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Owing to increasing applications of time-resolved coherent x-ray scattering for the investigation
of molecular reaction dynamics, we develop a theoretical model for time-dependent x-ray diffraction
from molecular and/or electronic motion in molecules. Our model shows that the violation of
centrosymmetry (voc) is a general phenomenon in time-resolved diffraction patterns. We employ
our theoretical model to illustrate the voc in time-resolved coherent x-ray diffraction from two
oriented diatomic molecules undergoing ro-vibrational motion: lithium hydride (LiD) and hydrogen
(HD). Our simulations show asymmetric x-ray diffraction images that reflect the directions of the
molecular motions.

I. INTRODUCTION

Recent technological advances have enabled the gen-
eration of intense, short, coherent x-ray radiation using
synchrotrons [1–3], laser-driven plasmas [4–6], and free-
electron lasers [7–9]. Consequently, various aspects of
x-ray physics and chemistry have been explored with
these new x-ray sources [10, 11]. For example, fol-
lowing ionization by intense x-rays, the ensuing dy-
namics in atoms [12–14], molecules [15–17], and clus-
ters [18, 19] have been studied. In this regard, absorp-
tion [20, 21], stimulated emission [22–24], and photoelec-
tron [25–27] spectroscopies have been shown to provide
element-specific probes for studying these electronic and
structural dynamics. Coherent x-ray diffraction [28–31],
in particular, has long been used to determine the micro-
scopic structures of molecules, solids, and proteins be-
cause of its ångström resolution and deep penetration
depth [32]. With the recent development of femtosecond
(fs) x-ray sources, time-resolved coherent x-ray diffrac-
tion (using a pump-probe scheme) has been shown capa-
ble of directly imaging the transient structures along a
reaction path [33–42], thereby providing deeper insight
into the underlying reaction mechanisms. Theories have
also been developed to simulate and interpret the time-
resolved diffraction images in terms of target electronic
or molecular motions [43–49].
Regarding the theoretical treatment of non-resonant

coherent x-ray diffraction, we emphasize that there is
a nontrivial distinction between the time-independent
and the time-dependent descriptions. Namely, while the
diffraction images in a time-independent treatment are
centrosymmetric, as prescribed by Friedel’s law [50], this
is not necessarily the case in a time-dependent treat-
ment. Specifically, in the theory of time-independent
high-energy scattering, the elastic x-ray scattering am-
plitude F (q) to first-order in the interaction (i.e., in the
kinematical approximation) is proportional to the Fourier
transform of the electron density ρe(x) (i.e., the molec-
ular form factor):

F (q) ∝
∫

dx eiq·x ρe(x) , (1)

where q is the momentum transfer. Consequently,
F (−q) = F ∗(q) and the differential cross section, which
is the absolute square of the scattering amplitude, is
always centrosymmetric, even if ρe(x) lacks any sym-
metry. The violation of centrosymmetry (voc) in non-
resonant diffraction images has been found in simulations
focused on the detection of electron motion in the hydro-
gen atom [47, 51, 52]. In this paper we show, using the
same level of approximation as in time-independent the-
ories, that voc is a general phenomenon in time-resolved
coherent x-ray diffraction. In particular, we show that
evidence of voc in time-resolved coherent x-ray diffrac-
tion images does not originate only from electron motion,
but stems also from molecular vibrational motion.
In order to illustrate voc features in diffraction im-

ages, we have developed a model for time-resolved coher-
ent x-ray diffraction from nuclear and/or electronic mo-
tion in a molecule. This model is adapted from the time-
dependent theory of ultrafast electron diffraction [51, 53].
However, for the sake of completeness, the full details
of the model as applied to the case of a molecule are
presented in Sec. II. The details of applying this model
to the case of oriented ro-vibrational motion of a di-
atomic molecule are given in Sec. III. In particular, we
assume the molecular motion is initiated by some pump
procedure that impulsively excites an electron from the
ground state to some excited state, so that the internu-
clear distances in the molecule remain unchanged during
the pump process (i.e., we use the Franck-Condon prin-
ciple [54]). After the excitation, the molecule begins its
ro-vibrational motion, and this motion is then imaged us-
ing time-delayed, coherent fs x-ray pulses. Our results for
the LiD and HD diatomic molecules are given in Sec. IV.
In both cases, the x-ray diffraction images show the voc

resulting from the molecular motion. We conclude with
a summary and discussion of our results in Sec. V.
Before presenting our model for time-resolved coher-

ent x-ray diffraction, some brief remarks on our termi-
nology are necessary. We use the term “coherent x-ray
diffraction” to refer to the coherence properties of the x-
ray pulses themselves. Specifically, the term means that
the off-diagonal elements of the density matrix describing
the x-ray pulses in reciprocal space are nonzero, denot-
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ing either full or partial coherence, so that the frequency
components of the pulses maintain their mutual phase
relations to some degree. This usage differs from that in
some of the older literature concerning time-independent
x-ray diffraction or crystallography, in which coherence
may refer to the scattering mechanism. Namely, coherent
and incoherent x-ray scattering are often used to stand
for Rayleigh (elastic) and Compton (inelastic) scattering,
respectively (see, e.g., [55, 56]). In our model, both types
of scattering are included and both contribute to the
time-resolved diffractive interference patterns we calcu-
late owing to the bandwidth of short x-ray pulses, which
allows both elastic and inelastic processes differing in en-
ergy to interfere.

II. THEORETICAL FORMULATION

The essential ideas for modeling time-dependent x-ray
scattering are summarized here, and details regarding the
implementation of these ideas in our theoretical formu-
lation are presented in the following subsections. In or-
der to properly describe time-dependent coherent x-ray
scattering, the x-ray radiation and the molecular tar-
get must be localized in both space and time in order
that the centroid of motion of the x-ray pulse, the cen-
ter of mass of the target, and the collision time can all
be well-defined. The x-ray pulse and the molecule are
localized using wave-packet integrals that coherently su-
perpose their momentum components to form wave pack-
ets [57]. In order to properly account for the recoil of the
x-ray photon (i.e., for Compton scattering) and the ex-
change of energy between the photon and the molecule
(which has been shown to be important for describing
time-dependent scattering from targets in which elec-
trons are moving [47, 51]), we employ a field quantization
description of the x-ray radiation [58]. After formulating
the localized wave packets for the initial states of the x-
ray pulse and the molecule, these wave packets are propa-
gated in time and the x-ray diffraction patterns resulting
from the internal molecular motions are calculated.
Finally, our formulation is given in the interaction pic-

ture, and atomic units (a.u.), ~ = e = me = 1, are used
throughout this paper unless specified otherwise.

