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The strong field ionization behavior when a Rydberg atom is exposed to a terahertz single-
cycle pulse is studied. Fully three-dimensional time-dependent Schrödinger equation and classical
trajectory Monte Carlo calculations are performed. Results from stationary eigenstates and Rydberg
wave packets are presented, and it is found that the ionization properties can be different for the two
cases. All of the pulse parameters and physical quantities are scaled versus the principal quantum
number, n. The ionized electron’s scaled radial, energy, and angular distributions are investigated
for different n, and the quantum results are interpreted using a semiclassical method. The scaling
relations of quantum interference amplitudes are discussed.

I. INTRODUCTION

Strong field ionization is a tool commonly used to
study and probe atomic and molecular structure. In con-
trast to deeply bound electrons, Rydberg electrons have
many novel properties, such as weak binding energy, high
density of states, long period, large dipole moment, etc.
The similar frequencies between terahertz radiation and
Rydberg orbits makes terahertz field pulses an alterna-
tive tool to study properties of Rydberg electrons.

Strong terahertz radiation was used in many experi-
ments studying field ionization [1–7]. However, strong
terahertz single-cycle pulses have only become widely
used in the past few years. Strong terahertz single-cycle
pulses are usually generated by optical rectification in
non-linear crystals [8, 9]. In most cases, the single-cycle
pulses are non-symmetric in the time-domain. The ef-
fects of asymmetry in field ionization was studied theo-
retically in Ref. [10, 11]. The field strength of terahertz
single-cycle pulses can be up to 1 MV/cm [12]. A 1 pi-
cosecond duration is approximately the same as the Ry-
dberg period with principal quantum number n ∼ 20,
which makes the terahertz single-cycle pulse an effective
tool to probe and study the periodic motion of Rydberg
electrons.

Time-resolved studies of the spatial distributions of
Rydberg wave packets have been conducted extensively.
Many different optical tools have been used, such as ul-
traviolet laser pulses [13–15], half-cycle pulses [16–18],
single-cycle pulses [19, 20], microwaves [21–23], and oth-
ers. Compared with the other methods, the ionization
properties of single-cycle pulses on Rydberg wave pack-
ets have not been widely studied. When a single-cycle
pulse duration is much shorter than a Rydberg period,
previous studies showed that the threshold field ampli-
tude for ionization from a stationary Rydberg state is
proportional to (n/tw)2 [10, 11], where n is the princi-
pal quantum number and tw is proportional to the pulse
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duration. The ionization mechanism is described as dis-
placement ionization. In the present paper, ionization
of Rydberg wave packets using single-cycle pulses with
durations shorter or equal to one Rydberg period are
studied.

For field pulse ionization due to a long pulse, the scal-
ing relations of ionization thresholds versus the principal
quantum number n have been studied before. Different
ionization thresholds can be found in different ionization
regimes [24]. For ionization due to a single-cycle pulse,
only a few studies have been conducted, including exper-
imental [1] and theoretical studies [10, 11, 25, 26]. These
studies focused on the ionization probability versus ini-
tial pulse parameters or initial state nl of the Rydberg
electron. The distributions and scaling relations of a sin-
gle variable physical quantity, such as ionization proba-
bility, ionized electron’s angular distribution, energy dis-
tribution, etc, are presented in several previous studies
[1, 11]. There have been no studies on the scaling re-
lations for correlated two-dimensional distributions from
single-cycle pulse ionizations in Rydberg atoms. It is
well known that classical calculations scale perfectly for
different n, but quantum calculations do not scale due
to the restrictions from the uncertainty principle. In this
paper, comparisons between quantum and classical calcu-
lations are studied, including correlated distributions for
two physical quantities, at different scaled n states and
scaled pulse parameters. Additionally, scaled ionization
results for Rydberg wave packets due to a single-cycle
pulse are first discussed in this paper.

This paper is structured as follows. Section II gives
a brief introduction to the quantum and classical meth-
ods used in our calculations. Section III introduces the
scaling relations for pulse parameters and all physical
quantities. The quantum and classical results in differ-
ent conditions are compared. Also, the scaled properties
of ionization and quantum interference are studied. Sec-
tion IV introduces the type of Rydberg wave packets used
in this paper, and the scaled ionization properties from
short and medium duration single-cycle pulses are inves-
tigated. Atomic units are used throughout the paper
unless specified otherwise.
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II. METHODS

A. Quantum methods

With a linearly polarized laser pulse in the dipole
approximation, a hydrogenic atomic system follows the
time-dependent Schrödinger equation:

i
∂ψ

∂t
=

(
−1

2
∇2 − 1

r
+ F (t) · z

)
ψ, (1)

where F (t) is the time-dependent strength of the elec-
tric field. The full three-dimensional wave function is
expanded on a spherical harmonic basis:

ψ(r, θ, φ, t) =

lmax∑
l=0

Rl(r, t)

r
Yl0(θ, φ). (2)

The Ylm are spherical harmonics, and the cylindrical
symmetry of m = 0 is assumed in the present work. The
lmax is the number of angular channels needed to con-
verge all of the physical quantities in the calculations.
The radial wave functions can be propagated using var-
ious methods. Split operator and Crank-Nicolson meth-
ods are used in our calculations. For the radial wave
functions, the square-root mesh with Numerov approxi-
mation is adopted. Further details on the wave function
propagation can be found in Ref. [27].

For the single-cycle laser pulse, two different forms are
used in our calculations. The first form was introduced
in Ref. [26]. It is used in this paper to reinterpret some
results from Ref. [26]. The pulse is expressed as

F (t) =


−Fm sin(ωt), if − T < t < 0

−Fmβ sin(βωt), if 0 < t < T/β

0, otherwise.

(3)

The Fm is the peak intensity and T is the duration of the
first half cycle, T = π/ω, and β is a factor representing
the asymmetry of the pulse. In the calculations, the pulse
starts at ti = −T , and ends at tf = T/β.

