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We report a measurement of the ratio of electric dipole transition matrix elements of cesium for
the 6p 2P1/2 → 7s 2S1/2 and 6p 2P3/2 → 7s 2S1/2 transitions. We determine this ratio of matrix

elements through comparisons of two-color, two-photon excitation rates of the 7s 2S1/2 state using
laser beams with polarizations parallel to one another vs. perpendicular to one another. Our result
of R ≡ 〈7s 2S1/2||r||6p 2P3/2〉/〈7s 2S1/2||r||6p 2P1/2〉 = 1.5272 (17) is in excellent agreement with
a theoretical prediction of R = 1.5270 (27). Moreover, the accuracy of the experimental ratio is
sufficiently high to differentiate between various theoretical approaches. To our knowledge, there
are no prior experimental measurements of R. Combined with our recent determination of the
lifetime of the 7s 2S1/2 state, we determine reduced matrix elements for these two transitions,

〈7s 2S1/2||r||6p 2P3/2〉 = −6.489 (5) a0 and 〈7s 2S1/2||r||6p 2P1/2〉 = −4.249 (4) a0. These matrix
elements are also in excellent agreement with theoretical calculations. These measurements improve
knowledge of Cs properties needed for parity violation studies and provide benchmarks for tests of
high-precision theory.

PACS numbers: 32.70.Cs

I. INTRODUCTION

Precision values of atomic transition matrix elements
are needed for the determination of polarizabilities, light
shifts and magic wavelengths for state-insensitive laser
cooling, trapping, and atom manipulation [1, 2]; long-
range interaction C6 and C8 coefficients [3]; blackbody
radiation shifts [4] and other systematic clock uncertain-
ties [5]. As a result, there is a critical need for bench-
mark measurements and calculations of electric-dipole
and other transition matrix elements for various searches
for physics beyond the standard model of elementary par-
ticles [6], further improvement of current atomic clocks
[4, 7, 8] and development of novel frequency standards
[9], study of degenerate quantum gases [10] and quantum
simulation [11], suppression of decoherence in quantum
information processing [12, 13], etc. Most of these ap-
plications involve alkali-metal and alkaline-earth metal
atoms and singly charged ions with similar electronic
structure. Therefore, providing high-precision bench-
mark values for these systems and testing high-precision
theory [14–16] used for these applications is particularly
important. There are particularly few high-precision
(better than 0.5%) benchmarks for the transitions be-
tween the excited states, which is the subject of this pa-
per.

Laboratory determinations of the reduced electric
dipole (E1) matrix elements of atomic cesium between
the lowest ns 2S1/2 and mp 2PJ states, where J =1/2 or

3/2 is the electronic angular momentum of the state, are
critical for calculations [15, 17] of the parity nonconserv-
ing amplitude of the 6s 2S1/2 → 7s 2S1/2 transition in
cesium, as well as for precise calculation of the scalar
and vector polarizability for this same transition [18–
20]. Atomic parity violation studies are uniquely sen-
sitive to some dark matter candidates [21] and allow the
study of hadronic parity violation in heavy nuclei [22],
not accessible by other experiments. Most Cs experi-
mental measurements focused on determinations of the
〈6s 2S1/2||r||6p 2PJ〉 matrix elements for the electric-
dipole transitions from the ground state, which were
measured through a number of means, including time-
resolved fluorescence [23, 24], absorption [25], ground
state polarizability [26, 27], and photoassociation spec-
troscopy [28–30], with good agreement between these in-
dependent results. The weighted average of these mea-
surements results in dipole moments with a precision of
∼0.035%. The 〈7s 2S1/2||r||7p 2PJ〉 moments were de-
termined through Stark shift measurements [31] of the
7s 2S1/2 state, combined with theoretical results [19] for

the ratio 〈7s 2S1/2||r||7p 2P3/2〉/〈7s 2S1/2||r||7p 2P1/2〉.
The precision of these moments is also very good,
∼0.15%. There are several measurements [20, 32–34] of
the 〈7p 2PJ ||r||6s 2S1/2〉 moments, with some significant
differences among them. The precision of the most recent
[34] is < 0.2%. Finally, we recently reported [35] a pre-
cise measurement of the lifetime of the cesium 7s 2S1/2

state, τ7s = 48.28 (7) ns, to a precision of 0.14%. Since
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FIG. 1. Energy level diagram of atomic cesium, showing the
states relevant to this measurement. Atoms are excited from
the 6s 2S1/2 ground state to the 7s 2S1/2 excited state by two-
color, two-photon excitation. We collect fluorescence photons
at 852 nm from the second step of the spontaneous decay of
atoms from the 7s state to the ground state by way of the
6p 2P3/2 state.

this state spontaneously decays through two states (the
6p 2P1/2 and the 6p 2P3/2 state), the lifetime measure-
ment by itself is not sufficient to determine the individual
matrix elements for these two transitions. In this work,
we present our determination of the ratio