A. Time-dependent x-ray scattering

Consider an x-ray photon γ with momentum k0 that
scatters from a molecule M having momentum ka,

γ(k0, λ0) +M∗(ka, a) → γ(k1, λ1) +M∗(kb, b) , (2)

where k1 and kb are the respective momenta of the pho-
ton and the molecule after the collision, λ0 and λ1 label
the respective polarizations of the incident and scattered
photons, and the quantum numbers characterizing the
molecular states before and after the scattering are collec-
tively symbolized by a and b, respectively. The molecule

involves some internal nuclear (and/or electronic) motion
that is imaged by the x-ray pulse (whose pulse length is
short compared to the period of the internal motion).
Let Hamiltonian of the scattering system be

H = HM +Hγ + V , (3)

where HM and Hγ are the respective Hamiltonians of the
molecule and the electromagnetic radiation, and V is the
interaction between the x-ray photons and the charged
particles in the molecule. For the case of non-relativistic
electron dynamics, the interaction V in the Coulomb
gauge comprises two terms that are proportional to A ·p
and A2, respectively. Here, A is the vector potential of
the x-ray radiation, and p is the canonical momentum
of a charged particle in the molecule. However, for x-
ray scattering in which the radiation frequency is much
higher than the binding energies of the charged particles
(i.e., non-resonant scattering), the A2 term dominates
the interaction. Thus, we retain only this term in V :

V (t) ≃ 1

2mec2

∫

dxψ†(x, t)A2(x, t)ψ(x, t) , (4)

where me is the mass of electron, c is the speed of light,
and ψ(x, t) is the (annihilation) field operator for the
electrons in the molecule satisfying the equal-time anti-
commutation rule, {ψ(x′, t), ψ†(x, t)} = δ(x′ − x). For
the sake of clarity, the spin index of ψ(x, t) is suppressed
because photons do not directly couple to the electrons’
spin degrees of freedom, though the spin statistics is still
implied implicitly in our formulations. The scattering of
the photon from the nuclei in the molecule is also ne-
glected in Eq. (4) owing to the much greater masses of
the nuclei as compared to the electron mass.
For x-ray photon frequencies much above theK ioniza-

tion edges of the constituent atoms in the molecule, first-
order time-dependent perturbation theory can be used to
evaluate the x-ray scattering transition amplitude from
an initial state i to a final state f :

Tfi ≃
∫

dt 〈ψf |V (t) |ψi〉 , (5)

where |ψi〉 is the entrance state of the reaction (2), and
|ψf 〉 is the final state of an exit channel detected in a
measurement.
Having thus formulated an expression for the transition

amplitude Tfi, we turn now to describing the entrance
and exit states, |ψi〉 and |ψf 〉, in Secs. II B and IIC re-
spectively below.

B. Entrance states

The entrance state of the scattering system is written
as a direct product of the x-ray and molecular states:

|ψi〉 = |α0〉 ⊗ |ψa〉 . (6)
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A coherent state basis is employed to describe the en-
trance state |α0〉 of the x-ray pulse for the following rea-
sons. First, a coherent state is a quantized radiation
state (i.e., a photon field state) produced by a classi-
cal current distribution [59], and many x-ray radiation
processes can be modeled using classical electrodynam-
ics [5, 9, 60]. Second, diffraction experiments involve a
large and indefinite number of photons, which cannot be
described by a single configuration of photon occupation
numbers. Third, a coherent-state representation renders
a momentum interpretation of the x-ray scattering that
aids interpretation of the time-resolved diffraction im-
ages (see Sec. II F). Since the incident x-ray pulses have
finite duration, thus comprising a distribution of frequen-
cies, they cannot be described by a single-mode coherent
state. Accordingly, |α0〉 is modeled as a product of coher-
ent states with different momenta and polarizations [61]:

|α0〉 =
∏

λ0,k0

∣

∣αλ0(k0)
〉

, (7)

where αλ0(k0) labels the coherent state with polarization
λ0 and momentum k0. The spectrum αλ0(k0) of |α0〉
depends on the character of the x-ray pulse, which will be
specified later (in Sec. II F). Each coherent state |αλ(k)〉
can be further expanded in terms of the photon number
states |n〉:

|αλ(k)〉 =
∞
∑

n=0

|n〉 e− 1
2 |αλ(k)|

2 αn
λ(k)√
n!

, (8)

where n ≡ nλ(k) is the occupation number for the λ, k
mode; for simplicity of notation, the mode indexes of n
are suppressed here. If the x-ray pulses are mixed states,
the above description can be generalized using a density-
matrix formulation (see, e.g., the Supporting Information
accompanying Ref. [47]).
For the entrance state |ψa〉 of the molecule, we assume

the molecular and/or electronic motion is initiated by
some pump procedure such that (i) the time zero of the
motion can be defined and (ii) the ensuing evolution of
the molecule can be approximately modeled as a coherent
superposition state with wave function ψcoh. Assuming
there are Nj particles of type j in the molecule (e.g., Ne

electrons, N1 nuclei of one kind, and N2 nuclei of another
kind, etc.), the molecular state can be written as

|ψa〉 =
∫

dµ
∏

j

1
√

Nj!
ψ

†
j(x1) · · ·ψ†

j(xNj
) |0〉ψcoh , (9)

where ψj is the field operator for the jth type of parti-
cle, |0〉 is the vacuum state for all types of particle, and
the integration, denoted by dµ, is over the configuration
space of all the particles in the molecule. The commuta-
tion rules for ψj depend on the spin statistics of the jth
type of the particles (i.e., boson or fermion).
The expression of ψcoh is assumed to be factorized into

an external part, which describes the molecule’s center-
of-mass motion, and an internal part, which describes

the molecular steric and/or electronic motions. For the
external part, we use a basis set of plane waves, χa, in
the wave-packet integral for the center-of-mass motion:

χa = (2π)−3/2 eika·xa , (10)

where ka and xa are the momentum and center-of-mass
coordinates of the molecule, respectively. For the inter-
nal part, the coherent superposition state, ψcoh, is ex-
panded in the eigenstates of the molecular Hamiltonian.
In pump-probe experiments, the time evolution of the
target states is tracked by varying the delay between the
pump and probe pulses, so the entrance state |ψi〉 is a
function of the pump-probe delay. Furthermore, for gas-
phase x-ray diffraction, the pump and probe times of a
molecule depend on its position in the gas ensemble. In
order to incorporate this delay and position dependence
into the initial conditions of |ψi〉, we assume that the
pump procedure precedes the x-ray probe pulse by a time
td for a molecule located at the origin. Then the relative
delay between the pump and probe pulses for a molecule
at an arbitrary position b is accounted for by displac-
ing the molecular wave function ψcoh in time. In other
words, the state of the x-ray pulses |α0〉 are identical for
all delays, while the molecular state for the molecule at
the position b is displaced in time by ta(b).