The second form was used in Ref. [10], which is a sym-
metric, Gaussian-like single-cycle pulse. It is expressed
as

F (t) = −C0Fm

(
t

tw

)
exp

[
−
(
t

tw

)2

− 0.1

(
t

tw

)4
]
,

(4)

where C0 =
√

(
√

35 + 5)/5 exp[(
√

35 − 4)/4] ≈ 2.385 is

a constant that makes the maximum field amplitude to
be Fm [10]. The fourth-power term in the exponent is
used to shorten the Gaussian tail of the electric field
without significantly affecting the properties of a single-
cycle pulse. The tw is a scale of time width of the laser
pulse. The electronic wave function is propagated from
ti = −3.5 tw to tf = +3.5 tw, which gives well converged
results. The second form of the Gaussian-like single-cycle

pulse is mainly used in the rest of the paper, due to its
smooth expression and no discontinuities in the time do-
main. Although this paper is based on these two specific
pulse types, the results can be generalized to other pulses
with similar asymmetry, duration, and strength.

The energy and angular distributions of the ionized
electrons are the focus of this paper. At the final time
of the calculations, the continuum part of the wave func-
tion is expanded using energy normalized Coulomb eigen-
states. The probability amplitude at a positive energy ε
and angular momentum l can be calculated as

aεl =

∫
dr Rl(r, t = tf ) fεl(r), (5)

where fεl is the energy normalized regular Coulomb wave
function [28]. The energy distributions for ionized elec-
trons can be calculated as

dP

dε
=

lmax∑
l=0

|aεl|2. (6)

The angular distribution for the ionized part of the elec-
tron wave functions at a given energy can be calculated
as

d2P

d cos θ dε
= 2π

∣∣∣∣∣
lmax∑
l=0

aεl e
iσl Yl0(cos θ)

∣∣∣∣∣
2

, (7)

where σl is the Coulomb phase shift [28]. Note that the
cylindrical symmetry of m = 0 is assumed in our calcula-
tions. The integration of Eq. (7) at all positive energies
gives the full angular distributions at infinity. The emis-
sion angle θ is the polar angle from the field polarization
axis.

The radial distributions and the emission angle, just
after the pulse is turned off, are also studied in this pa-
per. They are mainly used to compare the results from
quantum and classical calculations. The radial distribu-
tion of ionized electrons at a given emission angle can be
calculated as

d2P

d cos θ dr
= 2π

∣∣∣∣∣
lmax∑
l=0

∫
dε aεl fεl(r)Yl0(cos θ)

∣∣∣∣∣
2

, (8)

and the radial distribution averaged over all angles is
calculated as

dP

dr
=

lmax∑
l=0

∣∣∣∣∫ dε aεl fεl(r)

∣∣∣∣2 . (9)

B. Classical methods

For the strong field ionization problem, the classical
trajectory Monte Carlo method is used [10]. Specifically,
consider a quantum problem starting from a stationary
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Rydberg eigenstate at |nl〉. By using the microcanonical
ensemble treatment [29], the initial energies and angular
momenta of the electrons in classical calculations are set
to be Ecl = −0.5/n2cl, where

[(n− 1)(n− 1

2
)n]1/3 < ncl 6 [n(n+

1

2
)(n+ 1)]1/3, and

l2 − 1

4
< l2cl 6 (l + 1)2 − 1

4
, when l 6= 0, n. (10)

For l = 0 or n, the simple lower or upper bound at 0 or
n are used. At a large n and non-zero l, the above two
inequalities go to the following approximations:

n− 0.5 < ncl 6 n+ 0.5, (11)

l < lcl 6 l + 1, (12)

where the classical quantities ncl, l
2
cl are uniformly dis-

tributed in the given ranges, not the classical energy
−1/2n2cl. Comparing with ncl being a single value fixed
at n, this microcanonical ensemble treatment gives better
agreement between quantum and classical calculations in
some critical cases, which will be shown in Sec. III B.

In order to simulate the radial distribution from a sta-
tionary quantum state, all the trajectories start the clas-
sical propagations from their respective classical outer
turning point at a random time tinit = tturn-on − αTRyd

[10]. Here, tturn-on is the turn-on time of the single-cycle
pulse. For example, tturn-on = −T for single-cycle pulse
in Eq. (3), and tturn-on = −3.5 tw for single-cycle pulse
in Eq. (4). α is a uniformly distributed random number
between 0 and 1 to simulate the initial radial distribution
from a full Rydberg period. The initial angular distribu-
tion of the electrons at tinit follows |Yl0(cos θ)|2. Initial
velocity direction of the electron is randomly selected as
long as it’s perpendicular to the position vector, and the
magnitude of velocity is chosen to satisfy the initial an-
gular momentum lcl from the microcanonical ensemble
in Eq. (12). The initial direction of the velocity vector
can be randomly chosen on the tangential plane because
the ionization probability does not depend strongly on
this velocity directions from our numerical calculations.
Then the electron is propagated only considering the pure
Coulomb potential 1/r until tturn-on, when the single-
cycle pulse electric field turns on. Next the electron tra-
jectory is calculated from both the 1/r potential and the
single-cycle pulse potential until the pulse turn-off time.
To achieve the final angular distribution, the electrons
are then propagated to a long fixed final time tf , when
its momentum direction is nearly converged. The statis-
tics of the electrons’ final energy and final velocity angle
then give classical distributions, which are comparable
with those from quantum calculations.

