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We present the first experimental measurement of the ensemble averages of both the kinetic and interaction
energies of the three-dimensional Bose–Hubbard model at finite temperature and various optical lattice depths
across weakly to strongly interacting regimes, for an almost unit filling factor within single-band tight-binding
approximation. The kinetic energy is obtained through Fourier transformation of a time-of-flight signal, and
the interaction energy is measured using a newly developed atom-number-projection spectroscopy technique,
by exploiting an ultra-narrow optical transition of two-electron atoms. The obtained experimental results can
be used as benchmarks for state-of-the-art numerical methods of quantum many-body theory. As an illustrative
example, we compare the measured energies with numerical calculations involving the Gutzwiller and cluster-
Gutzwiller approximations, assuming realistic trap potentials and particle numbers at nonzero entropy (finite
temperature); we obtain good agreement without fitting parameters. We also discuss the possible application
of this method to temperature estimations for atoms in optical lattices using the thermodynamic relation. This
study offers a unique advantage of cold atom system for “quantum simulators”, because, to the best of our
knowledge, it is the first experimental determination of both the kinetic and interaction energies of quantum
many-body system.

I. INTRODUCTION

Ultracold atoms in optical lattices are strongly interacting
quantum many-body systems that can be well described by the
tight-binding single-band (Bose, Fermi) Hubbard model [1,
2]. The exotic many-body quantum phases of these “artifi-
cial solids" and their phase transition properties have been ex-
tensively investigated because of their defect-free lattices and
widely tunable experimental parameters, as well as the avail-
ability of powerful detection methods [3, 4]. An important
aim of experiments using artificial solids (so-called “quantum
simulators”) is phase diagram mapping of the fundamental
many-body model Hamiltonians. One of the most interesting
problems, which has attracted much attention and has been
widely studied, is the quantum phase transition of ultracold
bosonic atoms in a three-dimensional (3D) optical lattice from
a superfluid (SF) state to a Mott insulating (MI) state [3].

The Hamiltonian of the Bose–Hubbard model is given by
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âl + h.c.

⌘
+

U

2

X

j

â
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where â

†

j
, â j are the creation and annihilation operators at

site j, respectively; t is the tunneling matrix element between
nearest-neighbor sites; U is the on-site interaction energy; µ
is the chemical potential; and Vj is the local potential offset at
site j, which originates from the trap potential and Gaussian
envelopes of optical lattice lasers. Here,

P
h j,li indicates sum-

mation over all neighboring sites. Note that we count only one
time per h j, li pair.

For the Bose–Hubbard system, the competition between
the kinetic (atom tunneling) and interaction energies yields
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a quantum phase transition at low temperature [5]. In the SF
phase, the atoms are spread out over the entire lattice and have
long-range phase coherence. In the MI phase, the atoms are
localized at individual lattice sites with integer atom occupan-
cies and have no phase coherence across the entire lattice. The
ratio of U/t determines the quantum phase at zero tempera-
ture. The system is in the MI or SF phase when U/t > (U/t)c

or U/t < (U/t)c, respectively, with the location of the critical
point (U/t)c depending on the system dimensionality and the
filling factor. For the 3D homogeneous Bose–Hubbard model
at unit filling, (U/t)c has been numerically calculated to be
29.34(2) using quantum Monte Carlo methods [6].

The quantity taken as the experimental observable is im-
portant. Since the first observation of SF-MI transition in
2002 [5], the quantities most commonly used to character-
ize the properties of the quantum states in the Bose-Hubbard
system have been the visibility and widths of the interference
peaks of the time-of-flight (TOF) signals, which are sensi-
tive to atomic phase coherence. These quantities capture the
essence of the quantum states. In an SF state, the existence
of long-range phase coherence over entire lattice sites yields
high visibility and narrow widths for the interference peaks
in the TOF signal. In contrast, MI state formation is signaled
by a decrease in the visibility and broadening of the interfer-
ence widths, resulting from a decrease in the atomic phase
coherence. Experimental techniques such as noise-correlation
measurements [7], quantum gas microscopy [8], and radio-
frequency (RF) [9] and laser spectroscopy [10] are used to
probe the phase coherence, density-density correlation, and
atom number distribution, respectively.

The most important quantity governing the quantum phase
at thermal equilibrium is the Hamiltonian. However, despite
its crucial importance, there are no reports of systematic mea-
surement of the energy terms in the Hamiltonian; i.e., the
ensemble averages of both the kinetic and interaction terms,
the competition of which induces the SF-MI quantum phase
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transition. The lack of such experiments is partly because no
established experimental methods or protocols are known to
accurately evaluate the ensemble averages of the kinetic and
interaction terms.

Here, we present, to our best knowledge, the first compre-
hensive measurements of the ensemble averages of both the
kinetic and interaction terms at finite temperature and vari-
ous optical lattice depths, for 3D Bose–Hubbard model with
an almost unit filling factor within single-band tight-binding
approximation. We establish a protocol to accurately extract
the ensemble average of the kinetic term from the TOF signal,
with careful consideration of the finite TOF effect and inter-
atomic interaction effect. We also develop a new method of
atom-number-projection spectroscopy, which enables direct
measurement of the number distributions of multiply occupied
sites at any optical lattice depth and, hence, accurate evalua-
tion of the ensemble average of interaction terms across the
weakly to strongly interacting regimes. Excellent resolution
that allows different site-occupancies to be distinguished is
obtained by exploiting an ultra-narrow optical transition be-
tween the electronic states of 1S0 and 3P2, which have quite
different on-site interactions in the case of the two-electron
atoms of ytterbium (Yb) (see also Appendix A). Different
from the standard quantum gas microscopy method, which
detects the parity of the atom number at a site due to the
pairwise loss of atoms induced by light-assisted collision dur-
ing fluorescence imaging [11], our atom-number-projection
spectroscopy technique can detect any atom number at an
n-occupied site. We experimentally examine occupancy-
dependent properties such as the finite lifetime and transition
probability in order to accurately evaluate the total atom num-
ber at the n-occupied sites. We experimentally determine the
kinetic and interaction terms hK̂i =

P
h j,li(hâ

†

j
âli + c.c.) and

hĜi =
P

jhâ
†

j
â
†

j
â jâ ji, respectively, and use the numerical val-

ues of the t(V0) and U(V0) parameters reported in Ref. [12]
(V0 is the optical lattice depth).

Using these methods, the ensemble averages of the kinetic
and interaction terms are successfully obtained at finite tem-
perature and various optical lattice depths. These results can
be used as benchmarks in state-of-the-art numerical meth-
ods pertaining to quantum many-body theory. In this work,
we compare the measured energies with numerical calcula-
tions involving Gutzwiller and cluster-Gutzwiller methods at
nonzero entropy (finite temperature). The trap potentials and
particle numbers used in the calculations are identical to those
of the experiments, and we obtain good agreement without
fitting parameters. We also discuss application of this experi-
mental method to temperature estimations for atoms in optical
lattices using the thermodynamic relation.

This paper is organized as follows: In Sec. II, we explain
our experiment setup and procedure. The method for mea-
suring the kinetic (interaction) energy is presented in Sec. III
(Sec. IV). We discussed a possibility of measuring ensem-
ble average of potential energy term in Sec. V. In Sec.VI, we
present our main experimental results, including the kinetic
an the interaction energies. We compare the measured en-
ergies with numerical calculations involving Gutzwiller and
cluster-Gutzwiller methods at finite temperature in Sec. VII.
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FIG. 1. (color online) Schematic view of setup. Only the FORT
beams and optical lattice beams, the probe light for absorption imag-
ing, and the excitation light for high-resolution spectroscopy are
shown.

Section VIII is devoted to conclusions and further prospects.

II. BASIC EXPERIMENT SETUP AND PROCEDURE

We briefly describe the basic experiment setup and proce-
dure here. Further details are given in Appendix B.

A. Atom preparation

Our experiment began with magneto-optical trapping of
174Yb atoms from an atomic oven. Evaporative cooling was
performed using a crossed-beam optical far-off resonant trap
(FORT) geometry formed by two orthogonal horizontal and
vertical FORT laser beams of 532-nm wavelength with ellip-
tical laser-beam waists (see Fig. 1).

After preparation of the 174Yb Bose-Einstein condensate
(BEC), we adiabatically ramped up a 3D cubic optical lat-
tice generated by three orthogonal, retro-reflected laser beams
also having 532-nm wavelength and propagating along the X-,
Y-, and Z-axes. The number of atoms before loading onto the
optical lattice was stabilized from 1.4 ⇥ 104 to 1.8 ⇥ 104.

The experimental procedures for the high-resolution spec-
troscopy and TOF measurements, including atom loading
onto the optical lattice, are shown in Figs. 2 and 3, re-
spectively. In the first 100 ms of loading, the optical lat-
tice depth was increased to 5 ER, where the recoil energy
ER = h

2/(2m�2
L
), with h being the Planck constant and �L the

optical lattice wavelength (532 nm). Then, we increased the
final lattice depth of V0 in 10(V0/ER � 5) ms, with the FORT
powers being kept constant.
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FIG. 2. (color online) Schematic time sequence (not scaled) for high-
resolution spectroscopy, where t1 = 10(V0/ER � 5) [ms] and t2 =
0.01|V0/ER � 15| [ms]. The double-sided arrows indicate variable
parameters (see text for details).

