
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Classifying quantum data by dissipation
Jeffrey Marshall, Lorenzo Campos Venuti, and Paolo Zanardi

Phys. Rev. A 99, 032330 — Published 20 March 2019
DOI: 10.1103/PhysRevA.99.032330

http://dx.doi.org/10.1103/PhysRevA.99.032330

Classifying quantum data by dissipation

Jeffrey Marshall, Lorenzo Campos Venuti, and Paolo Zanardi
Department of Physics and Astronomy, and Center for Quantum Information Science & Technology,

University of Southern California, Los Angeles, CA 90089-0484

We investigate a general class of dissipative quantum circuit capable of computing arbitrary
Conjunctive Normal Form (CNF) Boolean formulas. In particular, the clauses in a CNF formula
define a local generator of Markovian quantum dynamics which acts on a network of qubits. Fixed
points of this dynamical system encode the evaluation of the CNF formula. The structure of the
corresponding quantum map partitions the Hilbert space into sectors, according to decoherence-free
subspaces (DFSs) associated with the dissipative dynamics. These sectors then provide a natural
and consistent way to classify quantum data (i.e. quantum states). Indeed, the attractive fixed
points of the network allow one to learn the sector(s) for which some particular quantum state is
associated. We show how this structure can be used to dissipatively prepare quantum states (e.g.
entangled states), and outline how it may be used to generalize certain classical computational
learning tasks.

I. INTRODUCTION

It has been shown that the dissipative model
of quantum computation, described by Ref. [1], is
equivalent in computational power to the gate model
[1, 2]. In fact, since there is some built-in robust-
ness to errors within this framework of dissipative
quantum circuits [1, 3, 4], it provides a potential
route to large-scale universal quantum computation.
Moreover, since quantum states can be constructed
to be attractive fixed points of such a dissipative
dynamical system, state preparation is a very nat-
ural application of these circuits [5]. Another key
area where quantum technology may prove to be
beneficial is the field of machine learning [6–9], sev-
eral techniques of which actively exploit dissipative
quantum dynamics [10–14].

In this paper we add to the growing list of dissi-
pation assisted techniques for use in quantum com-
puting. As such, this provides yet another example
where engineered dissipation can be understood as
a resource. In particular we describe a dissipative
quantum network capable of computing Conjunctive
Normal Form (CNF) [and also Disjunctive Normal
Form (DNF)] formulas, which connects all three of
the aforementioned topics of interest: computation,
state preparation, machine learning. Formulas of
this type are of particular interest in the context of
computational learning theory [15].

We achieve this by introducing a local Lindbla-
dian which defines the dynamics of a quantum sys-
tem. The associated fixed points of this dynamics
encode the evaluation of the clauses in the CNF for-
mula. Recently similar techniques have been used to
efficiently transfer quantum states [16].

The circuit construction we introduce preserves
quantum coherence between ‘classical’ states (com-
putational basis states) which have the same evalu-
ation on the clauses in the CNF formula. As such,

this provides a natural way to categorize quantum
data, i.e., according to the resulting subspace par-
titioning of the Hilbert space, upon evolving the
dissipative network. These partitions are in fact
decoherence-free subspaces (DFSs) of the underly-
ing dissipative dynamics [17, 18]. As will be demon-
strated in Sect. III A, this level of classification can
be particularly useful from the perspective of learn-
ing theory.

The inspiration for this work comes partly from
the classical Hopfield recurrent neural network. In
this model, data is classified according to a set
of ‘memories’ or ‘patterns’, to which the network
dynamically evolves towards, i.e. attractive fixed
points of the dynamics. In this manner, the space
of classical bit strings is partitioned according to
the set of memory states. In our model, which is
similar in spirit, data is classified according to the
fixed points of a dissipative quantum evolution, and
the full space is partitioned into sectors according to
DFSs. Our model however in fact goes further in the
sense that it can in addition classify quantum data,
i.e. superpositions of ‘classical’ states.

Based on the model we introduce, we generalize
certain classical notions of data classification, pro-
viding a consistent framework from which to clas-
sify quantum data. We provide a basic outline as
to how this can be used in the context of computa-
tional learning theory, where the data is quantum in
nature.