Additionally, the classical trajectory Monte Carlo
method can be extended to a semiclassical version, which
is known as the quantum trajectory Monte Carlo [30]. In
this method, the actions along the classical trajectories
are calculated. If there is more than one classical path
that can go into the same final region, e.g. position or
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FIG. 1. Ionization probabilities from scaled classical and
quantum calculations. The black dashed line is for classi-
cal calculations with an initial energy spread of ncl given in
Eq. (11). The blue solid line is for classical calculations at
a single value of n, and the ionization probability converges
to 14.6%. The magenta dotted line is for quantum calcula-
tions up to n = 70. The red thick line is a fitting for classical
results with ncl spread. For ncl > 60, the fitting function is
Pion = 0.146 + 4573/n3.02. The inset figure gives the classical
ionization probability when the pulse parameters are fixed at
n0 = 15 and the initial classical energy state is at a single
value around ncl = 15, see Eq. (14). Scaling relations are
given in Eq. (13). Pulse parameters can be found in text.
The initial angular momentum is fixed at l = 2.

momentum, the amplitudes of the paths are added co-
herently using the classical actions as the phase factor.
The initial electronic states in our calculations are Ryd-
berg states in their position representations. If the final
state is in the momentum representation, e.g. when en-
ergy versus angle distribution is studied, an extra factor
of −pf · rf needs to be added to the phase [30]. This
is due to the Fourier transform of the wave function to
another representation.

III. SCALING RELATIONS

In this section, the scaling behavior of single-cycle
pulse ionization with respect to the principal quantum
n is studied: we show quantum and classical results for
different n but with the field parameters scaled. Specifi-
cally, the physical quantities are scaled as follows

r ∝ n2, t ∝ n3, p (momentum) ∝ n−1,
E (energy) ∝ n−2, Fm ∝ n−4, (13)

and other unit-less quantities are not scaled, such as an-
gle or ionization probability. The nuclear and electronic
charges are not scaled. For example, if Fm = 500 kV/cm
is used at n = 15, then the scaled field strength at
n = 30 can be calculated as 500 kV/cm · (30/15)−4 =
31.25 kV/cm. It is noted that, due to the same scaling
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relations for pulse duration and Rydberg period, dura-
tions of the scaled single-cycle pulses will always be the
same fraction of one Rydberg period at different n.

As mentioned in Sec. II B, initial energies in classical
calculations can either be a single value or be a spread
using the microcanonical ensemble treatment. The ini-
tial spread in angular momentum l only weakly affects
the ionization probability, and it is not scaled versus n
(see Sec. III A). With all these scaling rules, scaled re-
sults from classical calculations at different n, as a single
value without spread, should be exactly the same. This is
because the classical mechanics of the Coulomb interac-
tion are fully scalable. Conversely, as given in Eq. (11),
the microcanonical ensemble treatment requires an en-
ergy spread of ∆ncl = 1, which do not scale with n. This
makes the classical calculations using microcanonical en-
semble non-scalable. In quantum calculations, due to the
uncertainty principle δx δp > 1/2, results at different n
are also different. According to the correspondence prin-
ciple, the quantum and classical calculations should give
the same results as n goes to infinity. For the following
part of this section, scaled quantum and classical calcula-
tions with different n are performed, and the differences
between them are compared.

In Sec. III A and Sec. III B, the single-cycle pulse in
Eq. (3) is used. In Sec. III C, the single-cycle pulse in
Eq. (4) is used.

A. Ionization probabilities versus n

For example, scaled quantum and classical calculations
at different n are performed, and the ionization probabil-
ities versus n is shown in Fig. 1. In the calculations, the
single-cycle pulse with the form in Eq. (3) is used. At
n = 15, the pulse parameters are Fm = 2.05× 10−6 a.u.
= 10.5 kV/cm, T = 1.2402 × 105 a.u., and β = 1.5. All
parameters are the same as those in Ref. [26] (with a
small modification [31]). At other n, the pulse param-
eters are scaled using relations given in Eq. (13). The
initial state always has angular momentum l = 2, and
are not scaled with n (see next paragraph). Classical re-
sults with microcanonical ensemble treatment have much
better agreement with quantum results than the classical
results with a single value of n. Further details on why
a spread of initial energy behaves better than a fixed en-
ergy are discussed in the next subsection.

A very important question related to perfect scaling is
how the initial angular momentum lcl should scale and
how large the difference is with respect to scaling. The
lcl determines both the initial angular distribution and
the angular momentum of the electron. The angular dis-
tribution is a unit-less function with respect to angle θ
and φ, and is not scaled with n. The angular momentum
is equal to vinitrouter and is scaled proportionally versus
n. However, l is a discrete value and cannot be arbi-
trarily scaled in experiments. To check the differences
in ionization probabilities with non-scaled angular mo-

menta, several classical calculations are performed with
the only difference in the angular momentum distribu-
tion. At a single value of n = 15 and identical remaining
parameters, the initial angular distributions are kept un-
changed as Y20. The initial angular momenta are 0, 1,
and 2. Ionization probabilities from these calculations
differ by less than 0.5% in the absolute value. Note that,
as presented in the blue solid curve of Fig. 1, l = 2 at
n = 15 gives ionization probability around 14.5%. In
these cases, with the perfect scaling of classical dynamics,
ionization probabilities, with (n, l) = (30, 2) → (15, 1),
(n, l) = (60, 2) → (15, 0.5), (n, l) = (120, 2) → (15, 0.25),
etc, would only differ by less than 0.5%. This can be seen
in Fig. 1 that the blue solid curve is mostly flat at large
n, but with small variations at n near 15. It is shown
that, with non-scaled lcl value, the classical calculations
with a single value of n are mostly scalable with small
differences at small n .

It is seen in Fig. 1 that, the differences between classi-
cal calculations using the microcanonical ensemble and a
single value of n get smaller as n gets larger. To under-
stand how the two types of calculations converge to the
same value as n→∞, consider a classical calculation on

single-cycle pulse ionization. Let P
(n0)
ion (n) be the ioniza-

tion probability when the principal quantum number is a
variable of n, and the pulse parameters are scaled for n0.
Then the averaged ionization probability with n being a
spread of n0 − δn to n0 + δn can be calculated as

P̄ (n0, δn) =
1

2δn

∫ n0+δn

n0−δn
P

(n0)
ion (n) dn

≈ 1

2δn

∫ n0+δn

n0−δn

[
P

(n0)
ion (n0) + P

′(n0)
ion (n0)(n− n0)

+
1

2
P
′′(n0)
ion (n0)(n− n0)2 +O(n3)

]
dn

= P
(n0)
ion (n0) +

1

6
P
′′(n0)
ion (n0)(δn)2. (14)

Since classical calculations are perfectly scaled, e.g.

