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Abstract

Recent proposals and advances in quantum simulations, quantum cryptography and quantum

communications substantially rely on quantum entanglement formation. Contrary to the conven-

tional wisdom that dissipation destroys quantum coherence, coupling with a dissipative environ-

ment can also generate entanglement. We consider a system composed of two quantum dot qubits

coupled with a common, damped surface plasmon mode; each quantum dot is also coupled to a

separate photonic cavity mode. Cavity quantum electrodynamics calculations show that upon op-

tical excitation by a femtosecond laser pulse, entanglement of the quantum dot excitons occurs,

and the time evolution of the g(2) pair correlation function of the cavity photons is an indicator

of the entanglement. We also show that the degree of entanglement is conserved during the time

evolution of the system. Furthermore, if coupling of the photonic cavity and quantum dot modes

is large enough, the quantum dot entanglement can be transferred to the cavity modes to increase

the overall entanglement lifetime. This latter phenomenon can be viewed as a signature of entan-

gled, long-lived quantum dot exciton-polariton formation. The preservation of total entanglement

in the strong coupling limit of the cavity/quantum dot interactions suggests a novel means of

entanglement storage and manipulation in high-quality optical cavities.
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I. INTRODUCTION

In the past decade, rapid developments in quantum cryptography, quantum communi-

cations, and quantum simulations (Refs. [1–3] and references therein) have been made. In-

teresting examples include the reported low-Earth-orbit satellite-to-ground quantum state

transmission [4] that paves the route to a secure “quantum internet,” a hundred-kilometer-

long optical line for quantum key distribution [5, 6], and a publicly available 20-qubit univer-

sal quantum computer [7]. These and other advances are stimulating further research into

systems that can provide physical realizations of quantum entangled states [8, 9]. Previously

proposed techniques include coupled quantum rings [10], quasi-phase-matching ring crystals

for entangled photon generation [11], and subradiant Dicke states of trapped interacting

atoms [12, 13]. Recently, a solid-state realization of trapped atoms – coupled quantum dot

(QD) qubits, or “artificial molecules,” in a dissipative environment – has been proposed to

provide entanglement among electron-hole excitations in QDs (i.e., excitons) in two- and

multi-dot systems at liquid helium temperatures [14–18]. These predictions, still to be vali-

dated experimentally, potentially open a new route to the design of robust solid-state emitters

of entangled photons of relevance to quantum information science and sensing [19–21].

Some time ago Burkard, Loss and DiVincenzo [22] proposed coupled quantum dots as a

platform for the design of quantum gates, to be used in prospective quantum computers. It

is worth noting that the coupled quantum dot system in high-quality cavity can be mapped

into cavity quantum electrodynamics of superconducting electrical circuits [23], which is

one of the promising architectures for quantum simulations. Very recently, a programmable

two-qubit quantum processor has been realized based on two quantum dots in silicon [24].

It has been found that the second-order correlation function of photons emitted by coupled

QD qubits can be utilized as a “witness” of quantum entanglement formation; specifically,

antibunching of photons emitted by the QDs has been numerically predicted [25]. Various

QD coupling methods have been proposed including sharing the photon field in an optical

microcavity [26] or the interactions with auxiliary plasmonic nanoantennas [14–17]. However,

direct observations of the entanglement of electronic degrees of freedom in QDs remain

challenging.

In this work, we suggest a new system for achieving, detecting and, further, manipulating
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entanglement of plasmonically coupled QDs in optical microcavities. Specifically, through

numerical simulations and theoretical analysis, we demonstrate that, under suitable circum-

stances, there can be a one-to-one correspondence between the entanglement of QD states

and the correlation properties of cavity photons emitted by the QDs. Further, we show that

the time dependence of both the QD entanglement and the photon correlation functions

is drastically changed from photon correlation suppression or antibunching to strong oscil-

lations during the transition from the weak to strong QD-cavity photon coupling regimes.

The latter oscillations are the signature of entangled exciton-polariton states, in which the

quantum correlations are shared between the QD excitons and cavity photons. In our work,

we consider a quantum system driven by a strong femtosecond laser pump. Our results will

enable the identification of entanglement in coupled QD systems via cavity photon corre-

lation measurements and also suggest a means of storing such entanglement in the cavity

modes.

It is important to note that there is no simple rule – bunching vs antibunching – to be

associated with the photon pair correlation function and entanglement or strong coupling

and the results will depend on the specific systems and measurements carried out. Here we

show, in the system proposed and in the limit of strong coupling between QDs and photonic

cavities, that QD entanglement manifests itself as photon bunching or sharp peaks in the

same-time cross-correlation function for the photons. Thus our results can be contrasted

with the steady-state antibunching correlation noted by Dumitrescu and Lawrie [25] that

would occur in a quantum dot/plasmon system without coupling to photonic cavities. The

underlying mechanism that leads to the bunching/anti-bunching behavior in our case is also

fundamentally different from that which leads to the bunching behavior predicted for coupled

plasmonic systems due to their bosonic character by Masiello and co-workers [27] and the

ultra-strong coupling bunching behavior noted by Savasta and co-workers [28].

II. NUMERICAL MODEL

A. Cavity Quantum Electrodynamics

A schematic of our system is shown in Fig. 1. The system is composed of two QDs

embedded into optical cavities. In addition, the QD electronic degrees of freedom are coupled
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with the surface plasmon modes in a neighboring metal particle or nanostructure, which

provides an efficient dissipative environment. The chosen scheme enables one to controllably

and independently tune the QD coupling strengths, compared to the setup where QDs share

the same optical cavity. The temporal evolution of the whole system is described by the

cavity quantum electrodynamics (CQED) equation for the time-dependent density operator

ρ̂(t) [17, 29],
∂ρ̂

∂t
= − i

h̄
[Ĥ, ρ̂]− i

h̄
[Ĥd, ρ̂] + L(ρ̂), (1)

where Ĥ = Ĥ0 + Ĥint is the system Hamiltonian that includes the free Hamiltonians of two

(i = 1, 2) two-level QDs, surface plasmon and cavity photon modes

Ĥ0 =
∑

i

h̄ωiσ̂
†
i σ̂i + h̄ωsb̂

†b̂+
∑

i

h̄ωiĉ
†
i ĉi, (2)

their interactions

Ĥint = −
∑

i

h̄gis(σ̂
†
i b̂+ σ̂ib̂

†)−
∑

i

h̄g(σ̂†
i ĉi + σ̂iĉ

†
i), (3)

and coupling

Ĥd = −E(t)