With the above considerations, the wave function for
the molecule at the position b is written as

ψcoh =

∫

dka a(ka) e
−ika·b χa

∑

n

cn φn e
−iεnta , (11)

where a(ka) is the momentum amplitude of the wave
packet, φn is an eigenstate of the molecule with energy
εn, n [not to be confused with the photon occupation
number nλ(k)] denotes the set of quantum numbers spec-
ifying the internal molecular state (e.g., rotational, vibra-
tional, and electronic states), and cn is the amplitude of
φn for a molecule at the origin (b = 0) for a zero pump-
probe delay. The first part of Eq. (11) (before the sum-
mation) describes the external motion of the molecular
wave packet, and the second part represents the internal
molecular motion. The perpendicular component b⊥ is
the impact parameter of the scattering. If one further
assumes that the group velocity of the pump pulse is the
speed of light and that the pump and probe pulses are
co-propagating, then

ta ≃ td −
b‖
c
, (12)

where b‖ is the longitudinal component of b along the
propagation direction. An average of the transition prob-
ability over the positions of molecules in the gas ensemble
will be implemented later (in Sec. II E).
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C. Exit states

As for the entrance state, the exit state |ψf 〉 is written
as a direct product of the photon and molecular states:

|ψf 〉 = |n1〉 ⊗ |ψb〉 . (13)

However, in contrast to the entrance state, the pho-
ton state |n1〉 of the exit channel is described using
the occupation-number representation because, in typi-
cal experiments for x-ray diffraction, the measurement
of diffraction patterns involves photon-counting detec-
tion. Specifically, we consider that one photon is scat-
tered from the molecule with momentum k1 and polar-
ization λ1, so that

|n1〉 =
∣

∣{nλ(k) : λ,k ∈ α0}
〉

⊗
∣

∣1λ1(k1)
〉

, (14)

where the first factor, |{nλ(k)}〉, stands for the unscat-
tered photons in which λ and k belong to the occupied
modes in the entrance state |α0〉, and the second factor,
|1λ1(k1)〉, indicates that only one photon is in the scat-
tered state.
The exit state for the molecule is simply chosen as an

eigenstate of the molecular Hamiltonian HM :

|ψb〉 =
∫

dµ
∏

j

1
√

Nj !
ψ

†
j(x1) · · ·ψ†

j(xNj
) |0〉χb φm .

(15)

where χb, which describes the center-of-mass motion of
the molecule after the collision, is a plane-wave state with
momentum kb [similar to Eq. (10)], and φm is an internal
molecular eigenstate.

D. The transition amplitude

Using the above descriptions for the entrance and exit
states, the transition amplitude can be calculated. Thus,
applying Eqs. (6) and (13) to the integrand of Eq. (5),
one obtains the matrix element

〈ψf |V (t)|ψi〉 ≃
1

2mec2
(16)

×
∫

dx 〈n1|A2(x, t)|α0〉 〈ψb|ψ†(x, t)ψ(x, t)|ψa〉 .

To evaluate the first factor of the integrand, we first
expand the vector potential A(x, t) in terms of plane-
wave modes of λ and k:

A(x, t) =
c

2π

∫

dk
1√
ω

∑

λ

(

ǫλ(k) aλ(k) e
i(k·x−ωt)

+ ǫ∗λ(k) a
†
λ(k) e

−i(k·x−ωt)
)

, (17)

where ǫλ(k) is the polarization vector, aλ(k) is
the annihilation operator for the λ, k mode, and

ω = c |k|. The annihilation, aλ(k), and cre-

ation, a†λ(k), operators satisfy the commutation rule:

[aλ′(k′), a†λ(k)] = δλ′λ δ(k
′ − k). Then, utilizing Eqs. (7)

and (14), the commutation rules for a and a†, and using
the fact that the coherent state |αλ(k)〉 is an eigenstate
of the annihilation operator with eigenvalue αλ(k), i.e.,

aλ(k) |αλ(k)〉 = |αλ(k)〉αλ(k) , (18)

one may show that

〈n1|A2(x, t)|α0〉 =
c2

2π2

∫

dk0
1√
ω1 ω0

×
∑

λ0

ǫ∗λ1
(k1) · ǫλ0(k0)αλ0(k0) 〈{nλ(k)}|α0〉

× ei[(k0−k1)·x−(ω0−ω1)t] , (19)

where ωj ≡ c |kj | (j = 0, 1). Note that the final state of
the inner product in the integrand includes only the un-
scattered photons. Physically, the matrix element (19)
depicts a scattering process in which, at the spacetime
x,t, a photon is annihilated from the coherent state
|αλ0(k0)〉 with amplitude αλ0(k0) and a photon of mode
λ1, k1 is created. The integration over k0 and the sum-
mation over λ0 coherently superpose the transition am-
plitudes from all the occupied modes in |α0〉 to |1λ1(k1)〉.
The inner product 〈{nλ(k)}|α0〉 takes account of the por-
tion of the transition matrix contributed by the unscat-
tered photons in this process.
As for the second factor in the integrand of Eq. (16),

since the number of electrons in the molecule is well-
defined and conserved in non-relativistic quantum elec-
trodynamics, it is convenient to use the identity

ψ(x, t) = eiHM tψ(x) e−iHM t (20)

to calculate the matrix element so that the time depen-
dence is carried by the states:

〈ψb|ψ†(x, t)ψ(x, t)|ψa〉 = 〈ψb(t)|ψ†(x)ψ(x)|ψa(t)〉 .
(21)

Since the states |ψa〉 and |ψb〉 are expanded in terms of
the eigenstates of the molecular Hamiltonian, their time
evolution is obtained by multiplying the components of
the wave functions by the time-dependent phase associ-
ated with each of the eigenstates. Substituting Eqs. (9)
and (15) with the time-dependent phases into the right-
hand side of Eq. (21), the matrix element (21) can be
calculated as follows: First, since the interaction V (t) in-
volves only the field operators of the electrons, for the
nuclei this matrix element is simply the inner product of
the nuclear parts of the wave functions. Second, the elec-
tronic part can be calculated using the anti-commutation
rules for ψ(x), ψ†(x) repeatedly such that all the field
operators are in normal order (or, alternatively, one could
apply Wick’s theorem, according to which the contrac-
tion of the field operators yields δ-functions). The result
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is the following identity [see also Eq. (21.59) of Ref. [62]]:

〈0|ψ(x′
Ne

) · · ·ψ(x′
1)ψ

†(x′)ψ(x)ψ†(x1) · · ·ψ†(xNe
)|0〉

=

Ne
∑

i=1

∑

P

sgn(P ) δ(x′
Ne

− xNe
) · · · δ(x′ − xi) · · ·

× · · · δ(x′
1 − x1) δ(x

′
i − x) , (22)

where P denotes a permutation of all primed coordinates
except x′

i, the P summation stands for summation over
all permutations P , and sgn(P ) = ±1 is positive (neg-
ative) for an even (odd) permutation P . Note that in
Eq. (22) we have temporarily distinguished the coordi-
nates x and x′ of the field operators in Eq. (21); we shall
set x = x′ after evaluating the matrix element (21). Ap-
plying the identity in Eq. (22) to Eq. (21), together with
Eqs. (9) and (15), one obtains

〈ψb|ψ†(x, t)ψ(x, t) |ψa〉

=

∫

dka a(ka) e
−ika·b

Ne
∑

i=1

∫

dµ δ(x− xi)χ
∗
b χa

×
∑

n

cn φ
∗
m φn e

−iεnta ei(Eb+εm−Ea−εn)t , (23)

where xi is the coordinate of the ith electron, and Ea

and Eb are the kinetic energies of the molecule in the
entrance and exit channels, respectively. Note that any
permutation P of electron coordinates renders identical
amplitudes because the wave functions have been anti-
symmetrized.
Physically, the matrix element (23), without the ka

integral and the i and n summations, is the scattering
amplitude for the ith electron from the state χa φn to
the state χb φm at position x and time t. Because of
the indistinguishability of electrons, the contribution to
the scattering amplitude from each individual electron
is superposed coherently by the i summation. In addi-
tion, as the entrance state |ψa〉 is a coherent superposi-
tion state, the scattering amplitude is further averaged
over the contributions from the components in the wave
packet, weighted by their corresponding amplitudes cn
and a(ka), by means respectively of the sum over n and
the integration over ka.
Finally, the time-resolved transition amplitude Tfi can

be calculated by substituting Eqs. (16), (19) and (23) into
Eq. (5). Since spacetime is homogeneous, the temporal
integration yields a δ function representing the conserva-
tion of energy as well as a δ function for the conservation
of total linear momentum, both of which can be factored
from Tfi. One obtains then