Another use of this partitioning of the Hilbert
space is in the preparation of quantum states – such
as entangled states – by dissipation alone. This tech-
nique is somewhat different to previous dissipative
state preparation techniques, such as described in
Refs. [4, 5], which effectively use dissipation to en-
act the desired unitary. Our method relies on finding
a CNF formula which will split the space into DFSs
containing the desired states. In fact, one could pre-

2

pare an ensemble of quantum states in this manner.
We also demonstrate how to prepare quantum Prob-
ably Approximately Correct (PAC) states [19, 20].

We discuss and bound errors within this network,
which shows it actually benefits from the engineered
dissipation being as strong as possible, i.e., we are
working in the strongly dissipative regime.

After briefly introducing some well known results,
we will discuss our general framework, and two
propositions from which all of the applications dis-
cussed above are essentially special cases.

A. Background and Notation

Consider the set of all bit strings of length n, X :=
{0, 1}n. We denote the binary variables associated
with x ∈ X by xi ∈ {0, 1}, where x = (x1, . . . , xn).

A CNF formula C is a conjunction (∧) of clauses,
where each of the clauses are disjunctions (∨) of
literals, l. Each literal l is either a variable xj or
its negation ¬xj , for some 1 ≤ j ≤ n. For exam-

ple, C = C1 ∧ · · · ∧ CN , with Ci = l
(i)
1 ∨ · · · ∨ l

(i)
ki

,

where ki ∈ [n]. We will throughout use the notation
[n] := {1, 2, . . . , n}.

We state some standard results pertaining to CNF
formulas and Boolean functions (see e.g. Ref. [15]):

i) Any Boolean function, f : X → {0, 1} can be
represented by a CNF formula (although the
number of clauses may be exponential in n).

ii) Any function f : X → {0, 1}m can be repre-
sented using m CNF formulas; one formula for
each bit of f(x).

iii) A clause Ci of a CNF formula containing ki lit-
erals can be represented, using O(ki) = O(n)
additional variables, by an equivalent, equisat-
isfiable CNF formula where each of the clauses
contain at most 3 literals. Such a formula is
also known as a ‘3-CNF’.

Throughout we will make use of the above three
points, and as such will focus much of our attention
on computing Boolean functions (m = 1) with a 3-
CNF representation, C. We will refer to the explicit
evaluation of C on some particular x ∈ X , using the
notation C(x) ∈ {0, 1}. Similarly, for the evaluation
of a literal l on bit string x we will write l(x) ∈ {0, 1}.

From the perspective of machine learning, one
may be directly interested in the clauses themselves
since these can be thought of as the relevant (ab-
stract) ‘features’ being used by, for example, a ma-
chine learning algorithm to classify data. Imagine
the task of learning a Boolean function f accord-
ing to some particular algorithm. Each time the

algorithm makes an update, it can be thought of as
changing the clauses in a CNF formula relating to
the estimation of f . This induces a partitioning over
the space X , according to the following definition.

Definition 1. Let C = ∧iCi be a 3-CNF formula
over X . Then, x, y ∈ X , belong to the same ‘parti-
tion’, or ‘sector’, of X iff Ci(x) = Ci(y), ∀ i.

For a CNF formula with N clauses, this defines a
partitioning of the space X into at most 2N sectors,
i.e. according to every possible set of features (clause
evaluations) in the data. Note that x, y belonging to
the same sector of course implies C(x) = C(y), but
the converse will not necessarily be true.

We will upgrade these general notions to define
partitions over the Hilbert space, where it will be
shown that Def. 1 provides a natural starting point
for defining quantum data classification by dissipa-
tion. Practically speaking, one is often interested
only in the evaluation of C itself, regardless of the
individual clauses. We will in a similar manner ex-
tend the definition of the Boolean formula C over
classical bit strings, and give it a meaning over the
Hilbert space, allowing us to write such quantities
as C(ψ) where |ψ〉 is a quantum state.

Since the clauses are in this context the most fun-
damental objects, we will first look at the ‘quantum
evaluation’ of individual clauses, Ci(ψ), and then
generalize this to computing 3-CNF formulas over
the Hilbert space, using dissipation.