[

∑

i

di(σ̂i + σ̂†
i ) + ds(b̂+ b̂†)

]

(4)

with the external driving electromagnetic field E(t) considered in the semiclassical dipole

limit (with σ̂i, b̂ and ĉi to be the respective annihilation operators for QDs, plasmons and

cavity photon excitations); di and ds are the transition dipole moments of the QDs and

plasmons, respectively. We emphasize that the annihilation operators in Eq. (1) act in the

coordinate space; thus, whereas the total electron excitation and photon wave functions obey

the conventional symmetry dictated by their statistics, their coordinate wave functions can

be both symmetric and antisymmetric. The Lindblad superoperator L(ρ̂) accounts for the

QD and cavity photon population relaxation and dephasing and plasmon dissipation [16, 29].

Eq. (1) was numerically solved in the rotating-phase approximation with the recently

developed “Open quantum systems in C” (QuaC) simulation package [30] based on sparse

matrix-vector multiplication algorithms along with the 4th-order Runge-Kutta numerical

scheme. We found that the results converged for the number of photon levels Nph = 4 and

the number of plasmon levels Npl = 24. The QD entanglement is captured via Wootters’

concurrence C(t) calculated from the QD reduced density matrix [31].
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We characterize light in the photonic cavities with the normalized pair correlation function

for photons arriving at the same time [32, 33], which in our case simplifies to

g
(2)
ij (t) ≡ g

(2)
ij (t, τ = 0) =

Tr(ĉ†i ĉ
†
j ĉj ĉiρ̂(t))

ni(t)nj(t)
(5)

where i, j = 1,2 denote the photonic cavity modes, ĉ†i , ĉi are the corresponding cre-

ation/annihilation operators, and ni(t) = Tr(ĉ†i ĉiρ̂(t)) is the time-dependent population

of the ith photon mode.

B. Relevant Parameters

In what follows, the QDs are illuminated with a pulsed electric field E(t) = E0(t) cos(ωt),

where E0(t) is a Gaussian envelope function with the maximum electric field of 2.5 × 106

V/m and the full width at half maximum (fwhm) of 20 fs (a fluence of 26.4 nJ/cm2, see

Appendix A). In our simulations we consider low cavity photon mode occupations so that

we can disregard renormalization of the photon energies due to nonlinearity [34].

In our simulations, we set the dephasing rate to 8.6 µeV, corresponding to the temperature

0.1 K. (We note that this temperature is about an order of magnitude higher than that

used for superconducting qubits [7].) In our simulations we consider low cavity photon

mode occupations so that we can disregard renormalization of the photon energies due to

nonlinearity [34]. Eq. (1) was numerically solved in the rotating-phase approximation with

the recently developed “Open quantum systems in C” (QuaC) simulation package [30] based

on sparse matrix-vector multiplication algorithms along with the 4th-order Runge-Kutta

numerical scheme. We found that the results converged for the number of photon levels

Nph = 4 and the number of plasmon levels Npl = 24.

The photonic cavity environment presents a powerful means for controlling light matter

interactions in solid-state systems [35]. Variations in the cavity geometry, the cavity-QD

energy detuning, and the QD position relative to the maximum of the light electric field in

the cavity and to the plasmonic structure provide an experimental opportunity to alter the

QD-cavity photon and QD-surface plasmon interactions strengths in wide limits [36–38]. Fur-

thermore, the use of anisotropic metamaterials as environments for the QDs could provide an

additional important tool to manipulate light matter interactions since, as demonstrated by
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Menon and co-workers, optical topological transitions in these materials significantly mod-

ify photon emission rates [39]. The respective QD-photon dimensionless coupling strength

ξ = 4g/(γQD + γC) varies from ξ ≪ 1 (weak coupling regime) to ∼ 2 (strong coupling)

[36, 40–42] (with γQD(C) to be the population relaxation rates for QD excitons (cavity pho-

tons)). The latter value is comparable with ξ ≈ 5 for single atoms in an optical microcavity

[43]. By making use of the Purcell effect, ξ can be further enhanced by an order of magnitude

by using high-finesse optical cavities [36, 37, 44] with quality Q-factor ∼ 105. Thanks to

the interaction of QDs with overdamped surface plasmons in the neighboring particle, the

QD relaxation dominates with the respective decay rate [29] γQD = 4g2s/γs > γC (see also

Appendix A). Recently, the utility of the strong qubit-photon coupling regimes has been

demonstrated for CQED with flux qubits by Armata et al. in Ref. [45] where, however,

interactions with a strongly dissipative system have not been included.

III. RESULTS AND DISCUSSION

A. Entanglement Formation in Weak and Strong Coupling Regimes

We first study the quantum dynamics of a pulsed system (1) in the weak coupling regime

for the quantum dot/photonic cavities. Representative results are shown in Fig. 2 for

ξ = 0.268. (In the estimate of the respective dimensionless coupling, we use the average

gs = 1
2

∑

i=1,2 g
i
s as the characteristic QD-plasmon interaction strength.) It is seen in the

inset of Fig. 2 that the initial QD population oscillations damp at t ∼ 100 fs after the system

is excited by the laser pulse; at later times the QD populations are not equal to each other

due to the difference in the QD-plasmon coupling strengths. As the result of this asymmetry,

the QD entanglement is formed at tC ≈ 87 fs and reaches the maximum C ∼ 0.42 at t ≈ 220

fs, as seen in the main plot of Fig. 2 (see Appendix B for more details). It is evident from

Fig. 2 that both the cross- and same-cavity correlations g
(2)
ij of the photons decrease starting

from t ≈ tC ; that is, in the same time domain where C(t) > 0. At later times, t > 500 fs, the

correlations reach g
(2)
ij < 0.1, corresponding to strong antibunching of the cavity photons. It

is worth noting that the time dependence C(t) shown in Fig. 2 is qualitatively similar to that

obtained earlier in the simulations in Refs. [16, 17] for plasmonically coupled QDs, for which

the spontaneous photon emission was described as dephasing in the respective QD Lindblad
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operator. Thus, we infer that at ξ ≪ 1, the QD dynamics results in the significant suppres-

sion of the cavity photon correlations, whereas the photon dynamics mainly contributes to

small QD dephasing rates.