Tfi ≃
1

2πme

∫

dk0
1√
ω1 ω0

∑

λ0

ǫ∗λ1
(k1) · ǫλ0(k0)

× αλ0(k0) 〈{nλ(k)}|α0〉
∫

dka a(ka) e
−ika·b

×
∑

n

cn Tmn e
−iεnta δ(Ef − Ei) δ(Pf − Pi) , (24)

where Ei ≡ ω0+εn+Ea and Ef ≡ ω1+εm+Eb, respec-
tively, are the initial and final total energies, Pi ≡ k0+ka

and Pf ≡ k1 + kb, respectively, are the initial and final
total linear momenta of the scattering system, and

Tmn ≃
Ne
∑

i=1

∫

dyi e
iq·yi (φm, φn) (25)

is the usual transition matrix (or the scattering ampli-
tude) for x-ray diffraction in the center-of-mass frame.
[Note that Eq. (25) reduces to the familiar molecular form
factor in the case of elastic scattering, m = n.] Here,
q ≡ k0 − k1 is the momentum transfer, and the inner
product in the integrand involves an integration over the
internal coordinates of all particles in the molecule ex-
cept for the coordinate yi of the electron that collides
with the x-ray photon. We also make use of the fact that
the electron mass is much less than the nuclear masses
in the molecule.
One sees that the transition amplitude, Tfi, for short

x-ray pulses scattered from the coherent superposition
state |ψa〉 is a coherent superposition of the scattering
amplitudes Tmn from each component of the wave packet
weighted by the corresponding amplitudes cn, a(ka), and
αλ(k) satisfying the conservation of energy and momen-
tum. It is the interference of these components that ren-
ders a delay dependence in the time-resolved scattering
probability.

E. Scattering probability and ensemble average

The scattering probability involves various final-state
summations and integrations over the absolute square of
the time-resolved transition amplitude, |Tfi|2,

P =
1

〈Nγ〉
∑

m

∑

{nλ(k)}

∑

λ1

∫

dkb

∫

dk1 |Tfi|2 , (26)

where 〈Nγ〉 is the expectation value of the number of pho-
tons in the entrance state |α0〉. The first summation sums
over the molecular final states; the second summation
represents the final-state sum for the unscattered pho-
tons; and the last summation sums over the polarizations
of the scattered photon. The first and second integrals in-
tegrate over the final momenta of the molecule and scat-
tered photon, respectively. The ranges of these summa-
tions and integrations depend on the detection scheme
of the experimental setup, which determines which sub-
sets of these exit channels are measured. In typical x-ray
diffraction experiments, the frequencies and polarizations
of the scattered photons are not resolved and only the
diffraction patterns are recorded as a function of pump-
probe delay. In other words, the scattering intensities of
the x rays are measured as functions of the scattering an-

gles k̂1 at each pump-probe delay, and these unresolved
channels are summed accordingly. Therefore, we define



6

the differential scattering probability as:

dP

dk̂1

≡ 1

〈Nγ〉
∑

m

∑

{nλ(k)}

∑

λ1

∫

dkb

∫

dω1
ω2
1

c3
|Tfi|2 ,

(27)

which represents the diffraction patterns measured in
time-resolved x-ray scattering.
Moreover, in gas-phase scattering the positions of the

molecular targets cannot be controlled with atomic pre-

cision, so an average of dP/dk̂1 over the distribution
of the molecular positions in an ensemble is necessary.
For an ensemble having a position distribution ρ(b), the
ensemble-averaged differential probability (eadp) is

〈

dP

dk̂1

〉

=

∫

db ρ(b)
dP

dk̂1

. (28)

In the following, we present the procedures needed to
calculate the eadp from the definition of the differential
probability (27) and the transition amplitude (24). More-
over, to simplify the expression, assumptions and approx-
imations frequently fulfilled in experiments are made.
For the x rays, we assume the incident pulses are lin-

early polarized and well-collimated, so that the paraxial
approximation can be used. Thus, the polarization vec-

tor ǫλ0(k0) is insensitive to the angular spread k̂0 of the
incident radiation, and hence the polarization factor can
be pulled out of the k0 integral in Eq. (24).
Since no measurement is performed to discriminate the

unscattered photons, the {nλ(k)}-summation exhausts
all possible numbers of photons nλ(k) in every occupied
mode λ, k in |α0〉 (i.e., all configurations for the occupa-
tion numbers of the exit state

∣

∣{nλ(k) : λ,k ∈ α0}
〉

are
summed). Using Eq. (8), one can show that for any λ,
k mode the probability of finding all possible numbers
of photons in a coherent state is unity (i.e., |αλ(k)〉 is
normalized):

∑

nλ(k)

∣

∣〈nλ(k)|αλ(k)〉
∣

∣

2
= 1 . (29)

In other words, the unscattered photons have no influ-
ence on the scattering probability, provided all unscat-
tered photons are collected without discrimination (i.e.,
no correlations between the photons are measured.)
For the molecules, we assume that the ensemble of

molecules is homogeneous in the transverse direction
(with respect to the propagation direction of the x-ray
pulses) and that its transverse dimension is much larger
than the transverse size of x-ray pulses, so the ensemble
average over b⊥ can be performed readily [63, 64]:

∫

db ρ(b) ei(k
′
a−ka)·b · · · (30)

= (2π)2ρ⊥ δ(k
′
a⊥ − ka⊥)

∫

db‖ ρ‖(b‖) e
i(k′

a‖−ka‖)b‖ · · · ,

where ka and k′
a are two momentum components of the

molecular wave packet [see Eq. (11)], and the ellipsis de-
notes the part of the differential probability independent
of b⊥. The ensemble density has also been written as
a product, ρ(b) = ρ⊥ × ρ‖(b‖), of a homogeneous part
ρ⊥ and a longitudinal part ρ‖. The expression for ρ‖(b‖)
depends on the experimental geometry and the pump
procedure. In order to carry out the b‖ integral, we
assume ρ‖ is a Gaussian distribution of width σb, i.e.,

ρ‖(b‖) = e−b2‖/2σ
2
b /
√
2πσb. Recall that the pump time ta

of a target at position b depends on b‖ for co-propagating
pump and probe pulses [see Eq. (12)]. Thus, the integral
on the right-hand side of Eq. (30) gives

∫

db‖ ρ‖(b‖) e
i(k′

a‖−ka‖)b‖ ei(εn′−εn)ta · · ·

≃ ei(εn′−εn)td e−
1
2σ

2
b(k

′
a‖−ka‖−

ε
n′n
c )