P
(n0)
ion (n) = P

(2n0)
ion (2n), the derivatives can be calculated

as

P
(n0)
ion (n0 + δn) = P

(2n0)
ion (2n0 + 2δn),

P
(n0)
ion (n0 + δn)− P (n0)

ion (n0)

δn

=
P

(2n0)
ion (2n0 + 2δn)− P (2n0)

ion (2n0)

δn
,

P
′(n0)
ion (n0) = 2P

′(2n0)
ion (2n0). (15)

Thus, the first order derivative P
′(n0)
ion scales as n−10 , and

the second order derivative scales as n−20 . The average
ionization probability from a spread of initial energy at
29.5 to 30.5 is the same as that of 14.75 to 15.25. With
δn = 0.5, the series expansion gives n−20 asymptotic rela-
tions for the ionization probability. Also, as n0 →∞, all
derivatives go to zero, and the average ionization proba-

bility P̄ (n0, δn) converges to the single value of P
(n0)
ion (n0).
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However, as can be seen in Fig. 1, the ionization prob-
ability from classical calculations with ncl being a spread
converge as n−3 asymptotically to the classical calcula-
tions with a single value of ncl. The n−3 relation is a
coincidence, not a general rule. This is partially due to
the fact that the ionization properties at these specific
pulse parameters are very sensitive to the initial energy
state n of the electron. Since the pulse duration Tpulse =
2.067×105 a.u. is much longer than the Rydberg period at
n = 15 (TRyd = 2.12× 104 a.u.), over-the-barrier ioniza-
tion mechanisms dominate. The maximum field strength
βFm = 3.075× 10−6 a.u. is in the same order as the nu-
clear Coulomb field strength when the electron is at its
outer turning point ((2∗152)−2 = 4.94×10−6 a.u.). Thus,
with pulse parameters fixed at n0 = 15, as n varies from
14.5 to 15.5, the ionization probabilities change rapidly
and even non-monotonically.

As given in the inset of Fig. 1, the ionization prob-

ability P
(15)
ion (n) is very sensitive to the initial classical

state n. The average of P
(15)
ion (n) for n varied from 14.5

to 15.5 gives an ionization probability around 20%, but

the P
(15)
ion (15) itself only gives about 15%. At n = 15 and

δn > 1/16, which is equivalent to n < 120 and δn = 0.5,

the P
(15)
ion (n) in Eq. (14) can not be well expanded as a

Taylor series only up to O(n3). That means the n−2 scal-
ing relations derived in Eq. (14) does not hold, when n
is not large enough. A mixture of n−2 and n−4 coinci-
dentally gives a scaling relation of n−3, as presented in
Fig. 1. It was found that only when n is large enough,
e.g. n > 120, did the Taylor series expansion in Eq. (14)
correctly represent the ionization probability, and a n−2

asymptotic relation was found. Further details of ioniza-
tion properties with ncl from 14.5 to 15.5 are discussed
in the next subsection.

B. Comparisons between quantum and classical
methods

Originally found in Ref. [26], as well as shown in Fig. 1
in the previous subsection, ionization probabilities from
a classical calculation at a fixed n of 15 are different from
a quantum calculations for n = 15. In this section, three
calculations are performed to study the ionization proba-
bility and physical quantities of this process: fully quan-
tal, classical with ncl fixed at 15, and classical with ncl
being a spread from 14.5 to 15.5. The initial angular mo-
mentum is set to l = 2. The pulse parameters are given
in the previous paragraph at n = 15.

The radial distributions at the final time are given in
Fig. 2. Both of the classical calculations give overall sim-
ilar results as compared with the quantum calculation.
For the ionized part around 3000 a.u., results from the
classical calculation with ncl fixed at 15 do not match
well with the quantum result, while the spread ncl calcu-
lation gives much better agreement. As mentioned in the
caption of the figure, the ionized wave function is a small
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FIG. 2. Full radial distributions at the final time of the pulse,
from three different calculations. The initial angular momen-
tum is l = 2. The blue solid curve is from a classical cal-
culation with the initial ncl fixed at 15. The black dashed
curve is from a classical calculation with the initial ncl be-
ing a spread of 14.5 to 15.5. The magenta dotted curve is
from a full quantum calculation starting in a 15d state. The
ionization probabilities from the three calculations are 14.3%,
20.7%, and 21.0%, respectively. The inset is a magnification
of the distribution with rf from 700 to 5500 a.u. Note that
the probability density scale is different for the inset.

portion of the whole wave function. Ionization probabili-
ties and continuum wave functions from the fixed ncl and
spread ncl calculations are very different.

To further study the details of the ionized part of the
wave function, two more classical calculations for ncl
fixed at 14.5 and 15.5 are performed. The continuum
radial distributions from quantum and classical calcula-
tions are given in Fig. 3. One notable quantity is the ion-
ization probability. For ncl = 14.5, the ionization prob-
ability is only 0.77%, but it is 37.2% for ncl = 15.5. As
shown in the inset of Fig. 1 and discussed in Sec. III A,
field ionization processes with these specific field param-
eters are very sensitive to the initial Rydberg state for
this range of n, because the ionization probability and
the ionized part of the wave function depends strongly
on the initial energy of the Rydberg electron. With that,
it is better to use a spread in initial energy, i.e. micro-
canonical ensemble treatment, in the classical calculation
rather than just a fixed energy as used in Ref. [26].