To study the effect of QD-photon interactions on the quantum dynamics of the system,

we increased the coupling strength ξ. We found that the results for ξ > 1 significantly differ

from those obtained above in the weak coupling regime. Figure 3 shows our findings for large

coupling ξ = 2.68. It is clearly seen in Fig. 3a in that, after being excited by the driving

pulse at t ≈ 36.3 fs, both the QD and cavity photon populations exhibit oscillations with

the period of t0 ≈ πh̄/g ≈ 217 fs. However, the total population in the system does not

show any significant oscillations (inset in Fig. 3a). The main plot in Fig. 3b shows formation

and subsequent oscillations of the QD concurrence C(t) that accompanies the population

oscillations in Fig. 3a. It is seen that starting from t ∼ 200 fs, C(t) reaches maxima at the

same times when the QD population builds up.

Figure 3b also reveals that, after the initial 150-fs period of relaxation, the cavity photon

cross-correlation function g
(2)
12 (t) exhibits oscillations that are synchronous with the QD con-

currence oscillations. Specifically, the sharp spikes on the g
(2)
12 (t) curve are positioned at the

same moments when C(t) reaches its maxima. The correlation functions g
(2)
11 (t) and g

(2)
22 (t) for

the same cavity photon modes follow a similar pattern, as is evident from the inset in Fig. 3b.

Starting from t ∼ 300 fs, the cavity photons show strong antibunching with g
(2)
min < 0.2 in

time intervals between the maxima. The relative amplitude k = (g(2)max − g
(2)
min)/(g

(2)
max + g

(2)
min)

of the oscillations reaches k > 0.9 that makes it accessible for experimental observations.

(Here, g
(2)
max(min) are the maximum (minimum) values of g

(2)
ij (t) for i, j = 1, 2).

The early-time behavior in Fig. 3b does not show the interesting correlations between

QD concurrence and photon-pair correlation functions. This is because of the nature of the

experiment we are imagining that involves an initial pulse exciting the QDs followed by QD-

metal particle interaction and entanglement via plasmon interactions. These correlations

begin only once a significant concurrence has been established, around 250 fs.
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B. Cavity Photon Entanglement and Correlations in the Strong Coupling Regime

To further understand the effect of the oscillatory dynamics on entanglement, we inves-

tigated the correlation properties of the cavity photons. For that purpose, we restricted the

number of energy levels of the photon cavity modes in the simulations to Nph = 2 for both

cavities. This enabled us to determine the entanglement of photons via Wootters’ concur-

rence Cph(t) for the reduced photon density matrix along with the QD concurrence C(t).

Our findings are summarized in Fig. 4. It is clearly seen in Fig. 4a that, while the concur-

rence of the photon modes Cph(t) oscillates with time similar to that for QDs in Fig. 3a,

the total concurrence Ctot = C +Cph shows a smooth time dependence. In other words, the

entanglement is periodically “transferred” between the QD and photon states synchronously

with the QD and photon population oscillations, with the total entanglement Ctot almost

conserved within one oscillation period. We also numerically calculated the fidelity F (t) of

the photon states relative to the maximally entangled Bell state Ψ− that is, to the (anti-

symmetric) state that mostly contributes to the long-time evolution of the system.[17] It is

evident from Fig. 4a that after t > 250 fs, F (t) oscillates simultaneously with the photon

concurrence Cph(t). Thus, F (t) can be viewed as a qualitative characteristic of the photon

entanglement. We compared F (t) dependence calculated for Nph = 2 with that at Nph = 4

(for which our main results were obtained). As is seen in Fig. 4a, the photon fidelities F (t)

for both cases are close to each other. Moreover, it is also evident from Fig. 4b that, whereas

the photon cross-correlations g
(2)
12 (t) calculated for Nph = 2 and 4 are quantitatively different,

they show similar qualitative time dependences with sharp peaks positioned at the moments

when the QD entanglement reaches its maximum values (arrows). Therefore, based on the

close similarities of the photon fidelities F (t) and the cross-correlation function g
(2)
12 (t) for

Nph = 2 (for which the concurrence can be explicitly calculated) and Nph = 4, we infer that

the cavity photon states emerging in the population oscillations are entangled in both cases.

We also can say that the g
(2)
12 (t) oscillatory time dependence witnesses the underlying QD

entanglement.

It should be noted that the concurrence displayed in Fig. 4a is that associated with the

photonic modes and so will behave in the opposite manner of the QD concurrence owing to

the exchange of entanglement between QD and photonic modes.
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The population and entanglement oscillations observed in the strong coupling regime can

be attributed to formation of a correlated QD excitons-cavity photon state, i.e., an exciton

polariton. (We will refer to the latter as a polariton.) The polariton state is a quantum

superposition of an exciton and a cavity photon, and it has been extensively studied in

semiconductor quantum well heterostructures embedded in a high-finesse optical microcavity

(see Refs. [46, 47] and references therein). In our case, however, the excitons – the “matter”

part of polaritons – are localized in QDs. The polariton was recently observed in the strong

coupling regime in CQED experiments [42] with gallium-arsenide (GaAs) QDs embedded in

a photonic crystal nanocavity. In all these cases, pure exciton and cavity photon states are

not the eigenstates of the system. If the system is initialized in one of these states, e.g., by

the laser excitation, the system exhibits Rabi oscillations with the characteristic energy of

h̄g. Our studies demonstrate that, if such a polariton is formed in two entangled QDs, the

entanglement is also transferred to the photon counterpart of the polariton together with

the respective population oscillations.

C. Analytical Model

There have been several model studies of entanglement in related systems involving qubits

coupled to cavities in some fashion [48–51] that can shed some light on the present results.

We find the model of Ref. 48 to be particularly helpful. In this model, qubit (or quantum

dot) A is coupled to photonic cavitiy a, and qubit B is coupled to photonic cavity b with

no direct coupling between A and B or a and b. As such, eigenstates of the model are

easily found and the time-evolution of any initial state can be determined analytically. (We

do not consider any non-Hermitian contributions corresponding to losses so that, in effect,

this model is a strong-coupling limit model.) Of course our case is more complicated with

coupling between A and B induced via an additional plasmonic mode. However, the nature

of our pulsed excitation model and the coupling of the qubits through the plasmonic modes

is such that an antisymmetric entangled state between the qubits is created after a period

of time.