R ≡
〈7s 2S1/2||r||6p 2P3/2〉
〈7s 2S1/2||r||6p 2P1/2〉

(1)

based upon measurements of the influence of laser po-
larization on the two-photon 6s 2S1/2 → 7s 2S1/2 transi-
tion rate. This technique has been used previously [36] to
measure the branching ratio for spontaneous decay of the
8s 2S1/2 state in cesium. Our result for R is in excellent
agreement with a theoretical prediction and the accuracy
of the experimental ratio is sufficiently high to differ-
entiate between various theoretical approaches. To our
knowledge, there are no prior experimental determina-
tions of this ratio. We use the result of the current mea-
surement, together with the lifetime measurement [35],
to report E1 matrix elements 〈7s 2S1/2||r||6p 2P3/2〉
and 〈7s 2S1/2||r||6p 2P1/2〉 with an uncertainty of 0.1%.
These results are also in very good agreement with a
number of prior theoretical calculations of these mo-
ments [1, 17–19, 37–39].

II. THEORY

For this determination of R, we carry out a series of
measurements of the two-color, two-photon 6s 2S1/2 →
7s 2S1/2 absorption rate. The first laser for this excita-
tion is tuned to a frequency between the resonant fre-
quency of the 6s 2S1/2 → 6p 2P3/2 transition (D2) and

that of the 6s 2S1/2 → 6p 2P1/2 transition (D1), as il-
lustrated in Fig. 1. The detuning of this laser from the
D2 line frequency is labeled ∆. The frequency of the sec-
ond laser is tuned to complete the two-photon transition
to the 7s 2S1/2 state. For determination of the ratio of

moments R, we compare the two-photon signal strength
using two laser polarization states as a function of the
detuning ∆ from the intermediate resonance. In both
cases, the two lasers are linearly polarized, with the rela-
tive polarizations either parallel or perpendicular to one
another.

We can quantitatively understand the dependence of
the two-photon transition rate on polarization by exam-
ining the two-photon transition rate expressed through
the Fermi golden rule

S =
2π

~
|A2P|2ρ7s(E), (2)

where ρ7s(E) is the final state energy density and A2P

is the transition amplitude as determined in lowest-order
perturbative expression

A2P =
∑
n,j

{ 〈7s1/2|ε̂1E1 · er|npj〉〈npj |ε̂2E2 · er|6s1/2〉
ω2 − ωnpj

− iΓnpj
/2

+
〈7s1/2|ε̂2E2 · er|npj〉〈npj |ε̂1E1 · er|6s1/2〉

ω1 − ωnpj − iΓnpj/2

}
.

In this expression, we have abbreviated the state notation
|m` 2LJ〉 by the single active electron |m`j〉. The polar-
ization, amplitude, and frequency of the optical fields
are ε̂1, E1, and ω1 for the first laser beam, of wavelength
∼ 860 nm, and ε̂2, E2, and ω2 for the second, of wave-
length ∼ 1.45 µm. r is the spatial coordinate of the elec-
tron, and ωnpj and Γnpj/2 are the transition frequency
from the ground state and the radiative linewidth of the
intermediate states npj . The detunings that we use in the
measurements are always much larger than the linewidth
Γnpj/2, and we omit the linewidth term from our analy-
sis.

The ground state of the cesium atom is split by the
hyperfine interaction into two components, F = 3 and
F = 4, separated by 9.1926 GHz. F is the total angular
momentum (electronic J = 1/2 plus nuclear I = 7/2) of
the state. Similarly, the final 7s 2S1/2 has two hyperfine
components, also F = 3 and F = 4, with a splitting of
2.183 GHz [40, 41]. The transition moment for a partic-
ular hyperfine component is given through the Wigner-
Eckart theorem (See, for example, Ref. [42], page 192.)
as

〈γJIFmF |rq|γ′J ′I ′F ′m′F 〉 = (−1)F−mF

×
(

F 1 F ′

−mF q m′F

)
〈γJIF ||r||γ′J ′I ′F ′〉,

where mF is the projection of the total angular momen-
tum onto the quantization axis, and γ represents all other
quantum numbers, shows how the moments vary with
projection quantum number mF . The array inside the
smooth parentheses is the Wigner 3j symbol. Since r
acts only on the electronic angular momentum, but not
I, we can further reduce this using (See, for example,
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Ref. [42], page 195.)

〈γ J IF |r|γ′J ′I ′F ′〉 = δII′(−1)J+I+F ′+1

× [(2F ′ + 1) (2F + 1)]
1/2
{
J F I
F ′ J ′ 1

}
〈γJ ||r||γ′J ′〉.