2

· · · , (31)

where εn and εn′ are two energy components of the target
superposition state [see Eq. (11)], εn′n ≡ εn′ − εn, and

the ellipses denote factors in dP/dk̂1 that are indepen-
dent of b‖. This term takes account of the uncertainty
in the collision time due to the group-velocity mismatch
between the pump and probe pulses as they propagate
through the ensemble. However, for a dilute, longitudi-
nally confined gas ensemble, this effect is negligible.
The remaining integrals in the eadp can be performed

using the δ functions resulting from the conservation laws
[see Eq. (24)] and from the b⊥ ensemble average [see
Eq. (30)] in a manner analogous to that for the case of
ultrafast electron diffraction [51, 53]. Thus, we do not
repeat the calculations here but simply present the final
expression and discuss its physical interpretation:
〈

dP

dk̂1

〉

≃ ρ⊥
〈Nγ〉

1

m2
e c

4

∑

λ1

∣

∣ǫ∗λ1
· ǫλ0

∣

∣

2 ∑

m

∑

n′n

∫

dk0 dka

× ω1
√

ω0 ω′
0

α∗
λ0
(k0⊥, k0‖ −∆k)αλ0(k0)

× a∗(ka⊥, ka‖ +∆k) a(ka) c
∗
n′ cn T

∗
mn′ Tmn

× ei(εn′−εn)td e−
1
2σ

2
b (∆k−

ε
n′n
c

)2 . (32)

The amplitudes αλ0(k0), a(ka), cn, and Tmn appear in
pairs because of the absolute square of Tfi in Eq. (26).
Since the collision couples the energy and momentum
components of the x-ray pulse and the molecular wave
packet, the longitudinal components of αλ0(k0) and
a(ka) are shifted relative to their complex-conjugated
counterparts by ∓∆k. The amount of the shift ∆k is
determined by the energy exchange between the photon
and the molecule due to inelastic transitions. In par-
ticular, under the paraxial approximation and negligible
molecular kinetic energies Ea and Eb, ∆k ≃ εn′n/c. The
factor m−2

e c−4
∑ |ǫ∗λ1

· ǫλ0 |2 is the Thomson differential
cross section for polarized radiation.
While the final expression (32) seems complicated, as

discussed in Refs. [51, 53] a concise expression connect-
ing the eadp and the molecular motion can be obtained
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under the following conditions: (i) If the duration of the
x-ray pulse is shorter than the characteristic time scale of
the molecular motion, ∆k is smaller than the width of the
spectrum αλ(k) and, therefore, αλ(k0‖ −∆k) ≃ αλ(k0‖).
(ii) The molecule is localized such that its momentum
amplitude a(ka) is also insensitive to the variation ∆k.
(iii) The central frequency of the x-ray pulse is much
larger than its bandwidth (i.e., it has high monochro-
maticity) such that Tmn is insensitive to the variation of
k0 and ka in the wave-packet integrals, so that it can be
approximately evaluated at the central momenta of k0

and ka and then pulled out of the wave-packet integrals.
Under these conditions, the expression (32) factorizes and
the resultant eadp is simply proportional to

〈

dP

dk̂1

〉

∝
∑

m

∣

∣

∣

∑

n

cn Tmn e
−iεntd

∣

∣

∣

2

, (33)

which shows that time-resolved x-ray diffraction provides
a mechanism by which the scattering maps the time-
dependent molecular state,

∑

n cn φn e
−iεnt, at the mo-

ment of collision td to some final state m. Then the
transition probabilities to the final states m are summed
incoherently.
Since the eadp (32) is presented in terms of a mo-

mentum integral over the spectrum αλ0(k0), in order to
understand further its physical interpretation we discuss
next the physical meaning of the spectrum.

F. Coherent state and momentum amplitude

A coherent state provides a momentum interpretation
of the spectrum αλ(k) for the entrance state |α0〉 of the
x-ray pulses. Observe that the expectation value of the
linear momentum operator of the field [see Eq. (23.29) of
Ref. [62]],

P =
1

2πc

∫

dxE(−)(x, t)×B(+)(x, t) , (34)

in the x-ray entrance state, |α0〉, is

〈α0| P |α0〉 =
∑

λ0

∫

dk0 k0 |αλ0 (k0)|2 . (35)

Therefore, |αλ(k)|2 can be identified as the momentum
density of |α0〉 for the polarization λ. The superscripts
(−), (+) in Eq. (34) stand for the negative and positive
frequency components of the field operators, respectively.
In order to associate the spectrum αλ(k) with the elec-

tric field of the x-ray pulse (which satisfies the Maxwell
equations), we make the following hypothesis. Since we
have modeled the x-ray pulses as composed of coherent
states, it is natural to identify the expectation value of
the electric field in the state |α0〉 with the classical elec-
tromagnetic radiation E (x, t):

〈α0|E(x, t)|α0〉 = E (x, t) . (36)

With the above identification |α0〉 ↔ E (x, t), one can
connect the amplitude αλ(k) to the waveform of the ra-
diation by applying Eqs. (7) and (18). Therefore, one has
[see also Eq. (7.91) of Ref. [65]]

αλ(k) =
−i

8π2
√
ω

∫

dx e−ik·x

× ǫλ(k) ·
(

E (x, 0) +
i

ω

∂E

∂t
(x, 0)

)

. (37)

If E (x, t) is a plane wave, e.g., cos(k′ · x− ω′t), then one
can show that αλ(k) is proportional to the distribution
δ(k − k′), which is consistent with the conventional hy-
pothesis that the photon field corresponding to a plane
wave carries momentum ~k.

III. SIMULATION DETAILS

In this section, the above theoretical model is applied
to cases in which the ro-vibrational motions of diatomic
molecules are imaged by coherent x-ray pulses and details
of our simulations are presented. In order to make nu-
merical calculations manageable, approximations specific
to the case considered here are assumed.

A. Diatomic molecular wave functions

The Born-Oppenheimer approximation is employed to
describe the molecular eigenstates, so the molecular wave
function φn is factorized into a product of electronic and
nuclear parts, and the nuclear part is further separated
into vibrational and rotational parts. Accordingly, the
quantum number n = {ne, v, J,M} is the collection of
electronic (ne), vibrational (v), and rotational (J,M)
quantum numbers. For a diatomic molecule, one can
write

φn = ξne
({yi};R)

uvJ(R)

|R| YJM (R̂) , (38)

where {yi} denotes the collection of the electrons’ coor-
dinates in the molecular frame, |R| is the internuclear
distance of the molecule, ξne

and uvJ are, respectively,
the electronic and vibrational parts of the wave function,
and YJM is the spherical harmonic describing the rota-
tional part of the wave function.
The molecular potential energy curves are obtained

from either the literature or quantum chemistry simu-
lations. The vibrational wave functions are calculated
using the Fourier grid Hamiltonian method [66].