With the model of Ref. 48 in mind, we consider our system in the limit of strong photonic

cavity/qubit coupling (Fig. 3(b)). We imagine that an entangled antisymmetric qubit (or
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quantum dot) state, |Ψ−〉, has been generated via the plasmonic coupling. This state may

be written as

|Ψ−〉 = 1√
2
(−|eA; gB〉+ |gA; eB〉) (6)

where gA, eA and gB, eB denote ground and excited states of the qubits. (In this discussion

it is clearer to use the alphabetical state labeling convention of Ref. 48 as opposed to the

numerical one we have used up to this point.) With no photons in the photonic cavities or

photonic state |0a; 0b〉, the full system state for this case corresponds to |Ψ−
00〉 = |Ψ−〉|0a; 0b〉.

We further assume that some part of this state has also leaked into the cavity modes. While

there are many possible cavity mode states, the lowest energy one of relevance to photon-

pair coincidences is one corresponding to one quantum in cavity mode a and one quantum

in cavity mode b, which we denote |1a; 1b〉. The full system state corresponding to this case

may be written as |Ψ−
11〉 = |Ψ−〉|1a; 1b〉. The time evolution of a superposition of this state

with the originally entangled state with no quanta in the cavity modes is given by

|Ψ(t)〉 = 1

(1 + ε2)1/2

(

|Ψ−
00(t)〉+ ε|Ψ−

11(t)〉
)

(7)

where the time dependence arises simply from expanding |Ψ−
00〉 and |Ψ−

11〉 in terms of the

system’s eigenstates (Appendix C).

If ε is real and the fraction of |1a; 1b〉 photon state is low ε ≪ 1 then the dynamics is

dominated by |Ψ−
00(t)〉. In this case, as shown in Ref. 48, the concurrence between the qubits

is

CAB(t) = cos2(gt), (8)

where g is the coupling between each qubit and its respective cavity. Furthermore, this

concurrence (as we have found in our full calculations with the plasmonic mode coupling,

Figs. 3a and 4a) oscillates between the qubit modes and the photonic cavities. Appendix C

gives a more general expression for CAB(t), as well as the corresponding analysis for same

time two-photon correlation function, g
(2)
ab (t). For small but finite ε we show in Appendix C

that g
(2)
ab (t) contains sin

4(gt) in its denominator, which leads to very strong spikes correlating

with high concurrence in the qubits, just as we have also observed in our full system (e.g.,

Fig. 3b).
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D. Entanglement Storage in High-Quality Cavity Modes

To more fully characterize the effects of coupling with the cavity modes on QD entangle-

ment, we compared the time dependencies for the concurrence C(t) of QDs in the cavities in

the strong coupling regime with that obtained when the cavity modes are absent (an open

geometry with g = 0). In these simulations, we take the QD decay rates to be [36, 52] 50 µeV

and 500 µeV and compared the previoulsy obtained results. Our findings are summarized

in Fig. 5. It is seen that, since the characteristic decay rate of photon modes in high-quality

microcavities with Q ∼ 106 are smaller than the QDs non-radiative population relaxation

rate, the QD concurrence time decay rate is weaker in the case when the QD-cavity photon

mode coupling is present. In other words, the entanglement of QDs in the optical cavities is

stored in the high-quality subsystem (photons) for a longer time compared to QDs in an open

geometry. Specifically, at h̄g = 10 meV, the concurrence of QDs in the cavities is ≈ 4.58×
greater than that in the open geometry at t = 4814 fs for the QD relaxation rate of 500 µeV,

and is 1.35× greater at t = 9027 fs for h̄g = 3 meV and the QD relaxation rate of 50 µeV,

as is seen in the main plot and inset of Fig. 5, respectively. The effective concurrence decay

rate is approximated by the following expression

γ ≈ αQDγQD + αCγC, (9)

where αQD(C) = n̄QD(C)/(n̄QD + n̄C) is the fraction of time, during which the system occupies

the QD (cavity) state, and n̄QD(C) are the time-averaged occupation numbers for the QD

(cavity). Thus, by lowering γC (increasing the cavity Q-factor), one can decrease the over-all

concurrence decay rate, as follows from Eq. (9). If the QD and cavity modes are in exact

resonance, the occupation time average is αQD ≈ αC ≈ 1
2
and, thus, one has γ ≈ 1

2
(γQD+γC).

However, under the off-resonant strong coupling conditions, the average occupation time of

the cavity mode can be αC > 1
2
if the photon-like polariton is excited by the driving pulse.[46]

The latter potentially enables one to further lower the concurrence decay rate.

Finally, we investigated the effect of the pumping pulse duration and of a continuous

wave (CW) pump on the entanglement formation of asymmetrically coupled QDs in optical

cavities (see Appendix D). We found that during the period of time when the driving pulse

is turned on, the QD and photon populations tend to their equilibrium values whereas the

QD entanglement does not form in both weak and strong coupling regimes. However, the
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QD concurrence C > 0 formed after ∼ 100 fs after the driving pulse is turned off. Therefore,

unlike a CW driven system, the free dynamics of the initially excited system could be used

to generate and optically detect robust QD entanglement. We also found that setting of

the QD-plasmon interaction strength to the same value for both QDs (i.e., where no QD

entanglement was formed) resulted in g
(2)
12 (t) → 1 with no photon antibunching observed, as

is detailed in Appendix D.

IV. CONCLUSION

In this work, we have shown how to identify entanglement of coupled QD qubits via cavity

photon correlation measurements. Specifically, our results could contribute to quantum

simulations that utilize exciton-polariton entangled states [53]. The obtained results may

help one to determine, through optical experiments, the exciton and/or photon entangled

states [54] revealed in recent experiments with quasi-two-dimensional core-shell nanoplatelets

[55]. The conservation of total entanglement we have seen in the strong coupling limit of the

cavity/QD qubit interactions also suggests a novel means of preserving entanglement.