The array inside the brackets is the Wigner 6j symbol.
These relations allow calculation of all of the moments
relevant for the two-photon absorption process. Since
the initial population is equally distributed over the six-
teen hyperfine components of the ground state, and we
spectrally resolve the hyperfine states F of the initial
6s 2S1/2 and final 7s 2S1/2 state, we average the mo-
ments over initial state components mF after squaring,
and we sum over final states m′F to obtain a two-photon
signal strength S

S‖,4→4 =
2π

~2
9

16
|α̃|2E2

1E
2
2 , (3)

where

α̃ =
e2

6

∑
n

[
〈7s1/2||r||np1/2〉〈np1/2||r||6s1/2〉

×

{
1

ω2 − ωnp1/2

+
1

ω1 − ωnp1/2

}
(4)

−〈7s1/2||r||np3/2〉〈np3/2||r||6s1/2〉

×

{
1

ω2 − ωnp3/2

+
1

ω1 − ωnp3/2

}]
for parallel polarization on the 6s 2S1/2, F = 4 →
7s 2S1/2, F = 4 component (4 → 4). For the perpen-
dicular polarization case, the two-photon 4 → 4 signal
is

S⊥,4→4 =
2π

~2
15

64
|β̃|2E2

1E
2
2 , (5)

where

β̃ =
e2

6

∑
n

[
〈7s1/2||r||np1/2〉〈np1/2||r||6s1/2〉

×

{
1

ω2 − ωnp1/2

− 1

ω1 − ωnp1/2

}
(6)

+
1

2
〈7s1/2||r||np3/2〉〈np3/2||r||6s1/2〉

×

{
1

ω2 − ωnp3/2

− 1

ω1 − ωnp3/2

}]
.

The ratio of these two linestrengths is(
S‖

S⊥

)
4→4

=
12

5

|α̃|2

|β̃|2
. (7)

Similarly, on the 6s 2S1/2, F = 3 → 7s 2S1/2, F = 3
component (3→ 3) component, the linestrengths are

S‖,3→3 =
2π

~2
7

16
|α̃|2E2

1E
2
2 (8)

for parallel polarization, and

S⊥,3→3 =
2π

~2
7

64
|β̃|2E2

1E
2
2 (9)

for perpendicular polarization. The ratio of these two
linestrengths is (

S‖

S⊥

)
3→3

= 4
|α̃|2

|β̃|2
. (10)

Transitions on the F = 3 → F = 4 and the F =
4 → F = 3 components are also permitted for the per-
pendicular polarization case, but our spectral resolution
is sufficient to avoid these components, and we do not
consider them further.

Due largely to the small magnitude of the detuning
of the first laser from the D1 and D2 lines, the dominant
contributions to the two-photon moments in Eqs. (4) and
(6) are from the 6p 2P3/2 and 6p 2P1/2 states. Similar to
the approach of Ref. [36], we factor out the product of
elements 〈7s1/2||r||6p1/2〉〈6p1/2||r||6s1/2〉, allowing us to

show explicitly the dependence of α̃ and β̃ on the ratio
of dipole elements R:

α̃ = K

[
R (−R′)
ω1 − ω6p3/2

+
1

ω1 − ω6p1/2

(11)

+
R (−R′)
ω2 − ω6p3/2

+
1

ω2 − ω6p1/2

+ P

]
and

β̃ = K

[
R (−R′/2)

ω1 − ω6p3/2

− 1

ω1 − ω6p1/2

(12)

−R (−R′/2)

ω2 − ω6p3/2

+
1

ω2 − ω6p1/2

+Q

]
,

where

K =
e2

6
〈7s1/2||r||6p1/2〉〈6p1/2||r||6s1/2〉

and

R′ =
〈6p3/2‖r‖6s1/2〉
〈6p1/2‖r‖6s1/2〉

, (13)

measured to be 1.4074(3) by Ref. [43].
P accounts for the rather minor contributions of the

high n states (that is, n > 6) to the parallel polarization
signal

P =
∑

n>6,j,k

(−1)j−1/2Mnj

ωk − ωnpj

, (14)

where j = 1/2 or 3/2 and the index k selects one of the
two laser frequencies. The term Q performs the same
role for the perpendicular polarization signal

Q =
∑

n>6,j,k

(−1)k

j + 1/2

Mnj

ωk − ωnpj

. (15)



4

FIG. 2. Experimental setup for the measurement of the rel-
ative peak amplitudes with perpendicular and parallel laser
polarizations. We keep the polarization of the Ti:Sapphire
(Ti:Sa) laser beam constant and change the polarization of
the external cavity diode laser (ECDL) beam. Other abbre-
viations in this figure are: (AOM) acousto-optic modulator;
(BS) beam sampler; (ChW) beam chopper wheel; (DAQ)
data acquisition system; (IF) interference filter; (Iso) opti-
cal isolator; (L) lens; (LIA) lock-in amplifier; (PC) personal
computer; (PD) photodetector; (PMT) photomultiplier tube;
(Pol) polarizer; (SMF) single-mode optical fiber, (VC) vapor
cell, (λ/2) half-wave plate in a rotation stage.

