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We present a simplified approach to the dissociative electron attachment of polyatomic molecules.
A reduced nuclear coordinate driving the dissociative process immediately following the resonance
capture is introduced and allows an estimation of the cross section. The model is applied to the
H2CN molecule, which is considered as a precursor in the formation of the CN− anion observed in
the IRC +10216 carbon star. The computed rate coefficient suggests that the dissociative electron
attachment of H2CN may not be an efficient reaction to form CN− in the circumstellar envelope of
IRC +10216.

I. INTRODUCTION

The theoretical study of dissociative electron attach-
ment (DEA) in large molecules is notoriously difficult
due to the multi-dimensional nature of the problem. Be-
cause treatments of DEA in full dimensionality for com-
plex systems is beyond current computational capabili-
ties, a great deal of work has been conducted to unravel
the underlying DEA mechanisms, e.g., by singling out
one specific bond breaking, sorting out main dissociative
pathways, or considering a subspace of coordinates [1–
11]. Review of recent progress for DEA can be found
in Ref. [12]. Only for a few triatomic systems, namely
HCN [13, 14], ClCN and BrCN [15], could a complete
treatment be performed, while DEA for such “basic” tri-
atomic molecules as H2O [16–21] and CO2 [22, 23], where
multiple electronic states of the target molecule and non-
adiabatic couplings should be taken into account, are still
actively studied presenting a great deal of difficulty.

The formidable task of describing DEA in polyatomic
molecules has often hindered the computation of DEA
rate coefficients crucial for astrophysical models [24–26].
In fact, even an estimate of such rates is usually sufficient
to understand the role played by specific reactions in the
formation and destruction of molecules in the interstellar
medium (ISM). Here, we propose a simplification of the
computation of DEA cross sections by generalizing the
model of O’Malley [27] and Bardsley [28] to systems with
many coordinates in order to obtain an estimation of the
resonant capture cross section. The model is applied on
the DEA of H2CN which is closely related to the unsolved
problem of CN− formation in the ISM.

The density distribution of CN− molecular anions ob-
served in IRC +10216 [29] still puzzles physicists to date.
Indeed, the carbon chain C−

n and CnH
− are considered

to play a predominant role in the formation of CN− upon
collision with N atoms [30, 31], however, chemical mod-
els predict CN− density produced by these reactions to
peak in the outer region of the circumstellar envelope of
IRC +10216, while the fitted density distribution peaks
in the inner region [29].

This discrepancy suggests that reactions responsible
for the CN− production in the inner region of the enve-
lope have been overlooked. Other than the reaction with
C−

n and CnH
−, collision of HCN with H− and radiative

electron attachment (REA) of CN also produce CN− in
the inner region. In the chemical model used by Agundez
et al. [29], the temperature-independent Langevin rate
of the former reaction was used and was shown to con-
tribute less than 0.2% of the total amount of CN−. The
latter reaction has recently been studied by Satta et al.

[32] using variational transition state theory. They found
a strong temperature dependence on the rate coefficient
and suggest that an extensive chemical model may pro-
duce CN− more efficiently in the hotter inner region. In
addition, a high density of H− in the inner region could
enhance this barrier-less reaction. On the other hand, an
ab inito calculation by Douguet et al. [33] found that the
rate coefficient for formation of CN via REA is too slow
to produce CN− in the inner region.

In this article, we propose that a significant part of
CN− observed in the inner region originates from the
DEA of the open-shell molecule H2CN, i.e.

H2CN(X2B2) + e− → (H2CN)
−∗(1A1)

→ CN−(X1Σ+) + H2(X
1Σ+

g )

→ HCN(X1Σ+) + H−(1S), (1)

where the first and second dissociation channels are both
exothermic by 1.92 and 0.6 eV respectively. The H2CN
molecule was first detected in the cold dark molecular
cloud TMC-1 in 1994 [34]. Soon after, Millar and Herbst
proposed the existence of H2CN in the circumstellar en-
velope of the carbon-rich star IRC +10216 by including
the neutral-neutral reaction N + CH3 → H2CN +H in
their chemical model [35, 36].