B. Preparation of various atomic entropies

One of the important considerations in our experiment was
preparation of cold atoms with various atomic entropies in
the same experiment setup. We controlled the atomic entropy
by changing the FORT depth in the final stage of evaporative
cooling. Because the FORT depth depends on the horizontal
FORT power, we in fact controlled the final horizontal FORT
power in this manner. However, the trap frequencies also de-
pend on the FORT power; therefore, we changed the hori-
zontal FORT power during adiabatic loading onto the optical
lattice in the first 100 ms (see Figs. 2 and 3).

Because direct measurement of the atomic entropy in the
optical lattice is difficult, we estimated this property from the
initial atomic entropy and heating during lattice loading. The
initial entropy S 1 in a FORT harmonic trap is [13]

S 1 = 4N1kB

⇣(4)
⇣(3)

 
T

Tc

!3

, (2)

where N1 is the atom number; T is the atomic temperature in
the FORT, which can be directly measured via a TOF method;
Tc is the critical temperature; ⇣(z) is the zeta function; and kB

is the Boltzmann constant. Here,

kBTc = ~!̄
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FIG. 3. (color online) Schematic time sequence (not scaled) for TOF
measurement, where t1 = 10(V0/ER � 5) [ms] and t2 = 0.01|V0/ER �

15| [ms]. The double-sided arrows indicate variable parameters (see
text for details).

where !̄ is the geometric mean of the three trap frequencies
and ~ is the Planck constant divided by 2⇡.

To estimate the additional atomic heating during loading
onto the optical lattice, we measured the entropy S 2 and atom
number N2 after adiabatically ramping down the optical lat-
tice in reverse order (see Appendix B). We assumed that the
entropy per atom in the optical lattice, sOL, was written as in
Eq. (4), using the entropy before (after) loading onto the opti-
cal lattice S 1 (S 2):

sOL =
1
2

 
S 1

N1
+

S 2

N2

!
. (4)

We obtained the atomic entropy sOL by taking five TOF im-
ages and calculating each atomic entropy; these values were
then averaged.

III. METHOD FOR MEASURING KINETIC-TERM
ENSEMBLE AVERAGE: FOURIER TRANSFORMATION OF

TOF SIGNAL

Here, we present a method for obtaining the ensemble av-
erage of the first term in Eq. (1) (the kinetic term) �thK̂i.
We found that hK̂i can be simply measured from TOF images.
The atomic-density distribution nTOF(rTOF) after the TOF tTOF
is given by [14, 15]

nTOF(rTOF) =
 

m

~tTOF

!3

|w̃0(kTOF)|2 S (kTOF), (5)

where m is the atom mass, w̃0(kTOF) is the Fourier transforma-
tion of the Wannier function in the lowest Bloch band w0(r),
and kTOF = mrTOF/~tTOF. The structure factor S (kTOF) is ex-
pressed as

S (kTOF) =
X

j,l

e
ikTOF·(r j�rl)�i

✓
m

2~tTOF

◆
(r2

j
�r2

l
)
hâ
†

j
âli, (6)
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where r j indicates the site position with index j in the opti-
cal lattice and h·i represents the ensemble average. The sec-
ond term in the exponential, exp[�im(r2

j
� r2

l
)/(2~tTOF)], in-

troduces the effect of the finite TOF. This term corresponds to
the quadratic term in the Fresnel approximation of near-field
optics [16].

Details of our derivation are given in Appendix C. Here,
for simplicity, we first consider the one-dimensional case and
ignore the finite TOF effect. Equation (6) is then expressed as

S (kx) =
X

j,l

e
ikx(x j�xl)hâ†

j
âli. (7)

Note that we omit the “TOF” label for simplicity in this sec-
tion. We assume that hâ†

j
âli = hâ†

l
â ji and
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hâ
†

j
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⌘i
. (8)

Next, we define the kinetic energy �thK̂ix = �t
P
h j,li(hâ

†
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âli +

c.c.) =
P

E(kx)hĉ†(kx)ĉ(kx)i, where ĉ(k) and ĉ
†(k) are the

annihilation and creation operators of the Bloch states and
ĉ(k) = 1/

p
NL

P
j â j exp(ik · r j). The quasi-momentum kx

runs over the first Brillouin zone only and satisfies the periodic
boundary condition kx = 2⇡nx/(NLxdlat), (nx = 0,±1 ± 2, · · · ).
Here, NLx is the number of lattice sites along the X-axis and
dlat is the lattice spacing (266 nm). We straightforwardly ob-
tain

P
hâ
†

j
â j+1i through a Fourier transformation of S (kx) in

the first Brillouin zone, such that
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dkxS (kx) cos (dlatkx) , (9)

where S (kx) = NLxhĉ
†(kx)ĉ(kx)i. Equation (9) implies that the

energy of the lowest Bloch band is E(kx) = �2t cos(dlatkx). To
our best knowledge, the above Eq. (9) has not been explicitly
reported to date, despite its importance and simplicity. In the
present work, this simple relation allows us to successfully
evaluate the kinetic energy from experimental observation.

In the experiment, we obtained a two-dimensional (2D)
atomic-density distribution I(x, z), because the TOF signal
was integrated in the probe direction (which we took to be the
Y-axis). From the atomic linear densities along the X- and Z-
axes, we obtained S (kx) and S (kz) by fitting of the S (k)|w̃(k)|2
function, where the Wannier function w̃(k) was obtained by
numerically calculating the lowest band of the optical lattice
for non-interacting atoms. We consider the structure factor
of the form S (k) =

P19
↵=0 A↵ cos(↵kdlat), which is depicted in

Fig. 4 (A↵ are fitting parameters). Then, we obtained the en-
semble averages of the kinetic energy �thK̂ix (�thK̂iz) from
S (kx) (S (kz)), and assumed that the total-ensemble average of
the kinetic term �thK̂i was

�thK̂i = �
3
2

t

⇣
hK̂ix + hK̂iz

⌘
. (10)

Note that it is possible to obtain non-local atomic corre-
lations

P
jhâ
†

j
â j+ni (n = 2, 3, · · · ) using the method shown
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FIG. 4. (color online) (a) Linear atom density of TOF signal inte-
grated along vertical axis. Inset: TOF image with identical param-
eters. The TOF was 14 ms and ten images were averaged. The lat-
tice depth was 5ER and the atomic entropy was 0.04 kb. The fitting
results using the S (kx)|w̃(kx)|2 function (red solid line) and squared
Wannier function |w̃(kx)|2 (dotted green line) are also shown. Here,
kL = ⇡/dlat. (b) S (k) obtained by fitting data shown in (a).

here. As a demonstration, we directly determine the coher-
ence length in Appendix D. In addition, the 2D atomic corre-
lation can be obtained using the 2D Fourier transformation.

A. Effect of finite TOF

The effect of a finite TOF arises from the exp[�im(r2
j
�

r2
l
)(2~tTOF)] term in Eq. (6). Instead of adding this effect to

TOF image in order to directly compare the experimental re-
sults [17], we experimentally evaluated the total site number
along the ↵ axis NL↵ (↵ = x, z) in order to remove this effect.
Details are given in Appendix C. The basic concept is that
it is possible to evaluate the true value (i.e., the infinite TOF)
from experimental measurements with several TOFs through
extrapolation. In this work, we measured the atom correlation
of hK̂i↵(tTOF,�l) =

P
jhâ
†

j
â j+�li, where �l was 1, 2, 3, 4 and

tTOF was set to TOFs of 14 and 18 ms. Then, hK̂i↵(1,�l)
(�l = 1, 2, 3, 4) and the total site number along the ↵ axis
NL↵ were obtained through fitting using equations similar to
Eq. (C17). For a TOF of 14 (18) ms, a reduction of 6 (4) % in
the value of

P
jhâ
†

j
â j+1i from its value for an infinite TOF was
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estimated. Note that this finite TOF effect was experimentally
checked using datasets for various TOFs, with the other ex-
perimental parameters unchanged, and the validity of our re-
sult was confirmed (see Appendix C). Because the correction
of the finite-TOF effect is model-dependent, so we consider
estimated deference between the values before and after the
correction as a systematic error.

It is noted that the finite-TOF effect scales as
exp

⇣
�imd

2
latN

2
L

⌘
for whole sites. However, it scales as

exp
⇣
�imd

2
latNL

⌘
for neighbor sites, which contribute to the

kinetic energy, and resulted in highly-suppressed finite-TOF
effect for measurement of atom correlation in the neighbor
sites. The corrections itself are estimated to be within 6%
and therefore the selection of the assumption of the density
function is not so critical.