In these expressions for P and Q, the Mnj are normalized
products of dipole moments for 6s1/2 → npj → 7s1/2,

Mnj =
〈7s1/2‖r‖npj〉〈npj‖r‖6s1/2〉
〈7s1/2‖r‖6p1/2〉〈6p1/2‖r‖6s1/2〉

(16)

In the experiment, we measure the two-photon exci-
tation signals S‖ for parallel polarizations and S⊥ for
perpendicular polarizations over a wide range of detun-
ings ∆, and compute the ratio of these signals S‖/S⊥
to remove any dependence on laser power, beam size,
collection efficiencies, detection sensitivities, and other
experimental factors. In the following section, we discuss
the experimental details of these measurements.

III. EXPERIMENTAL DETAILS

We use two narrowband cw lasers for these measure-
ments. We show our experimental setup in Fig. 2. The
first beam, whose wavelength λ1 we vary in the range
855 − 870 nm, is from a Ti:Sapphire laser, red-detuned
from the Cs D2 line at 852 nm. The Ti:Sapphire beam
is sent over a single-mode optical fiber to the optical ta-
ble where we conduct the experiment. The second beam,
at λ2 = 1415 − 1460 nm, is blue-detuned from the Cs
6p3/2 → 7s1/2 transition and is generated by a home-
made external cavity diode laser (ECDL). The diode is
a Toptica anti-reflection-coated laser diode. With the
laser in a Littman configuration, we can coarsely tune
this ECDL from ∼ 1400− 1480 nm without variation of
the output beam direction. We measure the frequency
of the ECDL beam with a calibrated Burleigh WA-1600
(Michelson interferometer type) wavemeter, with an ac-
curacy of better than 0.1 GHz. Then we adjust the fre-

quency of the Ti:Sapphire laser to place the two-photon
resonance peak at the center of a 2.5 GHz scan, and ramp
the frequency of the Ti:Sapphire laser at a rate of about
2.0 GHz/sec.

After two-photon excitation of the 7s 2S1/2 state, the
atoms decay spontaneously to the ground state by way
of the 6p 2P3/2 or the 6p 2P1/2 state. We detect the
fluorescence light on the D2 line at 852 nm as a measure of
the excitation rate of the 7s 2S1/2 state (see Fig. 1). We
chose to collect this fluorescence line since the sensitivity
of our photomultiplier tube (PMT, Hamamatsu R928)
is greater at this wavelength than at the wavelengths of
the other fluorescence lines. We chop the ECDL beam
(∼ 266 Hz chopping rate) and amplify the PMT output
with a lock-in amplifier to improve the signal-to-noise
ratio of our detection system. The output from the lock-
in amplifier is read with a data acquisition (DAQ) system
and recorded on the laboratory computer (PC).

The polarization purity of both laser beams passing
through the vapor cell is critical for an accurate measure-
ment. We pass the Ti:Sapphire beam through a Glan-
Taylor polarizer with extinction ratio >10,000:1. The
ECDL beam is put through a nanoparticle linear film po-
larizer (extinction ratio >10,000:1), then through a zero-
order half-wave plate (HWP) optimized for 1.48 µm. We
found that a polarizer after the half-wave plate could dis-
place the beam, so we removed this element. To avoid
introducing strain birefringence in any optics within the
beam path after the polarizers (lens, beam sampler and
wave-plate), we mounted these optics with soft plastic
O-rings, or bonded them with flexible epoxy. (When the
optics were mounted with hard epoxy and metal O-rings,
we noticed a ten-fold reduction in laser extinction ratio.)
We suspected that the nanoparticle film polarizer was
sensitive to the presence of the λ1 beam, so we inserted
a long-pass interference filter (IF1) in the beam to reflect
the λ1 beam after passing through the vapor cell. The
Ti:Sapphire laser beam passing through the vapor cell
had a typical extinction ratio of a part in 10,000, while
the extinction ratio of the second laser varied from a part
in 10, 000−200, falling as we tuned away from the center
frequency of the 1480 nm half-wave plate. We recorded
the extinction ratio at every laser detuning to apply the
proper correction to our data.