B. Incident x-ray pulses

We consider the x-ray pulse has an axially symmet-
ric Gaussian profile propagating in the x direction with
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velocity c:

E (x, t) = E0 e
− y2+z2

2σ2
yz e

− (x−ct)2

2σ2
x cos

(

κ0(x− ct)
)

, (39)

where E0 is the peak electric field, σyz and σx are the
respective Gaussian widths in the transverse and longitu-
dinal directions, and κ0 is the central wave number. Sub-
stituting Eq. (39) into Eq. (37), the corresponding spec-
trum of |α0〉 is

αλ(k) ≃ −i
σ2
yzσx√
8πcκ0

e−
1
2σ

2
yz(k

2
y+k2

z) e−
1
2σ

2
x(kx−κ0)

2

× ǫλ ·E0 . (40)

Here we have assumed that the width of the momentum
amplitude is much smaller than its central wave number
κ0 (i.e., σxκ0 ≫ 1) and that the pulses are well col-
limated. From Eq. (40), one sees that the momentum
amplitude αλ(k) has a Gaussian profile centered at κ0
with a width reciprocal to the length of the x-ray pulse;
also, its magnitude is proportional to the electric field
amplitude.
In our simulations the x-ray pulses are lin-

early polarized and have a central frequency of
59.3 keV (κ0 ≃ 15.9 a.u.). The full-width-at-half-
maximum (fwhm) duration of the intensity profile is
1.00 fs (σx ≃ 3.40× 103 a.u.).

C. Transition amplitudes

The transition amplitude Tmn for a diatomic molecule
can be calculated by substituting the molecular wave
functions (38) into Eq. (25):

Tmn ≃
Ne
∑

i=1

∫

dR d{yi} eiq·yi ξ∗nb
ξna

× 1

R2
u∗vbJb

uvaJa
Y ∗
JbMb

YJaMa
, (41)

where the subscripts a and b of the quantum numbers
indicate the initial and final states, respectively. In or-
der to show that the voc can be caused exclusively by
nuclear motion, we neglect the distortion of the density
of the valence electrons of each atom due to the binding
force and assume that the electronic degree of freedom
is frozen during the collision (i.e., nb = na). There-
fore, the electron densities are still isotropic and centered
at their nuclei, and any time-dependent phenomenon in
the diffraction images is associated with the nuclear mo-
tion. Accordingly, the x-ray scattering from the elec-
tronic state can be considered as a summation of elastic
scatterings from the electrons in the constituent atoms
in the molecule:

Ne
∑

i=1

∫

d{yi} eiq·yi ξ∗nb
ξna

≃
2

∑

j=1

fj(q) e
iq·Rj , (42)

where fj(·) is the atomic form factor of the jth atom, and
Rj is the position vector of the jth atom from the origin
of the center-of-mass frame of the molecule. The atomic
form factors fj(·) are obtained from Ref. [55]. Whereas
the scattering signals from electronically inelastic scatter-
ing (i.e., nb 6= na) may be significant for light molecules,
the contribution of such inelastic scattering signals can
in principle be reduced by means of energy-resolved mea-
surements, provided there is adequate energy resolution.
Owing to our focus on VOC due to the motions of the
atoms in a molecule, our formulation does treat inelastic
transitions between molecular states.
After applying Eq. (42), the R integral of Eq. (41) can

be performed by using the plane-wave expansion of eiq·Rj

(as done in Ref. [51]), so that the integral is separated into
radial and angular parts. The angular part yields a spher-
ical harmonic and a product of Wigner 3j-symbols, which
are calculated using the package of Ref. [67]. The radial
part involves integrations of the vibrational wave func-
tions and spherical Bessel functions. The Bessel functions
are generated using a continued fraction technique [68].
The radial integrals are then calculated numerically.

D. Molecular scattering intensities

After calculating the transition amplitudes Tmn, the
eadp can be computed using Eq. (32). Since we have
assumed the paraxial approximation for the x-ray pulses
in our model (see Sec. II E), the distribution of the trans-
verse components of αλ(k) [see Eq. (40)] is narrow and,
hence, Tmn is insensitive to the variation of k0⊥ within
the width of σyz . Therefore, Tmn is approximated by
evaluating it at k0⊥ ≃ 0 a.u., and then the k0⊥ integral
can be calculated analytically. The longitudinal part of
the wave-packet integral for the x ray is integrated nu-
merically using the Gauss-Hermite quadrature.
We assume that the molecule has zero initial veloc-

ity and is localized in space, so the width of its mo-
mentum amplitude a(ka) is broad enough such that
a(ka⊥, ka‖+∆k) ≃ a(ka). We further assume that Tmn is
insensitive to the variation of ka within the range of the
wave-packet integral. Thus, the ka integral can also be
calculated analytically. In order to further simplify the
numerical calculations, we use the approximation that,
given the initial molecular state (va, Ja), final vibrational
state vb, and the angular momentum transfer ∆J in the
scattering, the radial part of Tmn is insensitive to the final
angular momentum Jb. Therefore, the closure relation of
the spherical harmonics is used in the final-state sum over
(Jb,Mb) of the eadp. The validity of this approximation
can be assessed by inspecting the significance of the ro-
tational motion to the vibrational levels through the cen-
trifugal energy J(J +1)/(2µR2) of the vibrational states
uvJ(R), where µ is the reduced mass of the diatomic
molecule. Since the energy interval between adjacent ro-
tation states of a rigid rotor is proportional to J/µ, the
approximation is good for low-lying rotational states and
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for heavy molecules. In addition, since the centrifugal
barrier is more substantial as R → 0, the approximation
is worse for highly-excited vibrational states which are
more delocalized. The typical ranges of the vibrational
and rotational transitions that we take into account for
each component of the wave packets for the two diatomic
molecules we treat are ∆v ≤ 40 and ∆J ≤ 50, respec-
tively.
Finally, since the eadp includes transitions that are

independent of the time delay [i.e., terms with n′ = n
in Eq. (32)], they can be removed in order to accentuate
the delay-dependent interference terms (which are called
molecular scattering intensities in time-independent co-
herent diffraction) by the following procedures. First,
the two-dimensional angular distribution of the eadp at
each pump-probe delay is reduced to a one-dimensional
distribution in momentum transfer q by integrating over
the azimuthal scattering angle ϕ [see Fig. 2(a) for the
definition of ϕ.] Second, since the delay-independent
baseline is approximately proportional to the sum of
scattering intensities |f1(q)|2 + |f2(q)|2 from both atoms
(i.e., the atomic scattering intensities), the reduced one-
dimensional distribution is fitted to |f1(q)|2 + |f2(q)|2 in
order to obtain the proportionality factor. Then the pro-
portionality factors of all delays are averaged, and the av-
eraged factor is used to remove the baseline from all two-
dimensional angular distributions. Finally, the baseline-
subtracted angular distributions are further divided by
|f1(q)||f2(q)| in order to compensate for the decrease of
scattering intensities at large momentum transfer q. Note
also that the scattering from the ground molecular state
is neglected, for its images are static in our model. More-
over, the polarization factors (i.e., the Thomson differ-
ential cross sections) are also removed from the eadps.