B. Effect of inter-atomic interaction during TOF

The discussion above is based on the Wannier states of non-
interacting atoms. Here we discuss the effect of inter-atomic
interaction during TOF. First is the validity of the Wannier
function numerically calculated. The kinetic energy of non-
interacting atoms in the lowest band of the optical lattice is
estimated to be ~!L, where !L is the oscillation frequency
at the bottom of the lattice potential [15]. The ratio of the
interaction energy Un(n� 1)/2 to the kinetic energy ~!L, i.e.,

⌘ =
Un(n � 1)

2~!L
, (11)

determines the relative importance of the inter-atomic interac-
tion during the TOF. The ratio ⌘ was mostly far lower than 1
under our experimental conditions. Our calculations indicate
that ⌘ takes the maximum value of 0.25 at 7ER depth in the
case of triple occupancy, n = 3, for which the population frac-
tion is less than 0.1 (see Sec. VI). Therefore, the effect of the
inter-atomic interaction was negligible in our experiment.

The second possible influence of the inter-atomic interac-
tion on the TOF measurements is the conversion from the in-
teraction energy, to the kinetic energy after release from the
optical lattice [18]. We discuss it in Sec.VII B.

IV. METHOD TO MEASURE ENSEMBLE AVERAGE OF
INTERACTION TERM: ATOM-NUMBER-PROJECTION

SPECTROSCOPY

We have developed a new method of atom-number-
projection spectroscopy, which enables direct measurement
of the number of multiply occupied sites at any optical lat-
tice depth and, hence, accurate evaluation of the interac-
tion term across the weakly to strongly interacting regimes.
One may wonder whether such a new method is truly neces-
sary, because information on the numbers of n-occupied sites
is straightforwardly obtained through high-resolution spec-
troscopy for the atoms in a deep optical lattice. In fact,
site-occupancy-resolved spectra in a deep optical lattice have
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FIG. 5. (color online) Atom-number-projection spectroscopy. Three
scans are superimposed after the long-term laser frequency drift is
compensated. (a) Single, broad spectra of coexisting SF and nor-
mal components are observed at a small optical lattice depth (5ER)
without the projection method. (b) Site-occupancy-resolved spectra
can be obtained in the small optical lattice (5ER) using the projection
method of a sudden increase to 15ER in 0.1 ms. The solid red line
is a fitting as a guide for the eye. Up to five-body occupied sites are
observed.

already been reported in [10] for the 1S0 –3P2 transition,
in [19, 20] for the 1S0 –3P0 transition of Yb, and in [21] for the
1S0 –3P0 transition of strontium (Sr). In contrast, as shown in
Fig. 5 (a), a single, broad spectrum of coexisting SF and nor-
mal components was observed in the case of a shallow optical
lattice depth [10]. The hopping time at small optical lattice
depth (0.6 ms for 5ER depth) is comparable to the excitation
time (0.5 ms in the case of Fig. 5); therefore, the peaks of the
observed spectra are not well separated.

A shorter excitation time is preferable for suppressing atom
hopping during excitation. However, this causes spectral
broadening of the resonance lines, significantly exceeding
the separation between peaks under our conditions. The fre-
quency separation of the peaks is given by the collisional shift:
�⌫col = (Uge � Ugg)/h. Here, Ugg(= U) is the on-site two-
body interaction and Uge is the two-body interaction between
the 1S0 state (|gi) and 3P2 state (|ei).

As an alternative, we have developed a new method: atom-
number-projection spectroscopy. In this approach, we in-
crease the optical lattice depth quickly in order to freeze atom
hopping, and then irradiate the atoms with an excitation light
pulse. The ramp-up time is 0.1 ms from 5ER to 15ER and
is faster than atom hopping, but sufficiently slow to prevent
atom excitation into the higher band of the optical lattice (⇠
20 kHz). Figure 5(b) shows spectra obtained using the atom-
number-projection method, and the site-occupancy-resolved
spectrum was indeed acquired for the shallow optical lattice.
Here, n-occupancies of up to five were distinguished with a
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separation of approximately (Ueg�Ugg)/h. The lower the res-
onance frequencies, the higher the occupation numbers n be-
came. Note that our excellent resolution that allows different
site occupancies to be distinguished is obtained by exploit-
ing the optical transition between the 1S0 and 3P2 (mJ = 0)
electronic states of Yb atoms, which have quite different two-
body interactions of Ueg/h = -8.5 kHz and Ugg/h = 3.2 kHz at
15ER. An additional advantage is that neither the 1S0 nor 3P2
(mJ = 0) state is sensitive to a magnetic field, which enables
acquisition of narrow spectra free from possible broadening
due to magnetic field inhomogeneity.

Typical spectra are shown in Fig. 6, with the correspond-
ing TOF images. Naively, the area of each resonance in the
spectrum is thought to be linearly proportional to the atom
population in the corresponding occupancy of the optical lat-
tice. The excited state population Pn(texc) of the n-occupied
site after the excitation time texc is [22]

Pn(texc) = sin2
 
⌦ntexc

2

!
exp (�texc�n) , (12)

where ⌦n are the (angular) Rabi frequencies and �n are the
decay rates, with both parameters being dependent on n. Note
that resonance frequency shift n�⌫col yields excitation of one
atom only, even for an n-occupied site. Thus, we must divide
the Pn(texc) by n when we consider the excited state population
per atom. If the spectral width of each resonance is the same,
the area An for the n-occupied site is linearly proportional to

NnPn(texc)/n, (13)

where Nn is the total atom number at the n-occupied site.
In the case of non-interacting atoms, the Rabi frequencies

should be proportional to
p

n because of the super-radiance or
bosonic stimulation effect [23, 24]:

⌦n =
p

n⌦1. (14)

In addition, when the excitation time is much shorter; i.e.,
⌦ntexc ⌧ 1 and �ntexc ⌧ 1, we obtain

An / Nn

⌦2
1t

2
exc

4
. (15)

Because ⌦1 and texc were fixed in our experiment, the rela-
tive strengths of the areas indicate the relative atom number
distributions among the sites in the optical lattice.

We experimentally examined the occupancy-dependent
properties of the finite lifetime and transition probability in
order to evaluate the total atom number at the n-occupied sites
accurately. We discuss these properties in the following sub-
sections. The details of the experimental parameters and pro-
cedures of our atom-number-projection spectroscopy are de-
scribed in Appendix E.

A. Occupancy-dependent lifetime measurement

The radiative lifetime of the 3P2 state is approximately 15
s, which introduces negligible atom loss during our atom-
number-projection spectroscopy. Instead, the dominant loss
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FIG. 6. (color online) Typical high-resolution spectra obtained with
atom-number-projection method. Three scans are superimposed af-
ter the long-term laser frequency drift is compensated. Insets: TOF
images with the same experimental parameters. The TOFs are 14
ms. The total atom number is approximately 1.6 ⇥103. The solid red
lines are fitting curves with a sinc function, with pulse width fixed at
0.3 ms. Lattice depths: (a)–(d) 5ER, 10ER, 15ER, and 5ER, respec-
tively, and atomic entropies per atom: (a)–(d) 0.04, 0.05, 0.06, and
1.12 kb, respectively.

process is the inelastic collision between the atoms in the
1S0 and 3P2 states, which is induced by the fine-structure,
principal-quantum-number, and Zeeman-state changing col-
lisions [25]. Note that the magnetic sublevel 3P2 (mJ = 0)
we use is not the lowest Zeeman-energy level. Further,
our excitation time of 0.3 ms is not negligible compared to
the occupancy-dependent decay times, as shown in Fig. 7;
therefore, we actually measured the decay time to determine
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FIG. 7. (color online) Lifetimes. The remaining excited-atom num-
bers as functions of hold time are measured for peaks in the n = (a) 1,
(b) 2, (c) 3, and (d) 4 occupied sites. The lifetimes of the n-occupied
states (n = 2, 3, 4) are 18(7), 1.4(1), and 1.0(2) ms, respectively. For
the n = 1 sites, we could not find any significant decay.

the correction factors for our atom-number-projection spec-
troscopy.

First, approximately 105 BEC atoms were loaded into the
shallow optical lattice (5ER). Then, the lattice depth was sud-
denly increased to 15ER in 0.1 ms. Next, we excited the atoms
at the n-occupied sites and measured the number of atoms re-
maining in the 3P2 state after a given hold time. The results are
shown in Fig. 7. We fit the data with single-exponential de-
cay curves. The measured decay constants of the n-occupied
states ⌧n (n = 2, 3, 4) were 18(7), 1.4(1), and 1.0(3) ms, re-
spectively. For the n = 1 site, we could not find any decay
within our short hold time. Therefore, it was necessary to cor-
rect the occupied atom number for the cases of n = 2, n = 3
and n = 4 sites only, for which the correction factors were
1.02, 1.24, and 1.33, respectively.

B. Occupancy-dependent Rabi oscillation frequency

For the non-interacting cases, the Rabi frequencies⌦n/(2⇡)
should be proportional to

p
n. In the presence of the inter-

atomic interaction, the situation is less simple and the n-
dependence of the Rabi frequency is modified in general by
broadening of the Wannier function due to inter-atom inter-
actions [9, 19]. Such a modification was indeed observed in
our system [10]. Here, we carefully evaluated the n-dependent
Rabi frequency experimentally.