To verify our applications of the initial energy spread in
the classical calculations, the ionized radial and angular
distributions at the final time of the pulse are shown in
Fig. 4. It can be seen in the figure that the classical cal-
culation with an initial energy spread has a much better
agreement with the quantum calculation. Additionally,
some interference patterns, with respect to the radial dis-
tribution, appear in the quantum results, but not in the
classical results. Oscillations of the quantum interference
amplitudes will be discussed in the next subsection.
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FIG. 3. Radial distributions at the final time of the pulse from
classical and quantum calculations. Only those from the ion-
ized part of the distributions are plotted. The red solid curve
with small extent around 1600 a.u. is from a classical calcula-
tion with ncl fixed at 14.5, and the ionization probability for
this case is 0.77%. The green solid curve with the largest ex-
tent is from a classical calculation with ncl fixed at 15.5, and
the ionization probability for this case is 37.2%. The other
three curves are the same calculations as those introduced in
the caption of Fig. 2.

C. Scaled physical quantities and quantum
interferences

Scaled physical quantities from single-cycle pulse ion-
ization with scaled pulse parameters at different n are
studied in this subsection. The single-cycle pulse in
Eq. (4) is used in this subsection, and the pulse param-
eters are changed to Fm = 500 kV/cm, tw = 500 a.u.
for n = 15 from the previous subsection. The Rydberg
period for the n = 15 state is Tryd = 2πn3 = 21206 a.u.
Electrons are initiated in stationary Rydberg eigenstates
with angular momentum being zero. Although a single-
cycle pulse process with these parameters only gives
about 3.8% ionization probability, the small portion of
the ionized wave function gives a clear picture for the
properties of the ionized electron. The ionization proba-
bility is the same for n = 15, 30, and 45. As discussed in
Sec. III A and in Eq. (14), with the same ionization prob-
ability for 15, 30, 45 in quantum calculations, the clas-
sical ionization curvature P ′′ion is negligible in this case.
Thus, to mimic the quantum calculation, classical calcu-
lations with a single value of n and a single value of l can
be performed instead of spreads, and the results would
be the same.

The angular distributions for ionized electrons are
given in Fig. 5. In the figure, the classical results at
different n are scaled and overlapped. However, the re-
sults for scaled quantum calculations are different near
cos θf = 1. Although not shown in the figure, the rest
of the angular distributions for cos θf from −1 to 0.6
are nearly the same for both quantum and classical, at
different n, and they are much smaller than those near

cos θf = 1. As can be seen in the figure, as n increases,
the quantum angular distributions near cos θf = 1 gets
sharper. This is very different from the classical results,
and the reason for the sharp peak is quantum interfer-
ence. Quantum interference can strengthen distribution
at some angle, and weaken distribution at other angle.

Using the scaling relations for physical quantities in
Eq. (13), the classical action is also scaled, and the scaling
is

S =

∫
L dt ∝ n, (16)

where L is the classical Lagrangian. In the present prob-
lem, with a small ionization probability, only two classical
trajectories can be found that go into the same final angle
and same final energy. Actions from the two trajectories
scale as n, as well as the difference ∆S between the two
trajectories. Since interference maxima can be found at
every 2π phase difference, oscillations of interference am-
plitudes, with respect to scaled physical quantities, would
be n times faster at a higher n.

To study the angular distributions in detail, results at
scaled final energy slices, Ef = (15/n)2 · 0.002 a.u., are
presented in Fig. 6. In Fig. 6(a), the classical action ver-
sus final angle is given. It can be seen that the action
differences, ∆S, from the two paths changes faster as n
gets larger, scaled as the factor of n. In Fig. 6(b), the
quantum angular distributions are given. With a larger
n, the action varies more rapidly. The amplitudes of
angular distributions also oscillate faster. Since the total
angular distributions are incoherent summations of angu-
lar distributions at all positive energy slices, faster oscil-
lations of the angular distributions away from cos θf = 1
lead to rapid cancellation and flattening of the full an-
gular distribution. With the same ionization probabil-
ity, constructive summations and sharper peaks around
cos θf = 1 can be expected at higher n.

Finally, the correlated distributions of final emission
angle and final energy are given in Fig. 7. As mentioned
in Sec. III B and Fig. 4, quantum interferences may ap-
pear in the correlated distributions at the final time. In
Fig. 7, quantum interference with respect to the scaled
final energy is found. The differences for classical actions
between the two paths are used to determine the quan-
tum interference maxima at Ef . The action differences
are aligned at the first interference maximum, and all
further maxima are found at multiples of 2π phase dif-
ferences. The classical results are the same for n = 15,
30, and 45. No interference is found in classical results.
In the figure of n = 15, only one interference maximum
can be found in the given range along cos θf = 0.95,
while two maxima can be found for n = 30 and three
for n = 45. This interference behavior is due to the fact
that semiclassical action is scaled proportional to n while
all physical parameters are scaled as those in Eq. (13).
Thus, the oscillations of interference amplitudes are also
scaled as n versus other scaled parameters. As discussed
in Fig. 5, Fig. 6 and earlier in this section, sharper peaks
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FIG. 4. Correlated distribution of the ionized electron’s radial position, and its emission angle at the final time of the pulse.
Parameters of the field are given in the text of Sec. III A. Figure (a) is from a full quantum calculation, figure (b) is from a
classical calculation with ncl being a spread of 14.5 to 15.5, and figure (c) is from a classical calculation with ncl fixed at 15.
The density distributions in all three figures are normalized to their respective ionization probabilities, which can be found in
the caption of Fig. 2.
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FIG. 5. Angular distributions for ionized electrons from quan-
tum and classical calculations. The initial angular momentum
is l = 0. Calculations are performed with different n as in-
dicated by the legends, and different scaled pulse parameters
as indicated in Eq. (13). At n = 15, Fm = 500 kV/cm and
tw = 500 a.u. are used. Classical results at all three n are the
same.

in angular distributions near cos θf = 1 can be found
when n is larger. Since the maximum angular momen-
tum scales as n, there are not enough angular channels
that can localize the angular distribution near cos θf = 1
at a smaller n.