Since the gas density in the ISM is low, open-shell
species have longer life time than in the laboratory.
Therefore, if the rate coefficient for reaction (1) is fast
enough, it could resolve the discrepancy of CN− density
between the chemical model and observation.
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II. TARGET AND RESONANCES

CALCULATION

We employ the Molpro suite of programs [37] to de-
termine the electronic structure and vibrational frequen-
cies of H2CN. We first perform the calculation using mul-
tireference configuration interaction (MRCI) [38, 39] with
Hartree-Fock (HF) orbitals. The basis set for all atoms
are chosen to be cc-pVQZ [40]. In the MRCI calcula-
tion, the 1s and 2s carbon and nitrogen core orbitals
are frozen and we include 8 active orbitals in the com-
plete active space (CAS). At the equilibrium geometry,
the bond lengths CH, NH, and the HCH angle, are found
to be, 1.088 Å, 1.246 Å, and 121.1◦, respectively. H2CN
at the equilibrium possesses C2v point group symmetry,
with ground state electronic configuration

X2B2 : 1a212a
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We then computed the harmonic frequencies and com-
pared with theoretical [41, 44–48] and experimental stud-
ies available in the literature [42, 43]. In Tab. I we com-
pare our results with Ref. [41] and the experimental stud-
ies [42, 43]. We observe a good agreement between our
results and the calculations [42] and only small discrep-
ancies with the experimental results. We use normal co-
ordinates in the present study.
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FIG. 1. (Color online) The scattering eigenphase sum for total
symmetry 1A1,

3A2 and 1A2. The solid and dashed lines are
the results obtained from CASCI model and static exchange
model respectively.

To compute the resonance position ∆(~q) and width
Γ(~q) at a given molecular geometry ~q, we use the UK
R-matrix code [49, 50] in Quantemol-N suite [51] for
electron-molecule scattering to obtain the R-matrix. To
be consistent with the Molpro calculation, we use a
complete active space configuration interaction (CASCI)
model to compute the electronic structure of the target
using the same basis set, molecular orbitals, number of
frozen orbitals, and complete active space. Eigenphase

sums are fitted using the Breit-Wigner, providing reso-
nance energies and widths [52]. At electron energy below
5 eV, and at H2CN equilibrium geometry, we found three
shape resonances; 1A1 (∆ = 0.277 eV, Γ = 8.24 meV),
3A2 (∆ = 2.56 eV, Γ = 1.2 eV), and 1A2 (∆ = 3.15 eV,
Γ = 1.49 eV).

Figure 1 displays the eigenphases sum obtained from
static exchange model and CASCI model for total sym-
metry 1A1,

3A2 and 1A2. Since H2CN has large polariz-
abilty α, the static exchange model neglects a substan-
tial gain of kinetic energy of electron from the −α ·r/2r5
potential, with α ≈ 1.33 a30 r̂. Therefore, position of
resonances from the static exchange model are at higher
energies than the CASCI model. Nevertheless, the fact
that those three resonances are seen in the static ex-
change model implies that all the resonances are shape
resonances.
A similar R-matrix calculation was reported by Wang

et al. [53] who also found the 3A2 and 1A2 shape res-
onance at similar positions but with widths two orders
smaller than our results. Moreover, they did not find the
1A1 shape resonance at low energy most likely because
they use a relatively small basis set. We have ascertained
that the position and width of the lowest resonance re-
main relatively stable with respect to the variation of the
size of the R-matrix box, the size of the complete active
space, and the basis set.
Analyzing the symmetry, one can deduce the possible

dissociation products from certain resonance states. For
the two dissociation channels in (1), the total spin of the
system is zero, so that resonance in triplet state cannot
lead to dissociation. To dissociate into CN−(X1Σ+) +
H2(X

1Σ+
g ) or HCN(X1Σ+) + H−(1S), the system must

be symmetric with respect to reflection on the plane
spanned by CN− + H2 or HCN + H−. However, upon
symmetry breaking, 1A2 becomes 1A′′ irreducible repre-
sentation in Cs group, such that it is anti-symmetric with
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FIG. 2. (Color online) The variation of resonance energies
∆(~q) (in eV) over q1 (black circles), q2 (red squares), q3 (green
diamonds), q4 (blue triangles up), q5 (brown triangles down)
and q6 (violet crosses) for H2CN.
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TABLE I. Calculated and experimental harmonic frequencies ω (in cm−1) for each q. Our result is compared with the result
from CISD+Q/cc-pVTZ method [41]. Experimental frequencies are obtained from [42], except for ω5, which is from [43].

ω1 ω2 ω3 ω4 ω5 ω6

CH2 rock (B2) out of plane (B1) CH2 scissor (A1) CN stretch (A1) CH2 sym stretch (A1) CH2 asym stretch (B2)

This study 967.2 995.3 1420.6 1706.6 3080.0 3140.7

Ref. [41] 957.1 994.4 1401.6 1692.4 3031.9 3102.7

Experiment 912.8 954.1 1336.6 1725.4 2820 3103.2

respect to such reflection. Therefore, only the 1A1 reso-
nance could lead to dissociation to either two channels.