To observe clear Rabi oscillations, we excited the atoms
with a relatively strong laser power of 4 mW, which corre-
sponds to approximately 100 W/cm2; the expected Rabi fre-
quency at n = 1 was approximately 2⇡⇥ 2 kHz. The observed
Rabi oscillations are shown in Fig. 8. The fitting lines were
drawn by solving the optical Bloch equations numerically, as-
suming that the detuning was zero:

dun

dt
= �
�n

2
un, (16)
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]
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FIG. 8. (color online) Rabi oscillations. Excited atom numbers as
functions of excitation time measured by resonant peak excitation at
n = (a) 1, (b) 2, (c) 3, and (d) 4 occupied sites. The Rabi frequencies
⌦n/(2⇡) of the n-occupied sites are 1.28(1) (n = 1), 1.65(3) (n = 2),
1.92(3) (n = 3), and 2.20(4) kHz (n = 4).

dvn

dt
= ⌦nwn �

�n

2
vn, (17)

dwn

dt
= �⌦nvn � �n(wn � 1), (18)

where un = ⇢12,n + ⇢21,n, vn = �i(⇢12,n � ⇢21,n), wn = 1� 2⇢22,n,
and ⇢i j,n is the density matrix of the n-occupied sites. The
Rabi frequencies⌦n/(2⇡) of the n-occupied sites were 1.28(1)
(n = 1), 1.65(3) (n = 2), 1.92(3) (n = 3), and 2.20(4)
kHz (n = 4). The measured relative strength among the
occupancy-dependent Rabi frequencies was used as a correc-
tion factor to estimate the atom-number distribution in our
atom-number-projection spectroscopy.

V. POSSIBILITY OF MEASURING ENSEMBLE AVERAGE
OF POTENTIAL ENERGY TERM

The third term of Eq. (1), the potential energy term, is from
the inhomogeneous trap potential due to the FORT beams and
optical lattice lasers. Although the spatial distribution of the
atoms in a trap for a single 2D plane can be directly measured
using a high-spatial-resolution in situ imaging technique such
as a quantum gas microscopy [11, 26], our imaging resolution
was insufficient to accurately extract the spatial distributions
of the atoms in our 3D optical lattice.

VI. EXPERIMENTAL DETERMINATION OF
BOSE-HUBBARD ENERGIES

Here, we present our main experimental results. Figure 9
shows the comprehensive measurements of the kinetic energy
divided by the hopping matrix element t per atom, i.e., the en-
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semble average of the term K̂ =
P
h j,li(â

†

j
âl+h.c.) per atom for

lattice depths from 5 to 18ER across the weakly to strongly
interacting regimes as a function of the atomic entropy per
atom. When the lattice depth was 10.6ER, U/t was equal to
29.34, which is the critical lattice depth for the SF-MI transi-
tion at n = 1. Note that the hK̂i per atom must range between
6 and –6 for the 3D optical lattice. The maximum and mini-
mum values of 6 and –6 correspond to the atom condensation
at q = 0 and q = ±⇡/dlat, respectively. Here, q denotes the
quasi-momentum.

Naturally, the expected hK̂i behaviors were successfully ob-
served in our experiment data, as shown in Fig. 9. In a shal-
low optical lattice at sufficiently low entropy, almost all atoms
should be condensed at q = 0, corresponding to a hK̂i close
to 6; this is clearly apparent for the lower entropy data shown
in Figs. 9(a)–(c). With increased optical lattice depth, hK̂i
decreases and approaches zero because of the repulsive inter-
atomic interaction (U > 0); this is also clearly apparent as a
general tendency of the data in Fig. 9. In a deep optical lattice,
all atoms are isolated and there is no phase coherence in a MI
state. The atoms are distributed over the entire first Brillouin
zone, corresponding to hK̂i = 0; this behavior can be recog-
nized in the data shown in Fig. 9(j) and (k). When the atomic
entropy increases, hK̂i should decrease because of the thermal
excitation to energetically higher states with larger q at any
lattice depth. Again, this behavior can be clearly recognized
as the general tendency of the data in Fig. 9.

Figure 10 shows the comprehensive measurements of the
interaction energy divided by U/2 per atom; namely, the en-
semble average of the term Ĝ =

P
j â
†

j
â
†

j
â jâ j per atom, again

for lattice depths from 5 to 18ER across the weakly to strongly
interacting regimes as a function of the atomic entropy per
atom.

Again, the naturally expected behaviors of hĜi were suc-
cessfully observed in our experiment data (Fig. 10). In a shal-
low optical lattice, the atom hopping process is dominant and
the atoms are delocalized at multiply occupied sites, although
the average filling-factor value is approximately unity. This
case yields a larger value of hĜi, and this is clearly apparent in
Figs. 10(a)–(c), for example. When the optical lattice depth is
increased, the repulsive inter-atomic interaction plays a more
important role in suppressing the atom hopping, yielding a de-
crease in hĜi. This is clearly apparent as a general tendency
of the data in Fig. 10. In a deep optical lattice, the atoms are
isolated in an MI state with unit filling, which corresponds to
hĜi = 0, as apparent in the data in Figs. 10(h)–(k). In the SF
state, hĜi should decrease when the atomic entropy increases,
because the thermal excitation yields expansion of the atomic
cloud and a decrease in the multiply occupied sites. This can
be clearly recognized again as the general tendency of the data
in Fig. 10.

The population fractions, which could be directly measured
by our atom-number-projection spectroscopy technique, elu-
cidated further details of the atom number distribution in an
optical lattice site. The population fractions at various lattice
depths as functions of the atomic entropy are shown in Fig. 11.
We found n = 3 occupancy, although small, at small lattice
depths only, as shown in Figs. 11(a)–(c). In Figs. 11(a)–(g),

decreases in the n = 2 and n = 3 populations accompanied by
an increase in the n = 1 population can be clearly observed in
accordance with the atomic entropy and lattice depth increase;
this can be interpreted as originating from disappearance of
the SF components.

VII. NUMERICAL CALCULATION BENCHMARK

The obtained experimental results can be used as bench-
marks for state-of-the-art numerical methods of quantum
many-body theory. As an illustrative example, in this section,
we compare the measured kinetic and interaction energies
as well as the population fractions of n-occupied sites with
numerical calculations based on the Gutzwiller and cluster-
Gutzwiller approximations.

A. Gutzwiller approximation

In this subsection, we explain two numerical methods
based on Gutzwiller approximation. One is a simple finite-
temperature Gutzwiller approximation, where the effects of
boson hopping are approximated as a mean field [10, 27]. This
is a simple local approximation obtained by solving the lo-
calized Hamiltonian with the exact diagonalization method at
finite temperature. Local thermodynamic quantities such as
double occupancies can be well approximated by this calcu-
lation [10, 27]. Another method is a cluster-type extension of
this local approximation; that is, some of the hopping terms
are included in the exact diagonalization calculation. This
cluster Gutzwiller approximation allows us to consider the ki-
netic energy much more effectively than the local approxima-
tion.

In a local Gutzwiller approximation, the Bose–Hubbard
Hamiltonian Ĥ is approximated by the set of effective local
Hamiltonians

Ĥloc, j = F jâ
†

j
+ F

⇤

j
â j + (Vj � µ)n̂ j + Uâ

†

j
â
†

j
â jâ j, (19)

under a self-consistent condition at thermal equilibrium for
each local Hamiltonian. The mean field F j is given by

F j = �
X

l

t jlal, (20)

where al = hâli, a
⇤

l
= hâ†

l
i, and t jl = t for adjacent j and l sites,

and t jl = 0 otherwise. The Hubbard parameters, including t,
U, and Vj, are determined ab initio from Wannier functions.
We use the exact diagonalization method to solve these local
NL Hamiltonians at finite temperature, where NL is the num-
ber of lattice sites. Here, we solve the finite Hilbert space by
truncating states with a large number of bosons (> 8) at each
lattice site. The truncated states are negligible, because the
on-site interaction suppresses them, even for shallow lattices.

Under the self-consistent conditions, we calculate the
double occupancy hĜi =

P
jhâ
†

j
â
†

j
â jâ ji, potential energy
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FIG. 9. (color online) Measured ensemble averages of K̂ =
P
h j,li

⇣
â
†

j
âl + h.c.

⌘
terms per atom as functions of atomic entropy per atom. The

dashed blue (dotted green) shadow lines indicate the results of numerical calculations based on the Gutzwiller (cluster-Gutzwiller) method.
Different atom numbers (1.4 ⇥ 103 to 1.8 ⇥ 103) are represented by the shaded areas. The TOF images were taken immediately after atom
loading onto the optical lattice. For TOFs of 14 (18) ms, we took 10 (5) images and calculated the ensemble average for each one; then, these
data were averaged. Estimated difference between values before and after the correction of the finite-TOF effect is considered as systematic
errors. The error bars indicate standard errors and include both systematic and statistical errors. See the text for details.