IV. TIME-RESOLVED X-RAY DIFFRACTION
FROM VIBRATING MOLECULES

As noted in Sec. I, one feature of our model of time-
resolved coherent x-ray scattering is that the time-
resolved diffraction images from a coherent molecu-
lar motion are not necessarily centrosymmetric. We
have found that the voc is more pronounced for large-
amplitude vibrations of light molecules. Hence, in this
section we present numerical results for two examples of
light diatomic molecules. In Sec. IVA deuterated lithium
hydride, LiD, is chosen to illustrate the voc. In Sec. IVB
we show that the voc is not limited to heteronuclear
molecules, but can also be observed as an isotope effect
of a homonuclear diatomic molecule. Results are thus
given for the deuterated hydrogen molecule, HD.

A. Deuterated lithium hydride (LiD)

Deuterated lithium hydride, LiD, is chosen rather
than lithium hydride, LiH, in order to increase the time
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FIG. 1. Molecular potential energy curves for the X1Σ+ and
A1Σ+ states of lithium hydride. The molecule undergoes a
vertical transition caused by some pump procedure, and the
ensuing ro-vibrational motion of the excited molecular wave
packet is imaged by short x-ray pulses as a function of pump-
probe delay. The inset shows the Franck-Condon factors as
a function of the vibrational number v of the A1Σ+ state for
the ro-vibrational transition J ′′ = 0 → J ′ = 1.

scale of the light molecule’s vibrational motion. Ori-
entation of LiD is necessary, for the heterogeneity of
the two atoms alone is insufficient to break the in-
version symmetry. Figure 1 shows the potential en-
ergy curves of the X1Σ+ and A1Σ+ states of LiD.
The potential curves are obtained from Ref. [69] and
are cross-checked using the complete active-space self-
consistent field method involving a 6-311G basis set
provided by the Gaussian 16 package [70]. One sees
that the A1Σ+ state supports an oscillation of the bond
length between 3 to 8 a.u. The inset of Fig. 1 shows the
Franck-Condon factors for the ro-vibrational transitions
(v′′ = 0, J ′′ = 0) → (v′ = v, J ′ = 1). At time zero, the
molecule is prepared in a coherent state [i.e., defined by
the cn in Eq. (11)] such that two-thirds of the excited
population is in the J ′ = 0 state and the rest is in the
J ′ = 1 state with M ′ = 0 for both Js; also, the vibra-
tional states for J ′ = 0 and 1 are given by their respective
Franck-Condon factors.
The right column of Fig. 2 shows the weighted den-

sity distribution of the ro-vibrational wave packet in the
A1Σ+ state in the upper half of the plane perpendicu-
lar to the propagation direction of the x-ray pulses as a
function of time after the pump pulse. The probability
density of the wave packet is multiplied by the square
of the internuclear distance R2 to compensate for the
decrease of the density as the internuclear distance in-
creases. At time zero, the wave packet is localized about
a bond length of 3 a.u. with an oriented angular distri-
bution. The nuclear coordinate R is that of the D atom
with respect to the Li atom and the LiD molecule is ori-
ented so that the majority of the molecules have the D
atom to the right of the Li atom. As time increases, the
wave packet propagates outward and spreads. The wave
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FIG. 2. Right column: Density distribution of the molecular
wave packet of LiD in the A1Σ+ state in the yz plane as a
function of time after the pump pulse. The molecular axis
(from Li to D atoms) is oriented such that the axes of the
majority of molecules point toward positive z. Left column:
Time-resolved molecular scattering intensities for 1-fs (fwhm)
x-ray pulses from the oriented ro-vibrational motion of LiD as
a function of pump-probe delay td. The azimuthal scattering
angle ϕ = 0◦ corresponds to the positive z direction. Owing
to symmetry, the diffraction images and molecular densities
are only presented in the upper half of the yz plane.

packet reaches the outer turning point at about 58 fs and
then reverses its direction of motion in the second half
of the vibration. Owing to the much longer time scale
of the rotational motion, no appreciable changes of the
angular distribution are observed.

The left column of Fig. 2 presents the molecular scat-

tering intensities (see Sec. III D) for 1-fs (fwhm) x-ray
pulses (at pump-probe delay times, td, corresponding to
those of the LiD molecular motion in the right column)
as functions of the magnitude of the momentum trans-
fer, q, and the azimuthal scattering angle, ϕ. In time-
independent scattering, the molecular scattering intensi-
ties relate directly to the geometry of the molecular tar-
get (i.e., to bond lengths and angles); we expect a similar
relation to hold in time-dependent scattering. The mag-
nitude, q, of the momentum transfer is calculated from
the scattering angle, θ, using q = 2κ0 sin(θ/2), where κ0
is the central momentum of the x-ray pulses.

At zero pump-probe delay [Fig.2(a)], the diffraction
image shows a concentric ring pattern with the scatter-
ing intensities peaking along the orientation axis (i.e.,
ϕ = 0◦ and 180◦). (This peaking is most easily seen
for the innermost ring.) Similarly to a Young’s double-
slit interference pattern, the ring patterns in Fig. 2 re-
sult from the interference of the scattering amplitudes
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FIG. 3. Comparison of the molecular scattering intensities at
azimuthal scattering angles ϕ = 0◦ and 180◦ as a function
of pump-probe delay. Note that the time-varying scattering
intensities of the left and right panels oscillate out of phase
for q ≥ 3.0 a.u.

from the Li and D atoms, with the stronger intensities
along ϕ = 0◦ and 180◦ due to the molecular orientation.
(See Ref. [71] for the diffraction patterns resulting from
ultrafast electron diffraction from aligned–not oriented–
molecules.) As the atoms move outward [see Fig. 2(b)],
the rings shrink toward the center, and the contrast of
the ring pattern is reduced at larger momentum trans-
fers (q & 4 a.u.). The loss of contrast is mainly due to
the spread of the wave packet and the higher sensitivity
of the interference fringes at large q to the variation of
the internuclear distance.
In addition to the ring pattern, one clearly sees that

the scattering intensities are asymmetric, with more x-
ray photons scattered toward ϕ > 90◦ at large momen-
tum transfer. After the direction of motion reverses at
td = 58 fs, the asymmetry changes sign [see Fig. 2(d)].
Figure 3 shows a detailed comparison of the scattering
intensities at ϕ = 0◦ and 180◦ with a finer time-delay
step, and Fig. 4 presents the corresponding asymmetry
of the eadp for six different time delays. The asymme-
try is defined as the difference of the eadp at ϕ = 0◦ and
180◦ normalized by their sum:

Asymmetry ≡ dP(ϕ = 0◦)− dP(ϕ = 180◦)

dP(ϕ = 0◦) + dP(ϕ = 180◦)
, (43)
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FIG. 4. Asymmetry of the eadp for the LiD molecule as a
function of momentum transfer q for six different time delays.
The asymmetry is defined in Eq. (43).
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FIG. 5. (a) Molecular potential curves of the X1Σ+
g and

B1Σ+
u states of the hydrogen molecule. The inset shows

the Franck-Condon factors for the ro-vibrational transitions
(v′′ = 0, J ′′ = 0) → (v′ = v, J ′ = 1). (b) Radial density dis-
tribution of the oriented ro-vibrational motion of HD in the
B1Σ+

u state as a function of time.

where dP denotes the eadp. Note that the molecu-
lar densities are asymmetric throughout the molecular
motion, and no asymmetry can be discerned when the
wave packet reaches the turning points [see Figs. 2(a),
(c), and (e)], indicating that the asymmetry is related to
the molecular motion rather than to the relative positions
of the nuclei.