We weakly focus the two laser beams (λ1 and λ2) with
15 cm focal length lenses through a cesium vapor cell
(VC) in a counter-propagating configuration. The diam-
eter of each beam in the vapor cell is ∼80 µm. The laser
power passing through the vapor cell was ∼20 mW for
the Ti:Sapphire beam and ∼5 mW for the ECDL beam,
varying for each wavenumber measurement. We reduce
the optical power for small detunings ∆ in order to avoid
saturating the transition. The cesium vapor cell is a fused
silica cell with dimensions 70 x 10 x 10 mm3. We place
the vapor cell and PMT within an aluminum enclosure
to reduce scattered light and to maintain a uniform cell
temperature. We pass the laser beams close to the end
of the cell near the PMT to minimize re-absorption of
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the fluorescence light, and image the interaction region
with a lens of 1 inch focal length and 1 inch diameter.
We place an interference filter (IF2) in front of the PMT,
transmitting light at 850± 5 nm (Thorlabs FBH850-10),
and also place a 6 mm × 2 mm spatial aperture in the
image plane of the lens. These two filters reduce the
light scattered by the entrance and exit faces of the cell
into the PMT. We heated the cell with a cartridge heater
to approximately T ∼ 140◦C to attain sufficient cesium
density for the measurement. In the counter-propagating
beam geometry, the Doppler width of the transition is

∆νD =

√
8kBT ln 2

mCs
(λ−11 − λ

−1
2 ) ∼ 170 MHz, (17)

where kB is the Boltzmann constant and mCs is the mass
of the cesium atom. This linewidth is much less than the
hyperfine splitting of the 7s 2S1/2 state, so the spectral
lines that we measure are far removed from unwanted
adjacent transitions.

We monitor the power of each laser beam by reflecting
a small portion of the beams with Thorlabs beam sam-
plers to photodetectors (PD). These beam samplers are
wedged windows, AR-coated on one side and uncoated
on the other. The power of the λ2 beam transmitted by
this window changes by <1% (due to Fresnel reflection)
when we rotate the polarization of this beam. Correc-
tions we made to the data for these differences are dis-
cussed in the next section. In addition to monitoring
the power of the ECDL during each data set, this PD
produces the reference signal for the lock-in amplifier de-
scribed earlier. We use the Ti:Sapphire beam PD and an
acousto-optic modulator (AOM) to stabilize the power of
this beam. The closed-loop feedback circuit stabilizes the
laser power against any fluctuations of the Ti:Sapphire
laser as we ramp its frequency.

We use Labview to record each of the fluorescence
peaks and fit them to a Gaussian lineshape. In Fig. 3,
we show examples of the fluorescence peaks for individ-
ual scans at ∆/2π = 107.5 cm−1 for (a) parallel and (b)
perpendicular polarizations. The black points in this fig-
ure are the data, and the smooth red line is the result of
the least-squares fit. In approximately two minutes we
record thirty peaks, and determine the average and stan-
dard deviation of peak heights computed over the entire
set. We manually rotate the half-wave plate mounted
in a rotation stage, changing the laser polarization of
the ECDL beam between vertical (parallel to the polar-
ization of the λ1 beam) and horizontal (perpendicular).
We switch the polarization of the ECDL back and forth
to acquire at least three measurements at each polariza-
tion. We then change the frequencies of the ECDL and
Ti:Sapphire laser and repeat the process.

We calculate the ratio of line strengths S‖/S⊥ at a
particular detuning by dividing the mean amplitude of
the parallel peaks with the mean amplitude of the per-
pendicular peaks. We plot the measured ratios S‖/S⊥
vs. detuning ∆/2π in Fig. 4. Each data point represents
the experimental measurement, as described above. The

error bars show the 1σ standard error. While we focused
most of our attention on the 4 → 4 transition due to
the smaller ratio S‖/S⊥ for this line, we did repeat the
measurement in the accessible range of the 3 → 3 line
to verify our results. We have plotted these points in
Fig. 4 as well. For the 4 → 4 transition we were able
to collect data over a >200 cm−1 range of ∆/2π, from
60 to 280 cm−1. We avoided detunings smaller than 60
cm−1 for three reasons: The scattered light background
is large in this region; the ratio S‖/S⊥ is less sensitive to
R at small detunings; and the peak height ratio is large
at small detunings, making it difficult to simultaneously
keep S‖ below the saturation level (at the 0.1% level) and
S⊥ sufficiently greater than the noise.

IV. ERROR ANALYSIS

In addition to the statistical error, there are several
other possible sources of error in performing this mea-
surement. We summarize these effects and present esti-
mates of their impact as a correction and uncertainty in
S‖/S⊥ in Table I. We apply these corrections and expand
the error bars to the individual S‖/S⊥ measurements be-
fore fitting the data.

We previously discussed the polarization quality of the
two laser beams, which varies with detuning ∆ for the λ2
beam. We monitored this carefully during the course of
the measurements, and applied a correction to the ratio
S‖/S⊥ to account for this. This correction was as large
as 0.5%, but typically 0.12−0.35%. We estimate that the
uncertainty in this correction is on the order of 0.05%.