P
j V jhâ

†

j
â ji, and kinetic energy �thK̂i = �thâ

†

j
ihâli. A non-

local quantity such as hâ†
j
âli is now approximated as a prod-

uct of the local quantities hâ†
j
ihâli. The kinetic energy under

the local approximation corresponds to the energy of the con-
densed bosons

�tKBEC = �
X

jl

t jla
⇤

j
al, (21)

and the energies of the uncondensed normal states (normal
fluid and MI) that appear as a result of the thermal fluctuation
and correlation effects

�thK̂NS i = �
X

jl

t jlh(â†j � a
⇤

j
)(âl � al)i, (22)

are completely neglected. Thus, the local Gutzwiller ap-
proximation inevitably underestimates the kinetic energies at
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FIG. 10. (color online) Measured ensemble averages of Ĝ =
P

j â
†

j
â
†

j
â jâ j per atom as functions of atomic entropy. The dashed blue (dotted

green) shadow lines indicate the results of numerical calculations based on the Gutzwiller (cluster-Gutzwiller) method, with different atom
numbers (1.4 ⇥ 103 to 1.8 ⇥ 103) being represented by shaded areas. The error bars indicate standard errors.

middle-depth lattices. In contrast, local quantities can be
directly calculated using the exact-diagonalization method,
which allows us to properly consider the effects of the nor-
mal states.

In a cluster-Gutzwiller approximation, the local Hamiltoni-
ans are extended to the two-site cluster Hamiltonians includ-
ing a hopping term:

ĤTSC, jl = Ĥloc, j + Ĥloc,l � t jlâ
†

j
âl + h.c. (23)

We use exact diagonalization to solve the cluster Hamiltonian

by truncating states with more than eight bosons in each clus-
ter. We also extend two self-consistency conditions in the
cluster Hamiltonian ĤTSC, jl:

F j = �
X

↵,l

t j↵hâ↵i (24)

Fl = �
X

↵, j

tl↵hâ↵i. (25)

That is, to avoid double counting of the effects of t jlâ
†

j
âl+h.c.,

we subtract this term from the mean fields F j and Fl. We solve
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FIG. 11. (color online) Population fractions as functions of atomic entropy per atom. The red circles, blue boxes, green triangles, and
yellow diamonds show the normalized areas of n = 1, 2, 3, and 4 occupied sites, respectively. The solid red, dashed blue, dotted green, and
dashed-dotted yellow lines indicate the numerical results for n = 1, 2, 3, and 4 occupied sites, respectively. The error bars show standard
errors.

3NL cluster Hamiltonians for the 3D cubic lattice, and local
quantities such as hâ ji are obtained from the average of six
clusters ĤTSC, j↵ for ↵ 2 sites adjacent to j. Note that, when the
self-consistency conditions are satisfied, the local quantities
for the j th site in the ĤTSC, j↵ agree well with each other. For
ĤTSC, jl, we can calculate a non-local quantity hâ†

j
âli, allowing

us to obtain a kinetic energy that includes the effects of normal
states, �thK̂NS i.

B. Comparison of experiment and theory

We compared the measured kinetic and interaction energies
as well as the population fractions of n-occupied sites with nu-
merical calculations of the Gutzwiller and cluster-Gutzwiller
approximations in finite entropy (finite temperature). Note
that the trap potentials and particle numbers in the calculations
were the same as those of the experiments and there were no
fitting parameters in the calculation.
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The dashed blue and dotted green lines in Fig. 9 repre-
sent the numerical results for the hK̂i term obtained using the
Gutzwiller and cluster-Gutzwiller methods, respectively, with
different atom numbers (1.4 ⇥ 103 to 1.8 ⇥ 103) being repre-
sented by the shaded areas. Although we can observe overall
agreement between the experimental data and numerical cal-
culations for the overall lattice depth and atomic entropy, our
measurement was highly consistent with the numerical calcu-
lation using the cluster-Gutzwiller method.

We discuss here possible origins of slight deference be-
tween the measured and numerical values appeared at the
shallow optical lattice. One of the possibility is imaging res-
olution of TOF images. We consider the condensate atoms
with zero momentum for simple explanation, which has a
hK̂i = 6 by definition. The finite imaging resolution broad-
ens the measured momentum distribution around the zero
momentum. We consider a Gaussian point-spread function
of

⇣
1/
p

2⇡�k

⌘
exp

⇣
�k

2/(2�k
2)
⌘

as the structure factor S (k),
where �k = m�/(~tTOF) and � is a resolution and assume
�kdlat ⌧ ⇡. By simple calculation, the measured hK̂i should
be K

0 = 6 exp
⇣
��k

2
d

2
lat/2

⌘
. If � = 5 µm, K

0
⇠ 5.7 and there-

fore the finite resolution is not negligible when lattice depth
is shallow and the system has large hK̂i. Similar broaden-
ing might also occur when the interaction energy is transfered
to the kinetic energy, which is discussed in Ref. [18], where
hydrodynamic expansion occurs around low-momentum part
and results in peak broadening.

Both Gutzwiller methods exhibited similar results at shal-
low lattice depths, but differences emerged at deeper lattice
depths and in the large-atomic-entropy regime. The techni-
cal difference between the Gutzwiller and cluster-Gutzwiller
methods lies in the handling of the atomic correlation of the
nearest-neighbor sites. In the case of the Gutzwiller method,
the atomic correlation between the nearest-neighbor sites is
from the SF component; thus, the atomic correlation of the
thermal component is not considered. Therefore, testing with
our experimental data revealed that the atomic correlation be-
tween the nearest-neighbor sites from thermal fluctuation is
indeed important in higher-entropy and deeper-lattice cases.

The dashed blue and dotted green lines in Fig. 10 repre-
sent the numerical results for the hĜi term obtained using
the Gutzwiller and cluster-Gutzwiller methods, respectively,
with different atom numbers (1.4 ⇥ 103 to 1.8 ⇥ 103) be-
ing represented by the shaded areas. In contrast to the hK̂i
term, the numerical results obtained using both the Gutzwiller
and cluster-Gutzwiller methods were similar. Again, overall
agreement between the experimental data and numerical cal-
culations was obtained for almost all lattice depths and atomic
entropy. However, differences between the measured and nu-
merical values appeared when the optical lattice was deeper,
as shown in Figs. 10(g)–(k). Although we are uncertain of the
origin of these differences, we suspect that double occupancy
may have occurred in the deeper optical lattice regime, be-
cause of the slight breaking of the adiabatic condition during
lattice loading [28–30]. Our ramp-up time of approximately
200 ms should be sufficient to reach local thermalization, but
may be too short for global-mass redistribution in the deep-
lattice case. Note that the non-negligible atomic heating and

loss observed for longer loading times limits us to this ramp-
up time.

Numerical calculation of the population fractions as func-
tions of the atomic entropy per atom was also performed,
at various lattice depths. The solid red, dashed blue, dotted
green, and dashed-dotted yellow solid lines in Fig. 11 show
the numerical results for the normalized areas of n = 1, 2, 3,
and 4 occupied sites, respectively. Here, the total of the nor-
malized areas is equal to unity. We found excellent agreement
between the experiment and numerical calculations, espe-
cially up to the critical lattice depth of 11ER (Figs. 11(a)–(f)),
but a certain disagreement at deeper lattice depth (Figs. 11(g)–
(k)), which can be attributed to the same reason discussed with
regard to the disagreement for hĜi above.

We also investigated the total internal energy per atom (i.e.,
the sum of the kinetic and interaction energies) at various lat-
tice depths as a function of atomic entropy (Fig. 12). The
numerical results obtained using both Gutzwiller and cluster-
Gutzwiller methods were similar. The difference between the
two numerical calculations of hK̂i was not small at deeper lat-
tice depth; however, the calculated kinetic energies of �thK̂i

were almost identical because of the small values of t at deeper
lattice depth. The measured values were consistent with the
numerical results.

VIII. CONCLUSIONS AND FUTURE PROSPECTS

We have presented, to our best knowledge, the first mea-
surements of the ensemble averages of both the kinetic and
interaction energies of the 3D Bose–Hubbard model at fi-
nite temperature and various optical lattice depths by estab-
lishing a protocol to accurately extract the ensemble aver-
age of the kinetic energy from a TOF signal and by devel-
oping a new method of atom-number-projection spectroscopy
to accurately evaluate the interaction term across the weakly
to strongly interacting regimes. Our measurements showed
rather strong dependence on the atomic entropy, except in
the strongly correlated region. This implies that informa-
tion on the equilibrium state of the Bose–Hubbard system
can be obtained from these measurements. In addition, our
atom-number-projection spectroscopy method offers informa-
tion on the relative populations of the multiply occupied sites
from the population fractions. In this study, using these
population fractions, we observed a decrease in the n = 2
and n = 3 populations when the atomic entropy and lattice
depth increased; this behavior should be due to the disap-
pearance of the SF components. The obtained experimen-
tal results for the internal energies as well as the population
fractions were compared with numerical calculations based
on finite-temperature Gutzwiller and cluster-Gutzwiller meth-
ods; hence, we obtained agreement between the experiment
and cluster-Gutzwiller calculation without fitting parameters.
This indicates the important role of the atomic correlation be-
tween the nearest-neighbor sites through thermal fluctuation,
especially in higher-entropy and deeper-lattice cases.