Inspection of the continuum wave function shows that
the partial waves of the scattering electron contributing
to the 1A1 resonance transform as the B2 irreducible rep-
resentation, as expected, because the electronic state of
the target is B2.

Figure 2 shows the resonance energies ∆(~q) for differ-
ent normal mode displacements. Because certain nor-
mal modes reduce C2v symmetry to Cs symmetry, the
total electronic wave function with such normal displace-
ments of the nuclei is represented in a different symmetry
group, which introduces an uncertainty in the position
and width of the resonance. Indeed, the resonance ener-
gies for the normal modes with Cs symmetry are found
to differ from the ones with C2v symmetry by about 25%
near the equilibrium geometry. This is within the rela-
tive errors of resonance energies obtained from different
basis sets and complete active space. To improve visu-
alization, we manually shifted up the resonance energies
for q1, q2 and q6. For symmetry reasons, the resonance
energies depend at least quadratically on the normal dis-
placements q1, q2 and q6 near the equilibrium. One the
other hand, we observe a strong linear variation of ∆ over
q3 and q5, which suggests that these coordinates are the
most relevant for electron capture. Of course, the latter
vibrational motions are coupled on the resonance energy
surface and the system should follow the steepest de-
scent of the resonance energy for stabilization, such that
we can regard the nuclei moving initially in a one dimen-
sional space near the capture region. Note that such an
analysis can in general be extended to other systems.

Following electron capture, the system may reach some
branching points on the anionic potential energy sur-
face and eventually dissociate. Alternatively, the an-
ionic transient could emit an electron (autodetachment)
or radiatively cool down towards lower vibrational states.
To unravel the wave packet dynamics, the potential en-
ergy surface of the 1A1 electronic ground state of H2CN

−

would need to be explored in full-dimensionality. Such a
study, however, is out of scope of the present work where
we focus instead on presenting a simple model to describe
the initial electron capturing step and thus obtain upper
bond to the DEA cross section.

III. THEORY OF RESONANT CAPTURE

In order to find the steepest descent or capture coor-
dinate, we seek an orthogonal matrix which transforms
(q3, q5) to (s1, s2),

(

α β
−β α

)(

q3
q5

)

=

(

s1
s2

)

. (2)

Choosing s1 as the capture coordinate leads to

∂∆

∂s1
= α

∂∆

∂q3
+ β

∂∆

∂q5
, (3)

where the constants α and β are

α =
|∂∆/∂q3|

√

(∂∆/∂q3)2 + (∂∆/∂q5)2
; β =

√

1− α2.

Since the width of the resonance is narrow, we neglect
the explicit energy dependence of the width, i.e., we only
consider the on-shell width. In the so-called local com-
plex potential approach [27, 54, 55], the metastable state
ξd becomes solution of the following equation

[

T̂ + Ud(~q)−
iΓ(~q)

2
− E

]

ξd(~q) = Vd(~q)ζ(~q), (4)

Vd(~q) =

√

Γ(~q)

2π
, (5)

where T̂ is the nuclei kinetic energy operator, Ud is the
resonance energy plus the neutral potential energy, and
ζ is the ground vibrational wave function of the target.
In our model, only the coordinates q3 and q5 partic-

ipate in the capture process. Thus, in the spirit of the
sudden approximation, we write the nuclei wave function
ξd as

ξd(~q) ≈ ξc(q3, q5)χ(~q′), (6)

where ~q′ collects all the spectator coordinates and χ(~q′) is
the product of vibrational wave functions in the spectator
coordinates. Similarly, we express the vibrational wave
function of the target as

ζ(~q) = ζc(q3, q5)χ(~q′). (7)
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We further express

T̂ = −~ω3

2

∂2

∂q23
− ~ω5

2

∂2

∂q25
+ T̂spec, (8)

T̂spec = −
∑

i′

~ωi′

2

∂2

∂q2i′
, (9)

and

Ud(~q) = Un(q3) + Un(q5) + ∆(~q) + Uspec(~q′), (10)