In addition, we must quantify the change in beam over-
lap and beam power as we rotate the half-wave plate
in the λ2 beam path. The beam displacement ∆x is
smaller than we can measure in our laboratory, so we

FIG. 3. Absorption spectra for (a) parallel polarization and
(b) perpendicular polarization, at a detuning of ∆/2π = 107.5
cm−1. The black dots are experimental data while the red
curve is the least-squares Gaussian fit to the data. With a
laser frequency scan rate of ∼2.0 GHz/sec, the total frequency
width of these plots is ∼1.0 GHz. The ratio of peak heights
at this detuning is S‖/S⊥ ∼ 5.35.
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FIG. 4. (a) The ratio of peak heights S‖/S⊥ as a function of
detuning ∆/2π. The lower (red) curve is for the 4→ 4 tran-
sition while the upper (blue) curve is for the 3→ 3 transition.
The data points are the experimental data, with error bars
showing 1σ uncertainties. (In many cases, the uncertainties
are smaller than the data point size.) The smooth lines show
the best fit plots of Eqs. (7, 10-12), with R = 1.5272 the only
adjustable parameter. (b) Residuals, showing the difference
between data points and the fitted curve in (a). 4→ 4 resid-
uals are shown with an ×, while 3 → 3 residuals are shown
with an open circle (◦).

use the manufacturer’s specification for the parallelism

Error % Correction % Uncertainty

Statistical 0.26− 1.17
Polarization purity 0.12− 0.35 0.05
Beam movement 0.01
Beam power change 0.1− 1 0.1− 0.3
HWP rotation precision 0.05 0.05
Magnetic field -0.1 0.1

TABLE I. Sources of error and the correction applied to
S‖/S⊥ and uncertainty for each. We compute the uncertainty
for each data point in Fig. 4 as the quadrature sum of these
contributions.

of the waveplate (< 5 µrad) to estimate the beam dis-
placement (< 0.4 µm) at the focus of the beam upon
rotating the waveplate. We have calculated that this in-
troduces a fractional uncertainty of the measured ratio
S‖/S⊥ of (∆x/w)2, where w is the beam radius. This
fractional uncertainty is less than 0.01%. As we wrote
in the previous section, the laser power of the λ2 beam
varies (.1%) between the two polarization cases. We cor-
rect the ratio S‖/S⊥ to compensate for this effect, and
estimate that the uncertainty in the average corrected
power is 0.1− 0.3%.

We rotate the HWP manually, and estimate the un-
certainty in the orientation of the HWP as ±0.25◦. We
calculate that this introduces an uncertainty in S‖/S⊥ of
< 0.05%, and we apply a correction of the same magni-
tude to compensate.

A static magnetic field at the location of the cell (mea-
sured to be ∼0.5 Gauss due primarily to the Earth and
the optical table) will cause a Zeeman splitting of the
different magnetic components of the transition, which
could cause an effective broadening of the transition. For
the parallel polarization case, only ∆m = 0 transitions
are allowed. Since we are driving only ∆F = 0 transi-
tions and the Landé g-factors are the same for the initial
6s 2S1/2 and upper 7s 2S1/2 state, the transition frequen-
cies are unaffected. For perpendicular polarization, how-
ever, m does change (∆m = ±1), and so the transition
frequency is affected by the magnetic field. We model
this as an effective broadening ∆νZ of the homogeneous
linewidth, and estimate the impact as a slight decrease
in S⊥ of magnitude ∼ ∆νZ/∆νD ∼ 0.2%. To correct
for this, we reduce each data point S‖/S⊥ by 0.1%, and
assign an uncertainty for this correction of 0.1%.

The splitting of hyperfine levels of the 6p 2P1/2 and

6p 2P3/2 can affect the theory curves at small detunings.
We have analyzed the magnitude of this effect numeri-
cally, and find that for the range of detunings used for the
measurements, the influence of the effect is much smaller
than the experimental uncertainties.

We fit the spectral peaks with a Gaussian lineshape
function in order to determine the peak amplitude of the
fluorescence. While a Voigt function, which is a con-
volution of the Lorentzian natural lineshape of width
∆νn ∼ 3.3 MHz with the Gaussian inhomogeneous line-
shape of width ∆νD ∼ 170 MHz, would be more precise,
S‖ and S⊥ are affected similarly, and the impact on the
ratio S‖/S⊥ is minimal.

Saturation of the two-photon transition rate can be a
problem if laser intensities are too large. We check for
this by looking for any intensity dependence in the ratio
S‖/S⊥. We observe no such dependence at the level of
our measurement precision. This is consistent with our
estimate of the maximum two-photon transition rate per
atom of 103 s−1, based upon the measured signal size,
the PMT gain, and the estimated collection efficiency of
the fluorescence detection. Since this excitation rate is
such a small fraction of the decay rate Γ7s = τ−17s of the
7s state, saturation effects are minimal. This lack of in-
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tensity dependence also rules out any significant effect of
redistribution of the cesium ground state population by
the lasers. We also considered any possible effects of ra-
diation trapping (absorption and re-emission of 852 nm
fluorescence photons before they can escape the vapor
cell) on the measurement by measuring S‖/S⊥ at differ-
ent vapor cell densities. Since our measurement does not
depend on timing of photon arrivals (as would be the
case for a time-resolved lifetime measurement, for exam-
ple), and since the signals S‖ and S⊥ would be affected
similarly, it is difficult to identify a means by which radi-
ation trapping affects the measurement of S‖/S⊥. This
is supported by our search for a dependence of this ratio
on the vapor density in the cell, which had a negative
result.