Measurement of the internal energy for various entropies
offers a novel possibility of estimating the atomic temperature
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FIG. 12. (color online) Total internal energies (i.e., the sum of the kinetic and interaction energies) per atom as functions of atomic entropy.
The dashed blue (dotted green) shadow lines indicate the results of numerical calculations based on the Gutzwiller (cluster-Gutzwiller) method,
with different atom numbers (1.4 ⇥ 103 to 1.8 ⇥ 103) being represented by the shaded areas. The error bars indicate standard errors.

in a lattice, which is the most important parameter governing
the thermal equilibrium state. If the total internal energies,
i.e., the kinetic, interaction, and potential terms, are measured
experimentally, one can determine the temperature T using
the thermodynamic relation T = @E/@S , where E is the total
internal energy and S is the atomic entropy. We have checked
this proposal numerically (see Appendix F). This possibil-
ity is important, because the temperature in an optical lattice
has only been estimated indirectly to date, through compar-
ison of the experimental results and theoretical calculation.

Finally, the methods demonstrated here are not particular to
Bose gases in equilibrium, but can be applied to Fermi gases,
Bose–Fermi mixtures, and even non-equilibrium states.

This paper is, to the best of our knowledge, the first report
of experimental determination of both the kinetic and inter-
action energies of quantum many-body systems. This study
offers a unique advantage of cold atom system for “quantum
simulators”.
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FIG. 13. (color online) Schematic energy diagram (not scaled) of Yb
relevant to the experiment.
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Appendix A: Energy diagram and scattering length of Yb

Figure 13 shows the Yb schematic energy diagram (not
scaled) relevant to the experiment. Throughout this paper,
we used the value of the scattering length of 174Yb of 5.55
nm [31].

Appendix B: Additional information of our Experimental Setup
and Procedure

The beam waists (1/e2 radii) of the horizontal FORT were
approximately 15 and 33 µm and the short axes of the ellipses
were oriented along the Z-axis. The beam waists of the verti-
cal FORT were approximately 43 and 126 µm, and the short
axes of the ellipses were oriented along the X’-axis, where the
X’-axis formed an angle of 45 degrees relative to both the X-
and Y-axes. The beam waists of the lattice beams were ap-
proximately 100 µm. The FORT trap frequencies were (27.9,
130, 162.5) Hz after the lattice loading.

The measurement procedure for the entropy and atom num-
ber after adiabatically ramping down the optical lattice in re-
verse order is shown in Fig. 14.

The optical lattice depth is calibrated by a pulsed optical
lattice method (see also [10, 32]).

Horizontal FORT
(532 nm)

Vertical FORT
(532 nm)

Optical lattice
(532 nm)

Absorption Imaging
(399 nm)

100 msEvaporative
cooling

t1

5 ER

V0

~0.1 ms

Time-of-flight
(14 ms )

5 ER

100 mst1

FIG. 14. (color online) Schematic time sequence (not scaled) for
entropy measurements. Here, t1 = 10(V0/ER � 5) [ms]. The double-
sided arrows indicate variable parameters (see text for details).

Appendix C: Kinetic term

In this section, we label the atom momentum kTOF as k for
simplicity. The atomic density distribution after the TOF tTOF,
i.e., n(k, tTOF), is

n(k, tTOF) =
 

m

~tTOF

!3

|w̃0(k)|2 S (k, tTOF). (C1)

The atomic momentum after the TOF is calculated from the
positions of the atoms rTOF and k = mrTOF/~tTOF. Here, w̃0(k)
is the Fourier transformation of the Wannier function in the
lowest Bloch band w0(r) and

w̃0(k) =
$

w0(r)eik·r
dr

=

Z
w0(x)eixkx dx

Z
w0(y)eiyky dy

Z
w0(z)eizkz dz. (C2)

The structure factor S (k) is

S (k, tTOF) =
X

j,l

e
ik·(r j�rl)�i

✓
m

2~tTOF

◆
(r2

j
�r2

l
)
hâ
†

j
âli. (C3)

First, we consider the integral of n(k = mrTOF/~tTOF, tTOF)
along the Y-axis in position space:

Z
n

 
k = mrTOF

~tTOF
, tTOF

!
dyTOF =

~tTOF

m

Z
n(k, tTOF)dky

= A
2
Z

dky|w̃0(k)|2
X
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e
ik·(r j�rl)�i

✓
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◆
(r2

j
�r2

l
)
hâ
†

j
âli

= A
2
|w̃0(k?)|2

X

j,l

hâ
†

j
âlie

ik?·(r?, j�r?,l)�i

✓
m
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◆
(r2

j
�r2

l
)

⇥

Z
dky|w̃0(ky)|2e

iky(y j�yl), (C4)

where A = m/(~tTOF), r? = (x, z), and k? = (kx, kz). Then,
Z

dky|w̃0(ky)|2e
iky(y j�yl)
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=

Z
dky

Z
du
0
w
⇤

0(u0)e�ikyu
0

Z
duw0(u)eikyu

e
iky(y j�yl)

=

Z
du

Z
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0
w
⇤

0(u0)w0(u)
Z

dkye
iky(u�u

0+y j�yl)

=

Z
du

Z
du
0
w
⇤

0(u0)w0(u)�(u � u
0 + y j � yl)

=

Z
w
⇤

0(u + y j � yl)w0(u)du

=

8>><
>>:

1 (y j = yl)
0 otherwise

, (C5)

where we use the orthogonality of the Wannier functions,
Z

w
⇤

0(u + ndlat)w0(u)du =

8>><
>>:

1 (n = 0)
0 otherwise

, (C6)

with n = 0, ±1, ±2, · · · , and dlat being the lattice spacing.
By applying Eq. (C5) to Eq. (C4), we obtain

Z
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, tTOF

!
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2
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⇥ �y j,yl
, (C7)

where �x,y is the Kronecker delta. That is, �x,y=1 if and only if
x = y; otherwise, �x,y = 0.

Similarly, we obtain the linear atomic density n(kx) is
"

n

 
k = mrTOF

~tTOF
, tTOF

!
dyTOFdzTOF

= A|w̃0(kx)|2
X
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hâ
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(C8)

and
$

n

 
k = mrTOF

~tTOF
, tTOF

!
dxTOFdyTOFdzTOF

=
X

j,l

hâ
†

j
âli�x j,xl

�y j,yl
�z j,zl

=
X

j

hâ
†

j
â ji = N, (C9)

where N is the total number of atoms.

1. Case I: Infinite TOF

First, for simplicity, we consider the case in which the TOF
is infinite and the Fresnel term exp[�im(r2

j
� r2

l
)/(2~tTOF)] is

negligible. In this case, the linear atomic density n(kx) is (see
also Eq. (C8)) as follows:

n(kx) = A|w̃0(kx)|2
X

j,l

hâ
†

j
âlie

ikx(x j�xl)�y j,yl
�z j,zl
. (C10)

Therefore, the ensemble average of the atomic correlations of
nearest-neighbor sites,

P
h j,lihâ

†

j
âli, is obtained using Fourier

transformation in the first Brillouin zone, where
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Similarly,
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�⇡/dlat

n(kx)
A|w̃0(kx)|2

e
�idlatkx dkx

=
X
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hâ
†

j
âli�y j,yl

�z j,zl
�x j,xl�dlat . (C12)

Noted that if TOF images are symmetric with respect to
the k = 0, hâ†

j
âli = hâ

†

l
â ji and therefore

P
h j,lihâ

†

j
âli is real.

This is valid if the hopping matrix element t is real and the
system is in equilibrium states (strictly speaking, if the sys-
tem has time-reversal symmetry), because the kinetic energy
�t

P
h j,lihâ

†

j
âli itself is required to be real. This assumption is

invalid for some special cases, for example, non-equilibrium
states with non-zero total quasi-momentum, and equilibrium
states with an artificial gauge field (complex hopping matrix
elements) [33]. In these cases, however,

P
h j,lihâ

†

j
âli must be

complex and we believe that the kinetic energy can be ob-
tained using the above procedure, if the Wannier functions are
well defined.