By considering cavity-photon and QD exciton dynamics coupled with surface plasmons

optically excited by a femtosecond laser pulse, we showed that the character of the QD

entanglement formation is different in strong and weak coupling regimes between the photons

and QDs – oscillatory vs slowly decaying entanglement. In both regimes, the same-time pair

correlation function g
(2)
ij (t) of the cavity photons is sensitive to the QD concurrence formation.

In particular, in the strong photon-QD coupling regime, g
(2)
ij (t) peak formation – bunching

– correlates with the QD entanglement formation. This can be understood as the effect of

the entanglement oscillations between the QD and the cavity photons due to the exciton

polariton formation. In the time intervals between the peaks, the photons emitted by the

entangled QDs strongly antibunch, g
(2)
ij (t) < 0.2. This behavior contrasts with g

(2)
ij (t) ≈ 1

for unentangled QDs, enabling direct optical detection of QD qubit entanglement.

The correlations exhibited in our proposed quantum dot/photonic cavity system can

seem surprising. For example, often non-classical (e.g., entangled) states are associated with

anti-bunching or small values of pair correlation function g(2) and this has been shown for

plasmon-QD systems [25]. (See, however, different behavior for Gaussian squeezed states

12



[56].) However, keeping in mind we are engineering strong coupling between the photonic

modes and the QDs, there is an exchange of entanglement between these subsystems. Thus,

when the QDs are non-classical the photonic modes are not, and vice versa, leading to the

photon pair correlation function paralleling the concurrence behavior of the QDs.

To experimentally achieve the solid-state photonic qubit system (Fig. 1) proposed one

could use, as quantum dots, the cadmium selenide (CdSe) nanoplatelets of Ref. [55]. While

metal nanoparticles represent one avenue for the mode coupling the two QDs, a silicon

microdisk resonator supporting a weakly dissipative mode might be more easily used. The

two photonic cavity modes could be realized with high quality photonic crystals composed

of silicon nitride, for example. Finally, one can envision optical fibers connected to the

two photonic crystals that would lead to photon coincidence detectors for the time-resolved

pair correlation function measurements [32, 33]. Such an experimental setup would need

sub-picosecond resolution for the detection of the spikes in the g(2) signal, which has yet to

be demonstrated. Alternative physical systems which also demonstrate dissipation-driven

entanglement and would have significantly longer timescales, such as plasmonically-coupled

nitrogen vacancy centers [57], could also be used.
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Appendix A: Simulation parameters

The pulse intensity is characterized by the fluence [16, 17, 29]

F =
∫ ∞

−∞
dt
√
εmedcε0E

2(t), (A1)
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where εmed = 2.25 is the relative dielectric constant of the surrounding polymer matrix, c

is the speed of light in vacuum, and ε0 is the vacuum permittivity. In the simulations, we

restricted the number of plasmon (cavity photon) energy levels of the underlying physical

system Hamiltonian Ĥ0 to Nph(pl) and then numerically integrate Eq. (1) in the main text.

The effect of the electromagnetic interactions of the QD excitons with the damped sur-

face plasmon system in a neighboring metal particle or nanostructure is two-fold. First, the

asymmetry in the QD-plasmon coupling, ∆gs 6= 0 induces a spontaneously formed entan-

glement of the QD excitonic states [15, 17] with the maximum entanglement achieved at

g1s/g
2
s ≈ 1/

√
3 [16]. Here, the asymmetry in the QD-plasmon coupling strength is defined as

∆gs ≡ g1s − g2s , (A2)

the upper index i = 1, 2 in gis marks the quantum dots, as defined in the main text.

Second, due to the Purcell effect, the interactions modify the exciton non-radiative decay

rate, compared to that in an isolated dot, to γQD = 4(gs)
2/γs [29] (with gs to be the

averaged QD-plasmon interaction strength, as defined in the main text). The latter results

in the modified effective coupling constant (γQD ≫ γC)

ξ =
gγs
g2s

(A3)

for the symmetric, superradiant exciton states in the coupled QDs. However, the antisym-

metric, subradiant collective exciton states are only weakly coupled to the plasmonic system

[16] thus, the non-radiative decay γQD dominates in this case. In the pulsed pumping, the

symmetric and antisymmetric states are initially excited, but the symmetric state rapidly

decays due to coupling with surface plasmons thus, controlling the fast population damp-

ing mechanism in the system. Thus, we characterize our system via the effective coupling

constant ξ, as defined in Eq. (A3) above.

Appendix B: Symmetrically coupled quantum dots

To demonstrate that the formation of the QD entanglement is the key factor influencing

the cavity photon correlation pattern described above, we studied the dynamics of the system

with symmetrically coupled QDs, that is with ∆gs = 0. It is known that the concurrence

formed in plasmonically coupled QDs is negligible when the coupling values are equivalent
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[16, 17]. Our results obtained for ξeff = 2.68 are shown in Fig. 6. It is seen that in this case

the QD concurrence is C(t) < 0.06 in accordance with the existing theory and simulations in

Ref. [16, 17]. It is also evident from Fig. 6 that the cavity photon cross-correlation function

g
(2)
12 (t) rapidly approaches unity.

Appendix C: Analytical model

In this Appendix section, we present the analytical model, which is sketched in Sec. IIIC

of the main tex. As is mentioned in the main text, in this part we use the notation of Ref.

48 that is, qubit (or quantum dot) A(B) is coupled to photonic cavitiy a(b). Following the

model [48], we consider the case where there is no direct coupling between A and B or a and

b. Below we use the following shorthand notations for the states of QD A and cavity a,

|0Aa〉 ≡ |gA; 0a〉 (C1)

|1±Aa〉 ≡
1√
2
(±|eA; 0a〉+ |gA; 1a〉) (C2)

|2±Aa〉 ≡
1√
2
(±|eA; 1a〉+ |gA; 2a〉) (C3)

. . . (C4)

|n±
Aa〉 ≡

1√
2
(±|eA; (n− 1)a〉+ |gA;na〉) , (C5)

and similar notations for the states of QD B and cavity b,

|0Bb〉 ≡ |gB; 0b〉 (C6)

|1±Bb〉 ≡
1√
2
(±|eB; 0b〉+ |gB; 1b〉) (C7)

|2±Bb〉 ≡
1√
2
(±|eB; 1b〉+ |gB; 2b〉) (C8)

. . . (C9)

|n±
Bb〉 ≡

1√
2
(±|eB; (n− 1)b〉+ |gB;nb〉) . (C10)

Here |eA(B)〉 and |gA(B)〉 are the respective excited and ground state of the QD A(B) and

na(b) = 0, 1, 2 . . . labels the number of quanta in the respective states a(b).
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The full system eigenstates are

|0Aa, 0Bb〉, |0Aa, 1
−
Bb〉, |0Aa, 1

+
Bb〉, |1−Aa, 0Bb〉, |1+Aa, 0Bb〉, . . . (C11)

with the energies λ±
a(b) = na(b)±√

na(b)ga(b), where ga(b) are the photon–QD coupling strength

in cavity a(b).