V. RESULTS

A. The ratio R

We fit Eqs. (7, 10 – 12) to the data shown in Fig. 4,
using just a single fitting parameter R, to determine the
least squares fit value for this ratio of moments. In this
fit, we use the lifetime τ7s [35] as a constraint on the
elements 〈7s1/2||r||6p3/2〉 and 〈7s1/2||r||6p1/2〉. In order
to evaluate P and Q of Eqs. (14, 15), we use the state
energies Enpj

and the E1 transition moments for the

6s 2S1/2 → np 2PJ and 7s 2S1/2 → np 2PJ , where n ≤ 11
and j = J = 1/2 or 3/2, listed in Table II. The state
energies in this table come from Ref. [44]. The matrix
elements come from a variety of experimental [23–30, 34]
and theoretical [1] works.

n Enpj (cm−1)a 〈7s1/2||r||npj〉 〈npj ||r||6s1/2〉

j = 1/2
6 11178.268 – 4.5057 (16)b

7 21765.348 10.31 (4)c 0.2781 (5)d

8 25708.835 0.914 (27)c 0.092 (10)c

9 27636.997 0.349 (10)c 0.043 (7)c

10 28726.812 0.191 (6)c 0.025 (5)c

11 29403.423 0.125 (4)c 0.016 (4)c

j = 3/2
6 11732.307 – −6.3398 (22)b

7 21946.397 14.32 (6)c −0.5740 (7)d

8 25791.508 1.620 (35)c −0.232 (14)c

9 27681.678 0.680 (14)c −0.130 (10)c

10 28753.677 0.396 (9)c −0.086 (7)c

11 29420.824 0.270 (7)c −0.063 (6)c

TABLE II. State energies and electric dipole E1 transition
moments 〈7s1/2||r||npj〉 and 〈npj ||r||6s1/2〉 used to determine
R. Transition moments are given in terms of a0. aState ener-
gies as found in NIST tables [44]. bWeighted average of sev-
eral independent determinations from Refs. [23–30]. cRef. [1],
including the Supplemental Information. dTentative values
from Ref. [34].

We evaluate χ2, the sum of the squared deviations be-
tween data and best fit, each normalized by the uncer-
tainty of the data point, to determine the uncertainty in
R. The reduced χ2

r for this fit is 1.67, indicating that some
small additional errors are present in our measurement.
We increase our statistical error by

√
1.67 to accommo-

date these, and report a statistical error of 0.0016, or
∼ 0.1%.

Our result of the ratio R can vary with the values of
matrix elements used (shown in Table II) for curve fit-
ting. We vary the values of the ms 2S1/2 → np 2PJ ma-
trix elements used for fitting by their uncertainties, and
found that most of them affect R negligibly (±0.0001).
For the n > 6 terms, this is reasonable since P and Q
amount to only ∼1% of the terms α̃ and β̃, respectively.
The uncertainty in the 6s 2S1/2 → 6p 2PJ matrix ele-
ments resulted in the largest difference, a change in R of
±0.0006 (0.04%). Adding this error in quadrature with
our statistical error, our final result is R = 1.5272 (17).

We use the lowest-order Dirac-Hartree-Fock (DHF)
calculations to determine signs of all necessary matrix
elements. We note that only relative signs are definite
rather than the absolute signs. In the usual convention
where the signs of the 〈6s1/2||r||6pj〉 matrix elements are
positive, signs of 〈6s1/2||r||npj〉 and 〈7s1/2||r||npj〉 are
positive, with the exception of the 〈7s1/2||r||6pj〉 matrix
elements, which are negative. The signs of the ns− n′pj
and n′pj − ns matrix elements are the same for j = 1/2
and opposite for j = 3/2.

In Table III, we compare the measured result for R
with several theoretical calculations of this ratio. We
observe very close agreement between these results. We
are unaware of any prior experimental measurements of
this ratio R.

Finally, we comment that our analysis based on a least-
squares fit of S‖/S⊥ vs. ∆ differs from that used in
Ref. [36], who defined a linear polarization degree

PL =
S‖ − S⊥
S‖ + S⊥

, (18)

and fit their data to this form to determine R. These
two analysis techniques likely place different weights to
the various data points. For comparison, we evaluated R
using this parameter as well, and find RPL = 1.5273 (17).
This is essentially the same result as we report in Table
III.