Similarly,
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â ji = N. (C13)

2. Case II: Finite TOF

Under our experimental conditions, the Fresnel term is non-
negligible because there is a finite TOF. However, the effect is
small; therefore, we can consider it to be a correction factor:

dlat

2⇡

Z ⇡/dlat

�⇡/dlat

n(kx)
A|w̃0(kx)|2

e
idlatkx dkx
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hâ
†

j
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Now, we assume that hâ†
j
â j+1i is independent of site index j

and have a average value hâ†
j
â j+1i, and the summation is from

x1 = �N
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where z =
md

2
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~tTOF
. We here defined the correction factor C1 as
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where we assume that hâ†
j
â j+1i is real and therefore the cor-

rection factor is also real. Similarly, we obtain the relation on
the long-range atomic correlation

P
hâ
†

j
â j+�li with the lattice

separation |r j � rl| = dlat�l,
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The total site number NL and hâ†
j
âli are obtained by fitting the

long-range atomic correlation
P
hâ
†

j
â j+�li by use of the ex-

perimental data with various lattice separation �l = 1, 2, 3, 4
and several TOFs. In our experiment to measure the ensem-
ble average of the kinetic term, the TOFs were 14 and 18 ms.
Figure 15 shows our typical measured long-range atomic cor-
relation

P
hâ
†

j
â j+�li and the fitting curves obtained using Eq.

(C17). Finally, by fitting hâ†
j
âli with Eq. (D3), we obtain the

coherence length ⇠.
The correction factor C1 is shown in Fig. 16 as the solid

red line using our experimental parameters. The deviation by
the Fresnel effect is estimated to be about 6% (4%) for 14 ms

FIG. 15. (color online) Measured long-range atomic correlationsP
hâ
†

j
âli with lattice separations �l and their finite TOF corrections.

The solid blue and dotted green lines indicate the fitting Eq. (C17)
and the corrected values at infinite TOF, respectively. Because the
data shown in this graph were used for the check of our compensa-
tion method, the atom number was 5⇥104, different from the experi-
mental value shown in the main text. The lattice depth was V0 = 5ER.
�l: (a)1, (b) 2, (c) 3, and (d) 4.
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FIG. 16. (color online) Correction factors as a function of time of
flight. The red solid line shows the correction factor C1 calculated
using the method we used for data analysis. Here we used NL =
81. For reference, we show another correction factor C

0 based on
the assumption of hâ†

j
âli =

p
njnl exp

⇣
�(x j � xl)/⇠0

⌘
is shown as the

blue dotted line. We assumed ⇠0 = 10dlat, which is estimated by use
of fitting results using our experimental data.

(18 ms) TOF. It is to be noted that the correction factor also
depends on total atom size NL and monotonically decrease
with the limit NL ! 0.

Here we assume that the atom correlation have the average
value of hâ†

j
âli and unique atom density, which is valid for

a Mott insulating case. However, this is not a unique possi-
ble assumption and the calculated correction factor depends
on models. For reference, we calculated a correction factor C

0

based on the assumption of hâ†
j
âli =

p
n jnl exp

⇣
�(x j � xl)/⇠0

⌘
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and is shown in Fig. 16 as the blue dotted line, where we
assumed that density distribution the Gaussian function and
the ⇠0 is a correlation length [36]. In this model, because
of large atom density around the center of the trap, effective
size of atoms are small compared to the model with unique
atom density, and therefore small correction factor obtained.
Apart from non-realistic cases (namely, atom density around
the edge of the trap is large compared to the one in the cen-
ter), atoms with unique density have the largest effective size,
and it results in the largest correction factor. These estima-
tions show that the maximum of the correction factor may ob-
tain from the model with unique atom density. Therefore we
also use estimated difference between the values before and
after the correction as systematic errors in order to cover the
uncertainty of atoms density distribution in the trap. In a co-
existence case of SF-Mott phase, the correction are expected
within the systematic errors.

Appendix D: Measurement of visibility, width, and coherence
length

The widely used experimental observables from the TOF
images are the visibility (Fig. 17) and peak width (Fig. 18).
Figures 17(a–k) show the visibilities as functions of atomic
entropy. The visibilityV is defined as [34, 35]

V =
nmax � nmin

nmax + nmin
, (D1)

where nmax is the maximum density at the first interference
peak. The minimum density nmin is measured at the same dis-
tance, but in a diagonal direction from the central peak (see
also, Fig. 17(l)). It is clearly apparent that the visibility is
large at small lattice depth and decreases as the lattice depth
increases. The dependence of the visibility on the atomic en-
tropy is small.

Figure 18 shows the widths of the central peaks as func-
tions of the atomic entropy. The central peak width is one of
the most commonly used parameters to evaluate the phase co-
herence. If the TOF is sufficiently long to neglect the Fresnel
effect (see Eq. (7)), the structure factor S (k = 0) is

S (k = 0) =
X

j,l

hâ
†

j
âli

= hâ†0â0i + hâ
†

0â1i + hâ
†

0â2i + · · ·

+hâ†1â0i + hâ
†

1â1i + hâ
†

1â2i + · · ·

+ · · ·

= h(â†0 + â
†

1 + · · · )(â0 + â1 + · · · )i

= h(ĉ†(k = 0)ĉ(k = 0)i
= NL|�|

2, (D2)

where � is the wavefunction of the SF component. It is natu-
rally expected that a larger phase coherence corresponds to a
sharper peak width. One can clearly see that the central peak is
sharp at shallow lattice depth and increases with lattice depth.
The dependence of the peak width on the atomic entropy is
small.

While these measurements have been standard methods in
the study of the SF-MI transition, the new internal energy
measurements of the Bose-Hubbard system demonstrated in
this work provide a useful method of investigating the SF-MI
transition, as shown in the main text.

Figure 19 shows the coherence lengths ⇠ as functions of the
atomic entropy. Our Fourier transformation method enables
us to consider the long-range atomic correlation of more than
just the nearest-neighbor sites. Here, ⇠ is defined as [36]

hâ
†

j
âli =

p
n j

p
nl exp

 
�
|r j � rl|

⇠

!
, (D3)

where n j is the atomic density at site j. The value of ⇠ is ob-
tained by fitting Eq. (D3) to our measured ensemble average
of the long-range atomic correlation hâ†

j
âli (see Appendix C).

Note that ⇠ is large at a small lattice depth and decreases with
increased lattice depth. As expected, ⇠ is near one lattice spac-
ing around the quantum critical point (sc = 10.6 for n = 1).
This behavior also shows the quantum phase transition be-
tween SF and MI.

Appendix E: Atom-number-projection spectroscopy procedure

We used the transition from the (6s
2) 1S0 state to the

(6s6p)3P2 (mJ = 0) state for high-resolution spectroscopy.
Neither the 1S0 nor the 3P2 (mJ = 0) state is sensitive to mag-
netic fields, because 174Yb lacks a nuclear spin; this enabled
us to obtain narrow spectra in the absence of inhomogeneous
broadening resulting from an external magnetic field.

Light for the excitation was generated through frequency
doubling of an external-cavity laser diode at 1014 nm, locked
to an ultralow expansion cavity, which had slow-frequency
drift with a typical rate of approximately 1 kHz/h. The
linewidth of the excitation laser was less than 1 kHz.

After atom projection to a large optical depth of 15ER, as
described above, we applied an excitation pulse. The pulse
width was 0.3 ms. The incident power was approximately
100 µW and the beam waist was approximately 50 µm. The
intensity was 2.5 W/cm2 and the Rabi frequency was approx-
imately 0.3 kHz. To excite the 1S0 -3P2 (mJ = 0) transition,
the excitation light propagating along the Y-axis was polar-
ized along the Z-axis and we applied a magnetic field of 100
mG in the -X+Y direction.

After applying the excitation light, we removed the remain-
ing atoms in the 1S0 state with a light that resonated with
the 1S0 -(6s6p)1P1 transition for 0.3 ms. Then, atoms in the
3P2 state were transferred to the 1S0 state with two repump-
ing lights resonant with the 3P2 - (6s7s)3S1 and (6s6p)3P0-
(6s7s)3S1 transitions. Finally, the number of atoms in the 1S0
state was measured using a fluorescence imaging technique
employing a magneto-optical trap with the 1S0 -1P1 transition.

Typical spectra have already been shown in Figs 5 (b) and
6. Our spectra were obtained after projection into the lattice
depth of 15ER; thus, the positions of each peak relative to the
n = 1 peak were fixed. Therefore, our spectra covered four
peaks corresponding to n = 1 · · · 4.
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FIG. 17. (color online) (a–k) Visibilities as functions of atomic entropy. The error bars show standard errors. The yellow lines are a guide
for the eye. (l) Interference pattern. The maxima of the interference pattern peak appear at the first peaks (red circles), and the minima peaks
appear at diagonal with the same distance from the central peak (black circles). The sum of the signals in the red (black) circles is nmax (nmin)
(see text for details).

The spectral areas were obtained by fitting using a sinc
function, because our excitation light pulse was rectangular
and the resulting broadening from Fourier transformation of
the rectangular function was dominant. The correction fac-
tors from the reduced Rabi frequencies and finite lifetimes of
atoms in the 3P2 state (n = 2, 3, 4) were considered. We took
three or more spectra and calculated the atomic distribution
for each one; then, these data were averaged. To save time
on our experiment, only several data points in the vicinities

of peaks were taken. A period of approximately 20 min was
required to obtain one spectrum and the long-term drift was
negligible for the time scale.
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FIG. 18. (color online) Widths of central peaks as functions of atomic entropy. The yellow lines are a guide for the eye. The error bars show
standard errors.