In the case where the quantum dots are entangled in an antisymmetric Bell state at t = 0,

|Ψ−〉 = 1√
2
(−|eA; gb〉+ |gA; eB〉) , (C12)

and the initial photon population in the cavities are zero, the initial state of the system is

|Ψ−
00(0)〉 = |Ψ−〉|0a; 0b〉. (C13)

At a later moment of time, the state of the system was determined as a solution of the

Schrödinger equation for QD excitons and cavity photons:

|Ψ00(t)〉 =
1

2

[

e−i(ω0−g)t
(

|1−Aa; 0Bb〉 − |0Aa; 1
−
Bb〉

)

e−i(ω0+g)t
(

|0Aa; 1
+
Bb〉 − |1+Aa; 0Bb〉

)]

(C14)

Here we suggest that the excitons in QDs A and B are coupled with the cavity modes with

the same strength, ga = gb ≡ g (as in the main text) and set h̄ = 1.

In the case where the initial photon population is one photon per cavity, the initial state

of the system is

|Ψ−
11(0)〉 = |Ψ−〉|1a; 1b〉. (C15)

At a later moment of time, the state of the systems is

|Ψ−
11(t)〉 =

1

2
√
2
e−3iω0t

4
∑

i=1

φie
−iλit (C16)

where

φ1 = |1+Aa; 2
+
Bb〉 − |2+Aa; 1

+
Bb〉 (C17)

φ2 = |1−Aa; 2
+
Bb〉 − |2+Aa; 1

−
Bb〉 (C18)

φ3 = |2−Aa; 1
+
Bb〉 − |1+Aa; 2

−
Bb〉 (C19)

φ4 = |2−Aa; 1
−
Bb〉 − |1−Aa; 2

−
Bb〉 (C20)

16



and

λ1 = (
√
2 + 1)g, λ2 = (

√
2− 1)g, (C21)

λ3 = −(
√
2− 1)g, λ1 = −(

√
2 + 1)g. (C22)

As it follow from numerical analyses in the main text, at large time the occupation of

cavity photon modes is low. In this case, one can approximate the state of the system as a

linear combination of wave functions (C14) and (C16), see Eq. (7) in the main text.

We calculated the pair correlation function of cavity photons, as defined in the main text.

For the state vector |Ψ(t)〉, Eq. (7), the photon population is the following,

na(t) = nb(t) ≡ 〈Ψ(t)|ĉ†aĉa|Ψ(t)〉

=
1

4 (ε2 + 1)

[

1 + 4ε2 − ε2 cos
(

2
√
2gt

)

+
(

ε2 − 1
)

cos(2gt)
]

(C23)

The un-normalized photon pair cross-correlation function for photons in the same state is

G
(2)
ab (t) = 〈Ψ(t)|ĉ†aĉ†bĉbĉa|Ψ(t)〉 = ε2

2 (ε2 + 1)
cos2(gt)

(

3− cos
(

2
√
2gt

))

. (C24)

The normalized correlation function for photons is defined by the usual relation

g
(2)
ab (t) =

G
(2)
ab (t)

na(t)nb(t)
, (C25)

where G
(2)
ab (t), na(t) and nb(t) are defined in Eqs. (C23) and (C24).

For the sake of convenient notations, we number the basis functions of the QDs as follows:

0 = |0, 0〉, 1 = |0, 1〉, 2 = |1, 0〉, 3 = |1, 1〉 where the first (second) index shows the occupation

of QD A(B). In these notations, the reduced density matrix of the QDs, ρij , in the state (7)

has the following non-zero matrix elements:

ρ00 =
1

8 (ε2 + 1)

[

2ε2 cos(2gt)− 2ε2 cos
(

2
√
2gt

)

− ε2 cos
(

2
(√

2− 1
)

gt
)

−

ε2 cos
(

2
(

1 +
√
2
)

gt
)

− 4 cos(2gt) + 2ε2 + 4
]

(C26)

ρ03 = ρ30 =
ε

ε2 + 1
sin2(gt) cos

(√
2gt

)

(C27)

ρ11 = ρ22 =
1

8 (ε2 + 1)

[

ε2 cos
(

2
(√

2− 1
)

gt
)

+ ε2 cos
(

2
(

1 +
√
2
)

gt
)

+

2 cos(2gt) + 2ε2 + 2
]

(C28)
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ρ12 = ρ21 = − 1

4 (ε2 + 1)
cos2(gt)

(

ε2 cos
(

2
√
2gt

)

+ ε2 + 2
)

(C29)

ρ33 = ερ03 =
ε2

ε2 + 1
sin2(gt) cos2

(√
2gt

)

. (C30)

The Wootters’ concurrence [31] of the QDs determined for the density matrix (C26)–(C30)

is

C = max(0, α1 − α2 − α3 − α4) (C31)

where αi (i = 1...4) are the square roots of the eigenvalues of the spin-flipped density matrix,

ρ11 ± ρ12,
√
ρ00ρ33 ± ρ13 (C32)

taken in the descending order.

The normalized correlation function of cavity photons, g
(2)
ab (t), and quantum dot concur-

rence, C, calculated via Eqs. (C25) and (C31) for the state |Ψ(t)〉, Eq. (7), are shown in Fig.

7. It is seen in the figure that the peaks at the photon g
(2)
ab (t) curve are positioned at the

same moments of time, at which the QD concurrence reached its maximums, in agreement

with the results of our simulations in Fig. 3a.