IV. IONIZATION OF WAVE PACKETS

When dealing with strong field ionization of Rydberg
atoms, the initial state can be either a stationary eigen-
state, or a coherent superposition of those eigenstates,
which is known as a wave packet. For field ionization with
single-cycle pulses, several studies on stationary states

(a) Classical
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(b) Quantum
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FIG. 6. Figure (a) gives the classical action differences be-
tween two paths versus the final angle, at a scaled final en-
ergy. The final energy is scaled for different n, which are
Ef = (15/n)2 · 0.002 a.u. The action differences are aligned
as ∆S = 0 at cos θf = 1. Figure (b) gives angular distribu-
tions at scaled final energies from quantum calculations.

have been conducted [1, 10, 11, 25, 26]. Since the spatial
distribution for stationary states and wave packets can
be totally different, the field ionization results are also
different for these two scenarios. In this section, the ef-
fects of strong, short and medium duration single-cycle
pulses on different initial Rydberg states are studied. The
single-cycle pulses with the form of Eq. (4) are used.

Short duration single-cycle pulses have been studied
before [10]. A single-cycle pulse with duration much
shorter than one Rydberg period only shifts the posi-
tion of the Rydberg electron by a small amount without
changing its kinetic energy. The small shift in space may
introduce large Coulomb potential energy change if the
electron is close to the nucleus. If the electron is far from
the nucleus, then the small spacial shift barely changes
the Coulomb potential energy. Thus, a short duration
single-cycle pulse provides a tool to probe the spatial
distribution of an atomic system. Due to the coherent
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FIG. 7. The correlated energy and angular distributions with scaled pulse parameters at n = 15, 30, 45 for quantum calculations,
and at n = 30 for classical calculation. The maximum densities are normalized to 1.0 for all figures. The dashed lines are at
cos θf = 0.95, while the circles are interference maxima calculated by the semiclassical method introduced in the text.

superposition of the Rydberg wave functions from differ-
ent energies, the spatial distribution of a Rydberg wave
packet changes with time. A short duration single-cycle
pulse applied at different times yields different ionization
probabilities.

Similarly, a medium duration single-cycle pulse can
also be used to probe the spatial distributions of a Ry-
dberg wave packet. In this paper, a medium duration
single-cycle pulse is defined as a single-cycle pulse with
its duration approximately the same as one Rydberg pe-
riod of the Rydberg electron. With a medium duration
single-cycle pulse, the highest ionization probability is
achieved when most of the electron distribution is near
the nucleus when the single-cycle pulse goes through zero.
This can be understood that an electron reverses veloc-
ity at the inner turning point at the same time as the
electric field of a single-cycle pulse reverses [20]. Thus, a
medium duration single-cycle pulse provides similar ion-
ization properties as a short duration single-cycle pulse,
with respect to the probe of the electron spatial distribu-
tion. It is similar to those many-cycle long pulse ioniza-
tions on Rydberg wave packet experiments [13–15], where
the Rydberg wave packets absorb energy and get ionized
when they are near the nucleus.

The type of Rydberg wave packet used in this paper
is the superposition of two adjacent Rydberg eigenstates
with a variable relative phase:

|ψ(ti)〉 =
n3/2|nl〉+ eiϕ(n+ 1)3/2|(n+ 1)l〉√

n3 + (n+ 1)3
, (17)

where ϕ = −(En+1 − En)ti + ϕ0. ti is the starting time
of the pulse. The ϕ0 is a controllable parameter between
0 and 2π, which gives the superposition phase of wave
packets at t = 0.

The two stationary states in Eq. (17) are not super-
posed with equal weight. The n3/2 factor before the |nl〉
state is due to the properties of radial wave functions of
hydrogenic eigenstates [32]

Rn(r) ∼ n−3/2f(r) at small radius r, (18)

15s

15s + 16s

15s - 16s

0 100 200 300 400 500 600 700 800

-0.05

0.00

0.05

0.10

 (a.u.)

R

ℓ(
)

(a
.u

.)

FIG. 8. Radial wave functions of the hydrogen 15s, “15s +
16s”, and “15s−16s” states. Note that the 15s and 16s states
do not have the equal weight (1/

√
2) in the superpositions,

see Eq. (17). The “15s + 16s” represents a wave packet of
ϕ0 = 0, while “15s− 16s” represents ϕ0 = π.

where f(r) is a radial function that does not depend on
principal quantum number n. This asymptotic behavior
at small radius can be used to add up the radial wave
functions from |nl〉 and |(n + 1)l〉 constructively or de-
structively at small radius. The wave packet in Eq. (17)
can thus have most of its radial distributions near the
nucleus or far from the nucleus. As an example, radial
wave functions of the coherent superpositions of 15s and
16s states are shown in Fig. 8. Experimentally, the n3/2

factor can be achieved by fine tuning the frequency and
width of a laser pulse used to generate the Rydberg wave
packet.