B. Deuterated hydrogen molecule (HD)

The voc demonstrated above for the LiD molecule
is not limited to heteronuclear molecules. In fact, the
asymmetry can also be observed as an isotope effect
in the case of a homonuclear diatomic molecule. To
demonstrate this, we consider here time-resolved coher-
ent x-ray diffraction from the same type of ro-vibrational
molecular motion for the case of the deuterated hydro-
gen molecule (HD) in its B1Σ+

u state. The hydrogen
molecule is chosen because of its strong isotope effect.
Figure 5(a) shows the molecular potential curves of the
ground X1Σ+

g and excited B1Σ+
u states. The inset fig-

ure shows the corresponding Franck-Condon factors for
the (v′′ = 0, J ′′ = 0) → (v′ = v, J ′ = 1) transitions. The
potential curves are calculated using the same method
used for the LiD case. In order to simplify the numerical
calculation, the potential curve for the excited state is
slightly shifted toward the origin by 0.13 a.u.
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FIG. 6. Molecular scattering intensities for 1-fs (fwhm) x-ray
pulses from the molecular ro-vibrational motion of HD as a
function of pump-probe delay time, td, at azimuthal scatter-
ing angles ϕ = 0◦ and 180◦.

The radial density distribution of the molecular wave
packet in the B1Σ+

u state as a function of time is shown
in Fig. 5(b). In this case, the nuclear coordinate R is the
coordinate of the H atom with respect to the D atom. For
the purpose of comparison, we assume the orientation of
the HD molecules has the same angular distribution as
in the case of LiD.

Figure 6 compares the molecular scattering intensities
at the azimuthal scattering angles ϕ = 0◦ and 180◦ as
a function of pump-probe delay time, td. The scattering
intensities clearly show an asymmetry, and the sign of the
asymmetry is associated with the direction of molecular
motion shown in Fig. 5(b). Specifically, the asymmetry
between the diffraction images for ϕ = 0◦ and 180◦ for
delay times 0 ≤ td ≤ 15 fs as well as for 30 ≤ td ≤
45 fs during which the molecule is expanding contrasts
with the opposite asymmetry in the diffraction pattern
for 15 ≤ td ≤ 30 fs when the molecule is contracting [see
Fig. 5(b)]. Note that the asymmetry is solely due to the
motion of the atoms, not their heterogeneity because,
in our model, the two hydrogen atoms have the same
electron density (and hence the same atomic form factor),
but as they vibrate the H and D atoms have different
velocities owing to their mass difference.

Comparison of the scattering intensities for the LiD
and HD molecules indicates some differences. First, the
signs of the asymmetry are opposite. Note that in both
cases the nuclear coordinates R point from the heavy
atom to the light one, and both molecules are oriented
with the same angular distribution. In the LiD case,
more photons are scattered in the same direction of mo-
tion of the heavier atom (Li) [see Figs. 2(b) and 2(d)],
but the opposite occurs for the HD case [compare the
asymmetries in Figs. 3 and 6]. This is because although
the D atom has a larger speed during the vibration,
the stronger scattering intensity from the Li atom domi-
nates the asymmetry. Second, the interference fringes of
HD show stronger contrast at larger momentum transfer
[compare Figs. 3 and 6]. This results from the equal mag-
nitude of the scattering amplitudes from both hydrogen
atoms for HD, whereas in LiD the scattering amplitude
for the D atom decays faster than that for the Li atom.
Third, the interference fringes of HD have a different pat-
tern for the second cycle (32 ≤ td ≤ 42 fs) of the vibra-
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tion compared with that of the first cycle (0 ≤ td ≤ 10
fs). This is due to the stronger anharmonicity of the ex-
cited HD state B1Σ+

u , and this effect can also be seen
in the skewed HD Franck-Condon factors, i.e., having a
longer tail at high v [Fig. 5(a)] and in the spread of the
radial density with increasing time [Fig. 5(b)].

V. SUMMARY AND DISCUSSION

In summary, we have presented a model for the descrip-
tion of time-resolved coherent x-ray diffraction that we
have used to image the ro-vibrational motion of oriented
LiD and HD molecules. The simulations show that, in
addition to the usual ring patterns originating from inter-
ference between x-rays scattered from the two atoms in
the diatomic molecule, the molecular scattering intensi-
ties show asymmetric distributions whenever the motion
of the two atoms breaks the inversion symmetry. The
time-resolved diffractive images, therefore, are not simply
a collection of images of static molecules at each time de-
lay. Also, owing to the voc, the time-resolved diffraction
images cannot be interpreted using a charge-density in-
terpretation as in Eq. (1), which is frequently assumed in
phase-retrieval algorithms employed for molecular struc-
tural determination. However, the voc in time-resolved
x-ray scattering images provides more information than
is provided in time-independent x-ray diffraction. This
additional information enables one to properly interpret
molecular motions and thus to elucidate reaction paths.
Although our model shows that voc is a general phe-

nomenon in time-resolved x-ray scattering, we have found
that the asymmetry is insignificant for small amplitude
vibrations of heavy diatomic molecules. The degree of
the asymmetry depends on such factors as: (i) The mo-

mentum distribution of the molecular wave packet, and in
particular its width and anisotropy; and (ii) The magni-
tude of the momentum transfer. In the two general cases
we have treated, these factors imply specifically that voc
depends on the degree of molecular orientation as well as
the mass and charge ratios of the two atoms in a diatomic

molecule. The mass ratio determines the disparity of the
atoms’ speed as the molecule vibrates, and the charge ra-
tio determines the relative strength of the scattering am-
plitudes. Note however that some of these factors tend
to counteract to one other. For example, although a light
atom moves faster, it usually has fewer electrons and con-
sequently a weaker x-ray scattering intensity. These two
effects can contribute to the asymmetry with opposite
signs (cf. Figs. 3 and 6). Also, as shown for LiD and HD,
the asymmetry can be appreciable at larger momentum
transfers. Since ultrafast electrons carry larger momenta
than x-ray photons [72–76], they may be a better probe
for exploiting this voc phenomenon in diffraction images.
It is interesting to note that the x-ray diffraction im-

ages illustrate the uncertainty relation of the complemen-
tary variables of position and momentum. Specifically,
one may consider the ring pattern and the voc asymme-
try as measurements of the bond length and momenta,
respectively, of the nuclei in a diatomic molecule. When
the contrast of the ring pattern decreases at large q as
the molecular wave packet moves and spreads (providing
thereby less accuracy for the determination of the bond
length), the degree of the asymmetry grows in the same
region of q (providing more certainty about the direction
of motion of the atoms).
Finally, since asymmetric electronic motions in atoms

also produce similar asymmetric diffraction patterns [47,
51, 52, 64], the asymmetry in x-ray diffraction from di-
atomic molecules may be altered if electronic transitions
accompany the ro-vibrational nuclear motion during a
molecular reaction. Hence, the voc asymmetry may be
a probe for studying the interplay between the electronic
and nuclear degrees of freedom in molecular reactions.
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