At small ε ≪ 1, the normalized photon cross-correlation function is

g
(2)
ab (t) =

2ǫ2 cos2(gt)
(

3− cos
(

2
√
2gt

))

sin4(gt)
. (C33)

To the same approximation, the square roots of the eigenvalues of the spin-flipped density

matrix in Eq. (C31) become

1

2
(1 + cos(2gt))

+
1

8
ǫ2

[

2 cos
(

2
√
2gt

)

cos2(gt)− 2 cos2(gt)− 2 cos(2gt) + cos
(

2
(√

2− 1
)

gt
)

+cos
(

2
(

1 +
√
2
)

gt
)]

, (C34)

1

2
ε2 sin2(gt) sin2

(√
2gt

)

, (C35)

ε

[

1√
2

(

(1− cos(2t)) sin2(t) cos2
(√

2t
))1/2 − sin2(t) cos

(√
2t

)

]

, (C36)

ε

[

1√
2

(

(1− cos(2t)) sin2(t) cos2
(√

2t
))1/2

+ sin2(t) cos
(√

2t
)

]

. (C37)
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Appendix D: Continuous wave pumping

To study the effect of the CW pumping on the system dynamics, we simulate the quantum

dynamics of the system under very long laser pulse durations up to 700 fs. In these simu-

lations, the semiclassical electric field of the laser pump is taken to be E(t) = E0(t) cos(ωt)

with the envelope function

E0(t) = Emax
(tanh[(tc − t0)/δ] + 1)−1 + (tanh[(t1 − tc)/δ] + 1)−1

(tanh[(t− t0)/δ] + 1)−1 + (tanh[(t1 − t)/δ] + 1)−1
. (D1)

where Emax is the maximum value of the electric field in the pulse, and tc = 1
2
(t1 − t0)

marks the middle of the time domain where the pulse is applied. For the pulse duration

∆t ≡ t1 − t0 = 20 fs and width δ = 10 fs, the pulse (D1) approximates the Gaussian pulse

that we used in the main text.

Here we vary the pulse duration ∆t from 20 fs to 720 fs. In all simulations, we observe that

within the time domain where the pulse is applied, t0 − δ < t < t1 + δ, the QD concurrence

is equal to zero, and the cavity photon correlation function was g
(2)
12 ≈ 1. A typical output

of the simulations is shown in Fig. 8. We also find that approximately 100− 300 fs after the

pulse is switched off, the entanglement of the QD states occurs (Fig. 8b). At the same time,

the photon correlation function is decreased, g
(2)
12 < 1, which further confirms our conclusion

about the photon antibunching in states with entangled QDs.

We did not observe formation of the QD entanglement within the time domain t0 − δ <

t < t1 + δ when the pulse is turned on. Thus, we infer that the presence of the external CW

laser pumping destroys the entanglement in the system and, at the same time, results in

virtually coherent emission of cavity photons by the QDs with g
(2)
12 ≈ 1. This conclusion is

in qualitative agreement with the results of existing numerical and analytic analyses of the

plasmonically coupled QD dynamics in Ref. [17].
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[48] M. Yönaç, T. Yu, and J. H. Eberly, “Pairwise concurrence dynamics: a four-qubit model,” J.

Phys. B: At. Mol. Opt. Phys. 40, S45–S59 (2007).

[49] W. Shu and T. Yu, “Exact coherence dynamics mediated by a small environment,” J. Phys.

B: At. Mol. Opt. Phys. 44, 225501 (2011).

[50] Y.-L. Dong, S.-Q. Zhu, and W.-L. You, “Quantum-state transmission in a cavity array via

two-photon exchange,” Phys. Rev. A 85, 023833 (2012).

[51] Y. Rong-Can, Z. Peng-Fei, G. Yan-Qiang, and Z. Tian-Cai, “Quantum entanglement dynamics

of two atoms in two coupled cavities,” Commun. Theor. Phys. 57, 195 (2012).

[52] K. E. Knowles, E. A. McArthur, and E. A. Weiss, “A multi-timescale map of radiative and

nonradiative decay pathways for excitons in CdSe quantum dots,” ACS Nano 5, 2026–2035

(2011).

[53] D. G. Angelakis, ed., Quantum Simulations with Photons and Polaritons (Springer, Cham,

2017).

[54] O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from

a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).

23



[55] X. Ma, B. T. Diroll, W. Cho, I. Fedin, R. D. Schaller, D. V. Talapin, S. K. Gray, G. P. Wieder-

recht, and D. J. Gosztola, “Size-dependent biexciton quantum yields and carrier dynamics of

quasi-two-dimensional core/shell nanoplatelets,” ACS Nano 11, 9119–9127 (2017).

[56] M. Stobinska and K. Wodkiewicz, “Witnessing entanglement with second-order correlations,”

Phys. Rev. A 71, 032304 (2005).

[57] Wan-li Yang, Jun-Hong An, Cheng-jie Zhang, Chang-yong Chen, and CH Oh, “Dynamics

of quantum correlation between separated nitrogen-vacancy centers embedded in plasmonic

waveguide,” Scientific reports 5, 15513 (2015).

24



(a)
!"#$%&'('''''''''''''''''''''''''''''''''''''''''''''!"#$%&')'''''''''''''''''''''''''''''''''''''''''''''

*+'(''''''''''''''''''''''''''''''''''''''''''''' *+')'''''''''''''''''''''''''''''''''''''''''''''

,"-./"0%$123

!"#$"%&'('"#)*+

+,--'&$#.,"/) %012*

!"#$"%&'('"#*/#,-$%'(b)

QD1 QD2

Nanoparticle
Cavity 1 Cavity 2

FIG. 1. (Color online) Schematic of the system. (a) Two quantum dot (QD) qubits are embedded

into optical cavities and coupled with plasmonic modes in a neighboring metal nanoparticle. The

chosen setup with two individual cavities, each of them encloses a single QD, enables one to sep-

arately tune the QD-photon and QD-plasmon coupling strengths. (b) Graphical representation of

our model: the two-level QDs are coupled with plasmonic modes and photon cavity modes; gray

arrows shows the respective coupling. In our calculations, the QDs and plasmons are excited by

a laser pulse with full width at half maximum of 20 fs. We show that QD qubit entanglement,

defined as Wootters’ concurrence C, can be both detected via the g(2) pair correlation function of

the cavity photon and stored in high-quality optical cavities.
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FIG. 2. (Color online) The dynamics of the system for weak QD-cavity photon coupling, ξ = 0.268:

QD concurrence C(t) and the same-time cavity photon pair correlation function g
(2)
ij (t) (main plot),

and the QD population (inset). The system is optimally assembled with the QD-plasmon coupling

constants ratio of 1/
√

3 that maximizes the QD entanglement; h̄gis = 30 and 17.3 meV for i = 1

and 2, respectively; h̄g = 1 meV; h̄γs = 150 meV; the QD decay and dephasing rates are 0.05

µeV and 8.6 µeV; the respective photon decay and dephasing rates are 0.1 meV and 8.6 µeV; the

transition dipole moments for the surface plasmons and QDs are ds = 4000 D and di = 13 D; the

energy level spacing of the QD and cavity photon systems is h̄ω = 2.05 eV (Refs. [16, 17, 42]). The

maximum electric field in the driving pulse is reached at t = 36.3 fs.
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FIG. 3. (Color online) Oscillatory dynamics of the system in the strong coupling regime ξ = 2.68.

(a) Population of QD 1 and 2 and photon population in cavities 1 and 2. Inset shows the total

population in the system as a function of time t. (b) QD concurrence and photon correlation

functions. Vertical arrows in the inset approximate the moments at which the QD concurrence

reaches the maxima, as shown in the main plot. The simulations were done for the same parameters

as in Fig. 2, but the QD-cavity photon coupling constant g was increased 10×.
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FIG. 4. (Color online) (a) Photon and total entanglement and (b) the photon cross-correlations

for the model where the number of photon levels is restricted to Nph = 2. The results are obtained

for the strong coupling regime with the same parameter set as in Fig. 3. It is seen in (a) that

the squared fidelity F 2(t) of the photon state relative to the maximally entangled Bell state Ψ−

follows the photon concurrence. It is evident from (a) that change in the photon level number Nph

from 2 to 4 does not result to significant changes in fidelity F (t) thus, the photons are entangled

at Nph > 2. As is also seen in (b), the cross-correlation function g
(2)
12 calculated for Nph = 2 and

4 shows similar qualitative patterns with sharp peaks positioned at the moments when the QD

entanglement reaches the maximum values in Fig. 3 (arrowed).
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FIG. 5. (Color online) Storage of the entanglement of QDs in high-finesse cavities in the strong

coupling regime, compared to QDs in an open geometry. As is seen in the main plot, at t = 4814 fs,

the concurrence of QDs in the cavities is ≈ 4.58× greater that that with no cavities. The QD

decay rates are 500 µeV (main plot) and 50 µeV (inset); the cavities’ quality factor is Q = 106;

the photon and QD dephasing rates are 8.6 µeV; the cavity photon energy is h̄ω = 2.05 eV; the

cavity photon decay rate is Q−1h̄ω = 2.05 µeV [16, 17, 36, 42, 52]. The strength of the QD-photon

interactions is marked in the plot.
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FIG. 6. (Color online) (a) Population (main plot), QD concurrence and cavity photon correlations

(inset) for equal plasmon coupling, ∆gs = 0. It is seen in the inset that the QD concurrence is

C(t) ≪ 1 and, at the same time, the pair cross-correlation function for the cavity photons tends

to g
(2)
12 (t) ≈ 1 for t > 10 fs. The QD-plasmon interaction strength is the same for both dots,

h̄g1s = h̄g2s = 30 meV; h̄g = 1 meV; h̄γs = 150 meV; the QD decay and dephasing rates are 0.05

µeV and 8.6 µeV; the respective photon decay and dephasing rates are 0.1 meV and 8.6 µeV; the

transition dipole moments for the surface plasmons and QDs are ds = 4000 D and di = 13 D; the

energy level spacing of the QD and cavity photon systems is h̄ω = 2.05 eV.
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FIG. 7. (Color online) Normalized correlation function of cavity photons, g
(2)
ab (t), Eq. (C25) (solid

(red) curve) and quantum dot concurrence, C, Eq. (C31) analytically calculated for the state |Ψ(t)〉

given in Eq. (7) at ε = 0.1. In the figure, the correlation function g
(2)
ab (t) is divided by a factor of

75 for better visibility. It is seen that the peaks at the photon g
(2)
ab (t) curve are positioned at the

same moments of time, at which the QD concurrence reached its maxima, in agreement with the

results of our simulations in Fig. 3a.
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FIG. 8. (Color online) Quantum dynamics of plasmonically coupled QDs and cavity photons

under the action of a long laser pump. The time duration of the laser pulse is ∆t = 720 fs, the

characteristic pulse formation and decay time is δ = 10 fs. The maximum electric field in the

pulse is Emax = 2.5 × 106 V/m. (a) Population of the 1st (QD1) and 2nd (QD2) quantum dots as

functions of time t (left scale). The orange curve shows the shape of the envelope of the laser pulse

E0(t)di where di = 13 D is the transition dipole moment of QD and E0(t) is given in Eq. (D1)

(right scale). It is seen that after the transient oscillations are damped, the QD populations tend to

a steady-state value of 0.5 when the laser pump is turned on and then decrease with time after the

pump is turned off. (b) The QD concurrence (left scale) and the cavity photon cross-correlation

function g
(2)
12 (right scale). The orange curve shows the laser pulse envelope curve (in arb. units).

It is seen that the QD concurrence is C(t) = 0 when the pump pulse is on and then begins to

increase ≈ 180 fs after the driving pulse was switched off. The photons are emitted with g
(2)
12 ≈ 1

when the pulse is switched on. The photons antibunch, g
(2)
12 < 1, when the QD entanglement is

formed after the driving pulse is turned off. In the simulations, the QD-plasmon coupling strength

are 30 meV and 17.3 meV for QD1 and QD2, respectively; the QD-photon coupling strength is 10

meV; the plasmon decay rate is 150 meV; the QD decay and dephasing rates are 0.05 µeV and 8.6

µeV, respectively; the respective photon decay and dephasing rates are 0.1 meV and 8.6 µeV; the

transition dipole moments for the surface plasmons and QDs are ds = 4000 D and di = 13 D; the

energy level spacing of the QD and cavity photon systems is h̄ω = 2.05 eV.
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