the presence of long-range interactions is scarce.
In this paper we have used large scale numerical simula-
tions using MPS methods to study the effect of disorder
on localization in two paradigmatic models, namely the
Heisenberg and XY spin chains with power-law interac-
tions ∝ 1/rα. Our simulations allow us to study the
interplay of disorder and power-law interactions in sys-
tem sizes far beyond what is accessible using exact diag-
onalization. We have demonstrated that for numerically
accessible system sizes, and for times accessible experi-
mentally, both models at large enough disorder strength
display a transition from a thermal phase to a localized
phase at α = αc. We find that for the Heisenberg model
αc ∼ 2, while in the XY model we find αc ∼ 1. While our
results for the Heisenberg model are in accordance with
analytical expectations [7], as is our result that MBL is
more stable in the XY model than in the Heisenberg, our
observed value of αc ≈ 1 for the XY model is in tension
with the analytically predicted [8] value αc ≈ 1.5. It
should be noted however that the analytical arguments
in [8] are expected to be accurate only for system sizes
larger than we can access numerically (or that can be
accessed experimentally in AMO setups), and thus our
observed value of α ≈ 1 may in fact be the experimentally
relevant critical value, at least for AMO experiments.

Our numerics also yield insight into the characteriza-
tion of MBL with long range interactions. While the
magnetization imbalance saturates to a non-zero con-
stant in the MBL phase (much as it does for short range
interacting models), and while the quantum Fisher infor-
mation grows logarithmically in the MBL phase (again,
much as in short range interacting models), the half chain
entanglement entropy grows as a power law function of
time. This is in sharp contrast to short range interact-
ing models, where entanglement entropy also grows as
logarithmic function of time, and suggests that quantum
Fisher information underestimates entanglement for long
range interactions.

We note also that our simulations are performed on
‘typical’ samples, and are silent as to potential rare re-
gion obstructions to localization [6]. We are also lim-
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FIG. 4. Dynamics of imbalance I(t), von Neumann entropy S(t), and QFI FQ(t), for L = 30, h/J⊥ = 30, and Jz = 0, as a
function of α. The decay of I(t) for α < 1, summarized in the right hand side panel of (a) via the quantity cα defined in text,
clearly indicates a transition from the MBL phase to a thermal phase. This is mirrored in the fast growth of S(t) shown in (b).

ited to one spatial dimension and to relatively short time
scales. An investigation of the effects of rare regions
and/or spatial dimensionality, perhaps using the semi-
classical methods outlined in [13], would be an interesting
topic for future work. Even our present results, however,
can serve as valuable guides for experimental systems us-
ing polar molecules, magnetic atoms, Rydberg atoms, or
trapped ions, enabling a thorough study of the effects of
long-range interactions on localization.
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Phys. Rev. A 85, 022321 (2012).
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