II. THEORY

We map the above into the quantum realm, where
instead of using n binary variables to encode data,
one considers a system of n qubits. We will occasion-
ally refer to the i-th qubit itself as qi for i = 1, . . . , n.
The Hilbert space HX = span{|x〉}x∈X ∼= C⊗n2 is
therefore of dimension 2n. Here |x〉 := ⊗ni=1|xi〉,
with |0〉, |1〉 eigen-states of the Pauli z operator
σz := |1〉〈1| − |0〉〈0|. We represent an arbitrary
pure state in HX as |ψ〉 =

∑
x∈X ax|x〉, for complex

coefficients (amplitudes) ax which are normalized∑
x∈X |ax|2 = 1. Occasionally we will refer explic-

itly to density operators ρ ∈ L(HX) which are Her-
mitian, positive-semidefinite, trace one, linear oper-
ators acting over the Hilbert space.

A. Dissipative evaluation of 3-CNF clause

Central to the dissipative network which is to be
described, is the ability to dissipatively evaluate a
clause of 3-variables, i.e., C = l1 ∨ l2 ∨ l3, where the
li are either xk or ¬xk, for some k ∈ [n]. That is,

3

given some |x〉 ∈ HX , with x ∈ X , we will compute
C(x).

Let us assume the only three bits of x involved in
C are the i1, i2, i3-th bits, where ij ∈ [n]. Without
loss of generality we will assume these three bits are
distinct. In the quantum setting, this corresponds
to three qubits, qij for j = 1, 2, 3. One can con-
struct a small dissipative network, coupling these
three qubits to an ancilla qubit, a, via a 4-local Lind-
bladian [21, 22], as in Fig. 1.

We define this Linbladian

L· = γ

(
L · L† − 1

2
{L†L, ·}

)
(1)

by a single Lindblad (jump) operator which acts on
these 4 qubits as

L = Π¬ ⊗ σ−,
Π¬ := |¬l̄〉〈¬l̄|,
|¬l̄〉 := |l1 = 0, l2 = 0, l3 = 0〉.

(2)

The second term in the tensor product of L acts
on the ancilla qubit a [23], Π¬ depends entirely on
the form of C and acts on the qij (j = 1, 2, 3), and
γ > 0 is the strength of the dissipation. The initial
state of the ancilla qubit is assumed to be |a〉 = |1〉.

The notation should be interpreted as follows. If for
example a clause is given by

C = xi ∨ ¬xj ∨ xk, (3)

the projector will be given by Π¬ = |0, 1, 0〉〈0, 1, 0|,
acting on the i, j and k-th qubits (qi,j,k). This fol-
lows by writing l1,2,3 = 0, where here l1 = xi,
l2 = ¬xj , l3 = xk, which in our notation gives

|¬l̄〉 = |xi = 0, xj = 1, xk = 0〉, (4)

i.e. Π¬ = |0, 1, 0〉〈0, 1, 0| acting on the qubits qi,j,k
respectively.

The projector Π¬ projects out any state not of the
form |l1 = 0, l2 = 0, l3 = 0〉, i.e., the case in which
the clause C evaluates to 0. In this case, the ancilla
state is accordingly flipped to |0〉 by σ−.

We make the following claim.

Proposition 1. Let Et := etL be the evolution oper-
ator, under Lindbladian L defined by single Lindblad
operator Eq. (2). Then the evolution of a matrix el-
ement |x〉〈y|⊗|1〉〈1|, where x, y ∈ X , and the second
term in the tensor product refers to the ancilla qubit
a, is

Et (|x〉〈y| ⊗ |1〉〈1|) = |x〉〈y| ⊗
{
e−γt|1〉〈1|+ (1− e−γt)|c〉〈c| if C(x) = c = C(y)
e−γt/2|1〉〈1| if C(x) 6= C(y).

(5)

Note, if C(x) = 1 = C(y), there is strictly no evo-
lution, since in this case, by construction, L|x, 1〉 =
L|y, 1〉 = 0.