Several quantum calculations were performed to study
the ionization probabilities versus ϕ0, and the results can
be found in Fig. 9. In the figure, the ionization proba-
bilities have huge differences at different superposition
phase. At ϕ0 ≈ 0, the wave packets add constructively
at small radius, and the ionization probabilities are at a
maximum. At ϕ0 ≈ π, the wave packets add destruc-
tively at small radius. Most of the electron probability is
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FIG. 9. Ionization probabilities for 15s + exp(iϕ0)16s wave
packets versus the superposition phase ϕ0 as given in Eq. (17).
Figure (a) describes a short duration pulse process with
Fm = 2000 kV/cm and tw = 606 a.u. Figure (b) describes
a medium duration pulse process with Fm = 60 kV/cm and
tw = 3029 a.u., where the pulse duration is approximately one
Rydberg period for 15s state: 7.0 tw = TRyd ≈ 21206 a.u. The
black dotted lines are weighted averages of ionization prob-
abilities for stationary 15s and 16s states, separately. The
averages are 11.7% and 13.1% for the two processes, respec-
tively. The red points are from quantum calculations, while
the red dashed lines are their fittings. The fitting functions are
0.116+0.112 cos(ϕ0−0.057) and 0.130+0.123 cos(ϕ0−0.245)
for the two processes, respectively. Details for the fitting func-
tions can be found in the appendix.
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FIG. 10. Energy distributions for ionizations from 15s +
exp(iϕ0)16s wave packets as introduced in Eq. (17). A short
duration single-cycle pulse with parameters in the caption of
Fig. 9(a) is used. The results are plotted for ϕ0 = 0, π, and
averages of ϕ0 ranging from 0 to 2π.

away from the nucleus, and the ionization probabilities
are at a minimum. The ionization probabilities satisfy
simple cosine relations versus the initial phase, and the
fitting functions are given in the figure caption. Also, the
ϕ0-averaged ionization probabilities are the same as the
weighted average ionization probabilities for 15s and 16s.
These properties can be derived from the coherent super-
position of the wave packets. Details for the ionization
probability versus ϕ0 can be found in the appendix.

As derived in the appendix, the ionization probability
versus superposition phase ϕ0 satisfies (assuming initial

weights of the two stationary states are approximately
the same)

Pion ' P̄st +A cos(ϕ0 + ϕs), where

Aeiϕs =
∑
l

∫ ∞
0

dε 〈ψf1|ε l〉〈ε l|ψf2〉. (19)

The P̄st is the ϕ0-averaged ionization probability. The
|ψf1〉 and |ψf2〉 are continuum wave functions ionized
from the two stationary states in Eq. (17). The max-
imum ionization probabilities are slightly shifted from
zero phase, where the shift ϕs of 0.057 and 0.245 radi-
ans are found. The small phase shift is the argument
of the overlap integral of continuum wave functions ion-
ized from the two stationary states. The depth of the
ionization curve is determined by the amplitude of the
overlap integral. For both short and medium duration
single-cycle pulse ionizations, the minimum allowed ion-
ization probability is very close to zero. This indicates
that A ' P̄st, and the overlap integral nearly reaches the
maximum. As a comparison, the ionization curve due to
a medium duration single-cycle pulse is slightly deeper
than that of a short duration single-cycle pulse. In this
case, the continuum wave functions ionized from two ad-
jacent states due to a medium duration single-cycle pulse
have a slightly larger overlap than those due to a short
duration single-cycle pulse.

Energy distributions of the ionized wave functions from
wave packets with different superposition phase ϕ0 are
given in Fig. 10. In the calculations, short duration
single-cycle pulses are used. Pulse parameters and ioniza-
tion probabilities can be found in Fig. 9(a). Most of the
ionized wave functions are at low energies and the energy
distribution is decreasing versus E. Since majority of the
electron radial distributions from wave packet of ϕ0 = π
are at the outer turning point, the displacement-caused
potential energy change by a short single-cycle pulse is
much smaller than that of the ϕ0 = 0 case. Thus, the
energy distribution from ϕ0 = π decreases much faster
and earlier than that of ϕ0 = 0 and the ϕ0-averaged
results. Ionization probability from ϕ0 = 0 is at max-
imum, while ϕ0 = π is at minimum. It can be proved
that Pion(ϕ0) + Pion(ϕ0 + π) = 2P̄st. This can be seen
in the figure that the ϕ0-averaged ionization probability
is always the average of those from ϕ0 = 0 and π, at all
energies.

Additionally, scaling relations for ionizations from Ry-
dberg wave packets are also studied. Instead of |15s〉 +
eiϕ0 |16s〉 state, the initial wave packet is changed to
|30s〉+ eiϕ0 |31s〉 and |45s〉+ eiϕ0 |46s〉 states. Using the
scaling relations given in Eq. (13), the pulse parameters
are scaled versus the principal quantum number n. For
all three wave packets given here, although ∆n = 1 is
not scaled as n, curves of ionization probabilities versus
ϕ0 due to both short and medium duration pulses are
nearly the same as those in Fig. 9. For short or medium
duration pulse, at t = 0, only those electrons within a
small radius near the nucleus can be ionized [11]. The
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FIG. 11. Ionization probability from classical calculations
versus the radial position r of electron at t = 0. The electron
is initiated at energy of n = 15 and angular momentum of
zero, where the distance of the classical outer turning point is
approximately 2n2 = 450 a.u. See text for details of r. Short
and medium duration pulses are defined in the caption of
Fig. 9. The radial distribution from a wave packet of 15s−16s
with ϕ0 = π, as shown in Fig. 8 and Eq. (17), is plotted as a
reference. The radial distribution is plotted in arbitrary unit.

critical radius is proportional to the free electron shift in
a field pulse, rc ∝ Fmt

2
w, and is also scaled as n2. In all

three wave packets |15s〉 + eiϕ0 |16s〉, |30s〉 + eiϕ0 |31s〉,
and |45s〉 + eiϕ0 |46s〉, the probabilities to find electron
within a small radius (rc < 2n2) are nearly the same,
since they all have ∆n = 1. Thus, the curves of ioniza-
tion probability are also the same for all the three wave
packets, and for both short and medium duration pulses.