The results of several linearized coupled-cluster (LCC)
[1, 14] calculations of the 7s − 6pj matrix elements and
their ratio R are given in Table IV, with lowest order
DHF values listed to show the effect of electronic cor-
relations. Ab initio LCC results obtained by taking
into account single and double (SD) excitations of the
lowest-order wave function are listed in the column la-
beled “SD.” The effect of partial triple excitations is
accounted for in the SDpT calculations. The scaled
SD and SDpT values are given in the corresponding
columns. Following Ref. [1] and references therein, the
SD scaled data are taken as final, based on the dominance
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Group Ratio |R| |〈7s1/2||r||6p1/2〉| |〈7s1/2||r||6p3/2〉|
Experimental
This work 1.5272 (17) 4.249 (4) 6.489 (5)

Theoretical
Dzuba et al., 1989 [37] 1.530 4.253 6.507
Blundell et al., 1991 [38] 1.526 4.228 6.451
Blundell et al., 1992 [18] 1.527 4.236 6.470
Safronova et al., 1999 [19] 1.527 4.243 6.479
Dzuba et al., 2001 [39] 1.526 4.255 6.495
Porsev et al., 2010 [17] – 4.245 –
Present, Safronova et al., 2016 [1] 1.5270 (27) 4.243 (11) 6.480 (19)

TABLE III. Experimental and theoretical results for the ratio and absolute values of reduced dipole matrix elements for the
cesium 6p 2PJ → 7s 2S1/2 transitions. We compute the ratio R from the values of 〈7s1/2||r||6p1/2〉 and 〈7s1/2||r||6p3/2〉 reported
in Refs. [1, 18, 19, 37–39].

of single-excitation valence terms, known cancellations of
the triple contributions, and numerous comparisons with
other experiments in many systems. The uncertainties in
the values of matrix elements are determined as the maxi-
mum difference of the final and two other most precise re-
sults, ab initio and scaled SDpT values. The uncertainty
in the ratio is determined as the maximum difference of
the final and all other LCC values. The issue of the ac-
curacy of the ratio is the long-standing question - does
scaling adversely affect the ratio precision? The present
experiment provides a benchmark comparison to address
this question. The final theory value is well within 1 (ex-
perimental) σ from the central experimental value while
the SD value is approximately 2σ away - so further inclu-
sion of the correlations via the SDpT method or scaling
improved the agreement with experiment.

B. Absolute Matrix Elements

In this section, we combine the ratio of matrix elements
R = 〈7s1/2||r||6p3/2〉/〈7s1/2||r||6p1/2〉 = 1.5272 (17) with
the lifetime result that we reported previously [35] of the
cesium 7s 2S1/2 state, τ7s = 48.28 (7) ns. This lifetime
can be written in terms of the matrix elements as

1

τ7s
=

∑
j=1/2,3/2

4

3

ωj
3

c2
α
|〈7s||r||6pj〉|2

2j′ + 1
. (19)

In this equation, j′ = 1/2 is the electronic angular mo-
mentum of the 7s 2S1/2 state, ωj are the transition fre-

quencies for the 7s 2S1/2 → 6p 2PJ transitions (where

DHF SD SDsc SDpT SDpTsc Final

7s− 6p1/2 4.4177 4.2006 4.2434 4.2325 4.2313 4.243(11)
7s− 6p3/2 6.6729 6.4258 6.4795 6.4608 6.4658 6.480(19)
R 1.5105 1.5297 1.5270 1.5265 1.5281 1.5270(27)

TABLE IV. The absolute values of the 7s−6pj reduced dipole
matrix elements (in a0) and their ratio calculated in different
approximations (see text for explanation).

j = J), and α is the fine structure constant. The results
of these two works combined uniquely determine the in-
dividual matrix elements 〈7s1/2||r||6p3/2〉 = −6.489 (5)
and 〈7s1/2||r||6p1/2〉 = −4.249 (4). These results are in
very good agreement with theoretical calculations, as we
present in Table III.

VI. CONCLUSION

We have described our laboratory measurement of
the ratio R = 〈7s1/2||r||6p3/2〉/〈7s1/2||r||6p1/2〉 =
1.5272 (17), whose precision is ∼0.11%. We determine
this ratio through observations of the two-color two-
photon absorption rate to the 7s 2S1/2 state with two dif-
ferent polarization cases over a broad range of detunings
of the laser frequency from the D2 resonance frequency.
Combined with an earlier lifetime measurement [35] for
the 7s 2S1/2 state, we present experimental determina-
tions of the individual matrix elements 〈7s1/2||r||6p3/2〉
and 〈7s1/2||r||6p1/2〉, with uncertainty of <0.1%. These
measurements are in very good agreement with theoret-
ical calculations of these moments.

These measurements bring to near completion a series
of precision determinations of each of the matrix elements
〈ns1/2||r||mpj〉 for m,n = 6 or 7. We will report the
final missing element 〈7pj ||r||6s1/2〉 shortly in a separate
publication.

This material is based upon work supported by the Na-
tional Science Foundation under Grant Numbers PHY-
1607603, PHY-1460899 and PHY-1620687.
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