Uspec(~q′) =
∑

i′ Un(qi′), (11)

where Un are the neutral potential energies and the sum-
mation on i′ runs over all spectator coordinates. Note

that χ(~q′) is the eigenfunction of T̂spec+Uspec with eigen-
value equals to the sum of zero-point energies of all spec-
tator coordinates.
Next, multiplying χ(~q′) on the left in Eq. (5) and inte-

grating over ~q′, we obtain the two dimensional equation
in dimensionless coordinates,

[

− ~ω3

2

∂2

∂q23
− ~ω5

2

∂2

∂q25
+ Un(q3) + Un(q5)+

∆(q3, q5,~0)−
iΓ(q3, q5,~0)

2
− E

]

ξd(q3, q5)

= Vd(q3, q5,~0)ζc(q3, q5), (12)

where we approximate the integrals of resonance energy
and width with χ2 over spectator coordinates at the res-

onance energy and width at ~q′ = 0.
Transforming (q3, q5) to (s1, s2) we then obtain

[

T̂s + Ud(s1, s2)−
iΓ(s1, s2)

2
− E

]

ξd(s1, s2)

= Vd(s1, s2)ζc(s1, s2), (13)

where the operators T̂s is given by

T̂s = −~ω̃1

2

∂2

∂s21
− ~ω̃2

2

∂2

∂s22
− ~αβ(ω5 − ω3)

∂2

∂s1∂s2
,

(14)

while the potential Ud takes the form

Ud(s1, s2) =
1

2
~ω̃1s

2
1 +

1

2
~ω̃2s

2
2 +∆(s1, s2)

+~αβ(ω5 − ω3)s1s2, (15)

with

ω̃1 = α2ω3 + β2ω5,

ω̃2 = β2ω3 + α2ω5,

ζc(s1, s2) = ζc(q3, q5) =
1√
π
exp[−(s21 + s22)/2].

Denoting ζi(si) ≡ π−1/4 exp(−s2i /2), we apply the
sudden approximation again and have ξd(s1, s2) ≈

ξ1(s1)ζ2(s2). Multiplying ζ2(s2) on both sides and in-
tegrating, we finally arrive at

[−~ω̃1

2

d2

ds21
+ Ud(s1, 0)−

iΓ(s1, 0)

2
− E

]

ξ1(s1)

= Vd(s1, 0)ζ1(s1), (16)

Ud(s1, 0) =
1

2
~ω̃1s

2
1 +∆(s1, 0), (17)

where the cross terms of s1 and s2 vanish as ζ2(s2) is
an even function. The energy E is the sum of zero-point
energy of s1 and energy of the scattering electron ε.
Finally, following the WKB approach by O’Malley [27]

or Bardsley [28] and assuming the survival probability of
the complex is unity, the capture cross section is given
by

σcap(ε) = g
2π2

k2
Γ(sε)

|U ′

d(sE)|
|ζ1(sE)|2, (18)

where g is the ratio of statistical weight of product to
reactant, and the classical turning point sE and Frank-
Condon point sε are obtained by solving Ud(sE) = E
and ∆(sε) = ε, respectively. The statistical weight for
the product H2 + CN− (X1Σ+

g ⊗X1Σ+) is 1, while for

the reactant H2CN (2B2) is 2, such that g = 1/2.

IV. RESULTS AND DISCUSSION

Figure 3 displays the resonance energy, anionic and
neutral potential energies as functions of the capture co-
ordinate s1. The red line shows the first order approxi-
mation of ∆(s1),

∆(s1) ≈ ∆(0) +
d∆

ds1
(0)s1,
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FIG. 3. The anionic potential energy Ud (blue dashed line),
neutral potential energy Un (black line) and resonance energy
∆ (circles) and its linear approximation (red straight line)
along s1 for H2CN at s2 = 0. The black dashed line is the
zero-point energy of the nuclei for coordinate s1.
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FIG. 4. The effective width Γ against effective resonance en-
ergy ∆(sε). The solid line is the fitted width (see the text for
details).

which is seen to agree well with the data points for
−1 < s1 < 1. The blue dashed line is obtained by
adding the resonance energy to the neutral potential en-
ergy. However, we note that as the electronic wave func-
tion of the neutral target may not be well-represented
with the limiting complete active space, the minimum of
the anionic potential energy is above the neutral, in con-
tradiction to the photodetachment experiment [43]. In
order to obtain the correct electron affinity, we use the ab
initio data obtained from RCCSD(T)/aug-cc-pVQZ [45]
and shift the anionic potential energy down by 0.65 eV,
which is shown as blue solid line. Since there is a local
minimum for the anion potential, it suggests that there is
at least one barrier in the dissociation pathway to CN−

+ H2 or HCN + H−. In our simplified model, we assume
that the barrier height is smaller than 0.6 eV, such that
there is no reflection of the outgoing flux from the bar-
rier and the complex will eventually dissociate without
autodetachement. At zero electron energy, the classical
turning point sE is around -1.4, such that the capture
process occurs in a well-defined region of normal coordi-
nates, thereby justifying our approach.