Classical calculations are performed to investigate the
ionization probability versus the radial distributions of
wave packets. Electrons are initiated at the energy and
angular momentum of a 15s state. The pulse parame-
ters for short and medium durations pulses are defined
in Fig. 9. For every rinit at t = −3.5 tw, two separate
classical trajectories are calculated. The first trajectory
includes the field pulse and the 1/r core Coulomb poten-
tial, while the second trajectory only considers the 1/r
core Coulomb potential. Then the ionization probability
from the first trajectory averaged over θ is plotted versus
radial position at t = 0 from the second trajectory, which
is independent of θ. The ionization probability versus r
at t = 0 can be found in Fig. 11. This figure can be
compared with Fig. 8, since ϕ0 in Eq. (17) gives the ra-
dial distribution of wave packets at t = 0 when there is
no single-cycle pulse. For example, for the short pulse in
Fig. 11, electrons only get ionized when they have r . 250
at t = 0. For the medium duration pulse, electrons can
be ionized when they are slightly farther away from the
nucleus at t = 0, and the ionization probability curve is
smoother than that of a short pulse. Additionally, for a
wave packet of 15s− 16s with ϕ0 = π, illustrated as the
green dotted line in Fig. 11, the probability to find the
electron within rc . 250 a.u. is very small. The ioniza-

tion probabilities can be estimated from an integral

P̃ion,est =

∫
dr |ψ(r)|2Pion(r). (20)

For ϕ0 = π, the integral gives ionization probabilities
of 0.3% for the short duration pulse and 0.9% for the
medium duration pulse. These values are very close to
values at the minima in the quantum calculations in
Fig. 9.

The ionization probabilities from Rydberg wave pack-
ets at different superposition phases can differ by a factor
of 5 or more. A short or medium duration single-cycle
pulse can be used as highly efficient time-resolved probe
to study the spatial distributions of Rydberg wave pack-
ets.

V. CONCLUSIONS

In this paper, the scaling behavior for terahertz single-
cycle pulse ionization from a Rydberg atom was studied.
Two different forms of single-cycle pulses were used in
this paper, an asymmetric pulse [26] and a symmetric
pulse [10]. A previous study [26] found discrepancies be-
tween the quantum and classical calculations for single-
cycle pulse ionizations of a Rydberg atom. Results from
quantum calculations, classical calculations with a sin-
gle value of n, and classical calculations using a micro-
canonical ensemble treatment are compared in detail. In
some critical cases of over-the-barrier ionizations where
the field strength is near the ionization threshold, clas-
sical calculations with a spread of n give much better
agreement with the quantum calculations. The scalings
for pulse parameters and other physical quantities ver-
sus principal quantum number n were studied. With the
scaled physical quantities, classical results with a single
value of n are nearly perfectly scaled, but the quantum re-
sults are not. Interferences in the correlated distributions
of electron’s final energy and emission angle were stud-
ied by quantum and semiclassical methods. It was found
that the oscillations of interference amplitudes scale as
n.

Single-cycle pulse ionization from Rydberg wave pack-
ets were also studied. The Rydberg wave packets were
introduced as a superposition of |nl〉 and |(n+1)l〉 states
with different relative superposition phase. The ioniza-
tion probabilities versus superposition phase were studied
for both short and medium duration single-cycle pulses,
and sinusoidal relations were found. The amplitude and
argument of the overlap integral of ionized wave func-
tions were discussed. The overlap integral determines
the depth and shift of the ionization curve. Additionally,
ionization with scaled pulses from Rydberg wave packets
was also studied. Scaled pulses at higher n wave packets
yield nearly the same ionization curves as for lower n, for
both short and medium duration single-cycle pulse.
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Appendix: Wave packets ionization probabilities
versus superposition phase ϕ0

The initial wave packet before the single-cycle pulse is
given in Eq. (17):

|Ψi〉 = c1|n1l〉+ c2e
iϕ0 |n2l〉, (A.1)

where c1 and c2 are real amplitudes for the two states
as given in Eq. (17) and ϕ0 is the superposition phase
of the wave packet. Since the Schrödinger equation is
linear, the final wave function after the single-cycle pulse
can be written as

|Ψf 〉 = c1|ψf1〉+ c2e
iϕ0 |ψf2〉, (A.2)

where c1, c2, and ϕ0 are exactly the same numbers as
those in Eq. (A.1). Here, the |ψf1〉 and |ψf2〉 are the re-
spective wave functions after single-cycle pulse ionization
for initial stationary states |n1l〉 and |n2l〉. The ioniza-
tion probability for the wave packet can be calculated as

(|ε l〉 is the energy-normalized continuum eigenstate)

Pion =
∑
l

∫ ∞
0

dε |〈ε l|Ψf 〉|2

=
∑
l

∫ ∞
0

dε |〈ε l|c1ψf1 + c2e
iϕ0ψf2〉|2

=
∑
l

∫ ∞
0

dε
[
c21|〈ε l|ψf1〉|2 + c22|〈ε l|ψf2〉|2

+ c1c2e
iϕ0〈ψf1|ε l〉〈ε l|ψf2〉+ c.c.

]
(A.3)

Note that integration over the first two terms is the
weighted average of ionization probabilities from the two
stationary states, defined to be P̄st. Let the continuum
wave function projection be∑

l

∫ ∞
0

dε 〈ψf1|ε l〉〈ε l|ψf2〉 = Aeiϕs , (A.4)

where A is the real amplitude, and ϕs is the argument for
the projection. The ionization probability in Eq. (A.3)
can be simplified as

Pion = P̄st + 2c1c2A cos(ϕ0 + ϕs). (A.5)
This explains that the ϕ0-averaged probabilities of Pion

are always the same as the weighted averages of the
stationary state ionization probabilities. By comparing
Eq. (A.5) with wave packet ionization curves in Fig. 9,
the projection phase ϕs of the two continuum wave func-
tions can be determined.

For c1, c2 from Eq. (17) at a large n, it can be shown
that 2c1c2 ' 1. Thus, Eq. (A.5) can be simplified as

Pion ' P̄st +A cos(ϕ0 + ϕs). (A.6)

The overlap amplitude A of the continuum wave func-
tions, as given in Eq. (A.4), significantly affects the depth
of ionization probabilities versus ϕ0. When c1 = c2 =
1/
√

2, A 6 P̄st, which gives the upper bound of the over-
lap integral of the two continuum wave functions.
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