Appendix F: Possible Temperature Estimation from Energy
Measurements

Although the atomic temperature in an optical trap without
an optical lattice can be easily measured using a TOF method,
the atomic temperature in an optical lattice is estimated only
indirectly through comparison of the experimental results and
theoretical calculation. In the higher-temperature region, es-
timation of the atom temperature from the in situ atom dis-
tribution [37] and spin-gradient thermometry [38] has been
demonstrated, as well as use of quantum gas microscopy [37].

Alternatively, however, if the total internal energies are
measured experimentally, one can determine the temperature
T using the thermodynamic relation

T =
@E

@S
, (F1)

where E is the total internal energy and S is the atomic en-
tropy. In our experiment, evaluation of the potential energy is
difficult, as mentioned.

Figure 20 (a) shows the temperature estimated using the re-
lation T = @E/@S . The ensemble averages of the kinetic,
interaction, and potential terms for estimation were obtained
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FIG. 19. (color online) Coherence lengths ⇠ as functions of atomic entropy. The Y-axis is the log scale and d is the lattice spacing. The yellow
lines are guides for the eye. The error bars show standard errors.

from the Gutzwiller approximation. This result is consistent
with the temperature directly obtained using numerical calcu-
lation with the Gutzwiller approximation and shown in Fig. 20
(b).

The contribution of the potential term comes from the
trap potentials and the Gaussian envelope of the optical lat-
tice lasers. This is because both external potentials are
quadratic terms with respect to the lattice index; that is, Vj =
m!2(V0)(r j � r0)2/2, where !(V0) is the overall (mean) trap
frequency as a function of lattice depth V0 and r0 is the central
position of the overall external potential.

Therefore, the Bose-Hubbard-model Hamiltonian is ex-
pressed as

Ĥ = � t(V0)
X

h j,li

⇣
â
†

j
âl + h.c.

⌘
+

U(V0)
2

X

j

â
†

j
â
†

j
â jâ j

+ P(V0)
X

j

(r j � r0)2
â
†

j
â j � µN, (F2)

where N is the total atom number and P(V0) = m!2(V0)/2.
Note that t(V0), U(V0), and P(V0) are known functions that
depend only on V0.
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FIG. 20. (color online) (a) Estimated temperature using relation
T = @E/@S . The ensemble averages of the kinetic, interaction, and
potential terms for estimation were obtained from the Gutzwiller ap-
proximation. (b) Temperature value obtained using numerical calcu-
lations with Gutzwiller approximation. For both cases, the total atom
number was 1.4⇥ 104 and we used the same trap conditions as in the
main paper.

We apply the Hellmann–Feynman theorem [39, 40] to the
ensemble average of the Hamiltonian E(V0, S OL) = hĤi:

@

@V0
E(V0, S OL) =

*
dĤ

dV0

+
, (F3)

where S OL is the atomic entropy in the optical lattice and

@

@V0
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+
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†
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â jâ ji
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K(V0, S OL)
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dU(V0)
dV0

G(V0, S OL)

+
dP(V0)

dV0
L(V0, S OL). (F4)

The values of K(V0, S OL), G(V0, S OL), and L(V0, S OL) are ex-
perimentally observed and given by

K(V0, S OL) =
X

h j,li

hâ
†

j
âli (F5)

G(V0, S OL) =
X

j

hâ
†

j
â
†

j
â jâ ji (F6)

L(V0, S OL) =
X

j

(r j � r0)2
hâ
†

j
â ji, (F7)

and we omit h·̂i for simplicity in this section (that is, K instead
of hK̂i). Therefore,
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, (F8)

where T (V0, S OL) is the atomic temperature.
Even if the ensemble average of the potential terms is

unavailable, the atomic temperature can be estimated. To
demonstrate this, we consider the normalized operator Ĥ

0 =
Ĥ/P(V0) and its ensemble average.
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hâ
†

j
â
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In contrast,

D
Ĥ
0
E
=

*
Ĥ

P(V0)

+
=

D
Ĥ

E

P(V0)
=

E(V0, S OL)
P(V0)

. (F10)
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Because

T (V0, S OL)
P(V0)

=
@

@S OL

E(V0, S OL)
P(V0)

, (F11)

the dependence of T on V0 is
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Using Eq. (F9),

@
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P(V0)

!
. (F13)

Equation (F13) shows that we must obtain the dependencies
of K(V0, S OL) and G(V0, S OL) on the atom entropy S OL be-
cause t(V0), U(V0), and P(V0) are all known functions. There-
fore, direct measurement of the potential term L(V0, S OL) is
not necessary to estimate the atomic-temperature dependence.
When we know the absolute atomic temperature T (V 00, S OL) at
a certain lattice depth V

0

0, we can estimate the other absolute
atomic temperatures through integration of Eq. (F13).

[1] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Phys. Rev. B 40, 546 (1989).

[2] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 (1998).

[3] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[4] I. Bloch, J. Dalibard, and S. Nascimbène, Nature Physics 8,
267 (2012).

[5] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and
I. Bloch, Nature 415, 39 (2002).

[6] B. Capogrosso-Sansone, N. V. Prokof’ev, and B. V. Svistunov,
Phys. Rev. B 75, 134302 (2007).

[7] S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, and
I. Bloch, Nature 434, 481 (2005).

[8] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen,
S. Fölling, L. Pollet, and M. Greiner, Science 329, 547 (2010).

[9] G. K. Campbell, J. Mun, M. Boyd, P. Medley, A. E. Leanhardt,
L. G. Marcassa, D. E. Pritchard, and W. Ketterle, Science 313,
649 (2006).

[10] S. Kato, K. Inaba, S. Sugawa, K. Shibata, R. Yamamoto, M. Ya-
mashita, and Y. Takahashi, Nature Comm. 7, 11341 (2016).

[11] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner,
Nature 462, 74 (2009).

[12] K. V. Krutitsky, Physics Reports 607, 1 (2016).
[13] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Di-

lute Gases, 2nd ed. (Cambridge University Press, 2008).
[14] P. Pedri, L. Pitaevskii, S. Stringari, C. Fort, S. Burger, F. S.

Cataliotti, P. Maddaloni, F. Minardi, and M. Inguscio, Phys.
Rev. Lett. 87, 220401 (2001).

[15] F. Gerbier, S. Trotzky, S. Fölling, U. Schnorrberger, J. D.
Thompson, A. Widera, I. Bloch, L. Pollet, M. Troyer,
B. Capogrosso-Sansone, N. V. Prokof’ev, and B. V. Svistunov,
Phys. Rev. Lett. 101, 155303 (2008).

[16] E. Toth, A. M. Rey, and P. B. Blakie, Phys. Rev. A 78, 013627
(2008).

[17] L. Vidmar, J. P. Ronzheimer, M. Schreiber, S. Braun, S. S.
Hodgman, S. Langer, F. Heidrich-Meisner, I. Bloch, and
U. Schneider, Phys. Rev. Lett. 115, 175301 (2015).

[18] V. A. Kashurnikov, N. V. Prokof’ev, and B. V. Svistunov, Phys.
Rev. A 66, 031601 (2002).

[19] L. Franchi, L. F. Livi, G. Cappellini, G. Binella, M. Inguscio,
J. Catani, and L. Fallani, New Journal of Physics 19, 103037
(2017).

[20] R. Bouganne, M. B. Aguilera, A. Dareau, E. Soave, J. Beugnon,

and F. Gerbier, New Journal of Physics 19, 113006 (2017).
[21] S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Dark-

wah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson,
W. Zhang, B. J. Bloom, and J. Ye, Science 358, 90 (2017).

[22] C. J. Foot, Atomic Physics, Oxford Master Series in Atomic,
Optical and Laser Physics (Oxford Univ. Press, Oxford, 2007).

[23] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[24] M. Gross and S. Haroche, Physics Reports 93, 301 (1982).
[25] S. Uetake, R. Murakami, J. M. Doyle, and Y. Takahashi, Phys.

Rev. A 86, 032712 (2012).
[26] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch,

and S. Kuhr, Nature 467, 68 (2010).
[27] S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, and

Y. Takahashi, Nature Physics 7, 642 (2011).
[28] J. Zakrzewski and D. Delande, Phys. Rev. A 80, 013602 (2009).
[29] C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Phys. Rev.

Lett. 104, 160403 (2010).
[30] M. Dolfi, A. Kantian, B. Bauer, and M. Troyer, Phys. Rev. A

91, 033407 (2015).
[31] M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi, R. Ciuryło,

P. Naidon, and P. S. Julienne, Phys. Rev. A 77, 012719 (2008).
[32] J. H. Denschlag, J. E. Simsarian, H. HÃd’ffner, C. McKenzie,

A. Browaeys, D. Cho, K. Helmerson, S. L. Rolston, and W. D.
Phillips, Journal of Physics B: Atomic, Molecular and Optical
Physics 35, 3095 (2002).

[33] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod.
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