Figure 4 shows the effective width against effective res-
onance energy ∆(sε), which is equal to electron energy
ε in this approach as to enforce the threshold behavior
[55]. The electronic structure calculations give the value
0.957 ea0 for the permanent dipole moment of H2CN as
at s1 = 1.25. This value of s1 is only 0.04 a0 away from
the crossing point of the original anionic and neutral po-
tential energy curves (blue dashed and black curves in
Fig. 3). Since s-wave scattering is forbidden by symme-
try, an estimation of the off-diagonal element of dipole
moment between p, d and f partial waves reveals that
the lowest three effective orbital angular momenta ℓ̃ be-
comes 0.939, 2.01 and 3.02, respectively [56]. To include
the contribution from the lowest three partial waves, the
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FIG. 5. Electron capture cross section for H2CN.

effective width is fitted as

Γ(ε) =
∑

i

aiε
ℓ̃i+1/2, (19)

where a1 = 0.0356, a2 = 0.0258 and a3 = 0.137. Near

threshold, we then have Γ(ε) ∝ εℓ̃+1/2 = ε1.439.
To calculate the cross section with the shifted anionic

potential curve, we use the same effective width as a func-
tion of electron energy. This is justified because the elec-
tron energy is set to equal the resonance energy in our
approach. As we offset the resonance energy, the effective
width will be zero at the new crossing point between the
shifted potential and the neutral potential. Therefore,
the effective width is also shifted in terms of coordinate
implicitly. In addition, threshold behavior of the width
only changes slightly as we shifted the anionic potential
curve. Indeed, at s1 = −1.5, the permanent dipole mo-
ment of H2CN only differs by about 6% from the value
at s1 = 1.25. By fitting the effective width with new ℓ̃,
we found that the capture cross section also changes by
about 6%.
Figure 5 displays the capture cross section versus elec-

tron energy. Near threshold, the cross section grows with
electron energy as ε0.439. The peak of the cross section
is located near 0.1 eV. Around 1 meV, the cross section
is about 3.68 × 10−20 cm2, which is about two orders
magnitude larger than the cross section for the radiative
electron attachment to CN [33].
Using the standard formula

k(T ) =
8π

(2πkbT )3/2

∫

ε σ(ε)e−ε/kbTdε,

where kb is the Boltzmann constant, we obtain the ther-
mally averaged capture rate coefficient. The rate coef-
ficient is fitted within 1% relative error using the form
k(T ) = a1(T/300)

a2ea3T
a4

, with a1 = 2.43× 10−12, a2 =
0.97025, a3 = −9.20× 10−3 and a4 = 0.677. The rate co-
efficient at 30 K is found to be about 2.36× 10−13 cm3/s,
which is two orders larger than the REA of CN [33] and
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one order larger than the reaction of HCN + H− [32].
Assuming the rate coefficient of electron capture is equal
to the rate coefficient of forming CN− by DEA and the
ratio of H2CN density to CN to be 1000 [36], we have

[e−][CN]kREA

[e−][H2CN]kDEA
≈ 10

at 30 K, such that DEA of H2CN is at least 10 times
less efficient in producing CN− than REA of CN. Hence,
our result suggests that DEA of H2CN may not play a
major role in the formation of CN− in the circumstellar
envelope of IRC +10216. Other possible radicals that
could produce CN− by DEA in IRC +10216 are MgNC
[57, 58], MgCN [59], SiCN [60], SiNC [61], FeCN [62] and
CCN [63], where all species have been detected in IRC
+10216. It is possible that CN− anions are produced by
DEA of several of the above molecules efficiently in the
inner region of the circumstellar envelope.

V. UNCERTAINTY ESTIMATION

As in many similar theoretical studies, there are two
types of uncertainties [64]. One is related to the uncer-
tainties of the theoretical model and the second type is
related to the choice of parameters of the model (such
as a limited basis set and uncertainties in ab initio or
fitted data employed in the given model). In the present
case, the main source of the first type of uncertainties
is probably due to the reduced dimensionality approx-
imation used in the present treatment and the neglect
of the autodetachement process once the electron is cap-
tured into the dissociative coordinate. The uncertainties
of the model can only be estimated if there is another
more accurate model. For example, a fully-dimensional
time-dependent propagation model similar to the used in
Ref.[3] could be used to benchmark the present results.
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FIG. 6. Thermally averaged rate coefficient for electron cap-
ture by H2CN (solid line) and its fit (dashed line, not distin-
guishable from the solid line).

The evaluation of the second type of uncertainties is
possible. The uncertainty of the cross section can be esti-
mated by performing R-matrix calculations with various
complete active space, R-matrix radii and basis sets. At
equilibrium geometry, the position and width of the res-
onance differ, respectively, by at most 20% and 25% by
varying the complete active space from 8 to 11 molecu-
lar orbitals and R-matrix radii from 10 to 14 bohrs with
basis sets cc-pVTZ or cc-pVQZ. As a result, the capture
cross section, which is proportional to the effective width,
has associated uncertainty of about 25%.
The second source of uncertainty arises from the off

set of the anionic potential energy. The relative error
between the ab inito data used [45] and the experiment
is about 2%. We found that changing the shifting by 2%
leads to the change of cross section by about 7%. In the
most unfortunate case, if we decrease the shift by 20%,
the capture cross section increases by about a factor of
2. Therefore, our approach for H2CN gives a reasonable
orders of magnitude of the capture cross section.

VI. CONCLUDING REMARKS

The new approach presented in this article is based
on the fact that, in general, the resonance energy varies
substantially only over a subset of normal coordinates.
As the resonance energy is nearly constant over H2CN
normal coordinates of the Cs symmetry, we expect our
approach to work also for other polyatomic molecules.
For instance, the DEA of acetylene starts with bending
the molecule [3], such that the corresponding normal co-
ordinate is responsible for the capture step in the process.
The present approach has several limitations: The

survival probability is assumed to be unity. Therefore,
our approach gives an upper bound of the DEA cross
section within the Frank-Condon and WKB approxima-
tions. Also, the width is assumed to be on-shell, so that
our approach would work only for systems with narrow
resonances [55]. But if the width is narrow enough, the
survival factor is closed to unity, so that the two limita-
tions are in fact equivalent. Finally, our approach cannot
predict branching ratios of the dissociation products. By
constructing a multidimensional anionic potential energy
surface, it is possible to determine branching ratios by
propagating wave packets. But this method is computa-
tionally expensive and will be reserved for future study.
To date, it is still a very challenging task to include

the non-local operator to polyatomic molecule with sev-
eral dissociation coordinates. Even for the local complex
potential model, it is computationally demanding to com-
pute resonance positions and widths at different geome-
tries and perform time-dependent calculations. Besides,
to obtain ab inito energy-dependent widths is difficult
even for diatomic molecules. Our approach can thus pro-
vide an ab inito estimation of the DEA cross section when
other more accurate approaches are computationally ex-
pensive or not available.
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Phys. Rev. A 84, 052717 (2011).

[10] T. Rescigno, C. Trevisan, A. Orel, D. Slaughter,
H. Adaniya, A. Belkacem, M. Weyland, A. Dorn, and
C. McCurdy, Phys. Rev. A 93, 052704 (2016).
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nyson, and H. Varambhia, Euro. Phys. J. D 66, 58
(2012).

[51] J. Tennyson, D. B. Brown, J. J. Munro, I. Rozum, H. N.
Varambhia, and N. Vinci, J. Phys. Conf. Series 86,

http://dx.doi.org/10.1103/PhysRevA.77.042709
http://stacks.iop.org/1742-6596/300/i=1/a=012014
http://dx.doi.org/10.1103/PhysRevA.80.032709
http://dx.doi.org/10.1103/PhysRevA.83.032709


8

012001 (2007).
[52] J. Tennyson and C. J. Noble, Comput. Phys. Commun.

33, 421 (1984).
[53] K. Wang, Y. An, J. Meng, Y. Liu, and J. Sun, Phys.

Rev. A 89, 022711 (2014).
[54] W. Domcke, Phys. Rep. 208, 97 (1991).
[55] I. I. Fabrikant, Phys. Rev. A 94, 052707 (2016).
[56] N. Douguet, V. Kokoouline, and C. H. Greene,

Phys. Rev. A 80, 062712 (2009).
[57] K. Kawaguchi, E. Kagi, T. Hirano, S. Takano, and

S. Saito, Astrophys. J. 406, L39 (1993).
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