Proof. Consider a disjunction of three literals, C =
l1∨l2∨l3, where lj is either xij , or ¬xij , for some ij ∈
[n]. That is, C(x), for x ∈ X , is fully determined by
the (distinct) bits ij in x, for j = 1, 2, 3.

Let L be a Lindbladian defined by Eqs. (1), (2)
with the Lindblad operator L acting on (distinct)
qubits i1, i2, i3, and an ancilla qubit.

Let x, y ∈ X . Then

L|x〉〈y| ⊗ |1〉〈1| =

|x〉〈y|
⊗ γ(|0〉〈0| − |1〉〈1|) if C(x) = 0 = C(y)

−γ2 |1〉〈1| if C(x) 6= C(y)
0 if C(x) = 1 = C(y)

(6)

The conditions on the RHS of the above all come
directly from the form of L:

i) If C(x) = 0 = C(y), then lj(x) = 0 = lj(y)
for j = 1, 2, 3. Hence, L|x, 1〉 = |x, 0〉, and
L|y, 1〉 = |y, 0〉. Similarly, L†L|x, 1〉 = |x, 1〉,
and L†L|y, 1〉 = |y, 1〉.

ii) If C(x) 6= C(y), either L|x, 1〉 = 0 and
L†L|y, 1〉 = |y, 1〉, or L†L|x, 1〉 = |x, 1〉 and
L|y, 1〉 = 0.

iii) If C(x) = 1 = C(y), then ∃ j, k such that
lj(x) = 1 = lk(y). Hence L|x, 1〉 = 0 = L|y, 1〉.

Moreover, since

L|x〉〈y| ⊗ |0〉〈0| = 0, (7)

the form of Eq. (5) is clear.

We provide some additional comments regarding
this result:

1) For input state |x〉〈x| (with x ∈ X), in order to
guarantee with probability of 1−ε of obtaining
result C(x) upon measuring the ancilla qubit,

4

FIG. 1. Three input qubits qij (yellow, top), coupled
dissipatively to an ancilla qubit a (blue, bottom), via a
4-local Lindbladian (represented by the four solid lines,
and the solid dot in the center).

it is sufficient to evolve the network for time
t > 1

γ log 1
ε .

That is, in order to guarantee

〈C(x)|TrXEt (ρx) |C(x)〉 ≥ 1− ε, (8)

one requires t > 1
γ log 1

ε , where ρx := |x〉〈x| ⊗
|1〉〈1|, and TrX is the partial trace, tracing out
HX .

2) Coherences |x〉〈y| (x 6= y) are preserved, unless
C(x) 6= C(y).

3) If one wishes to compute a clause of just one or
two literals (instead of three), the construction
and general result is exactly the same except
the projector Π¬ of the Lindblad operator (2)
acts on the appropriate one or two qubits re-
spectively.

4) One can compute a disjunctive normal form
(DNF) clause l1 ∧ l2 ∧ l3 in a similar man-
ner by replacing Π¬ by Π = |l̄〉〈l̄| and σ− by
σ+ in Eq. (2). In this case the ancilla qubit
should be initialized as |0〉. As such, all of our
subsequent results can be equivalently phrased
through DNF formulas.

Point 2) in particular implies the existence of
decoherence-free subspaces [17, 18], defined accord-
ing to

DFSc := span {|x〉 : C(x) = c} , (9)

for c = 0, 1. That is, for |ψ〉 ∈ DFSc, one has
Tra [Et(|ψ〉〈ψ| ⊗ |1〉〈1|)] = |ψ〉〈ψ|, where the partial
trace Tra traces out the ancilla qubit a.

The Hilbert space is partitioned in accordance
with this observation: given an arbitrary quantum
input ρ ∈ L(HX) to the dissipative network, the
quantum map Et will evolve to the fixed point

lim
t→∞

Et (ρ⊗ |1〉〈1|) =
∑

c∈{0,1}

ΠcρΠc ⊗ |c〉〈c| (10)

where Πc :=
∑
x:C(x)=c |x〉〈x| is a projector onto

DFSc (note
∑
c∈{0,1}Πc = I).

That is, the Hilbert space HX contains two ‘co-
herent sectors’ (DFSs) defined by C. States belong-
ing to these sectors are preserved under map Et, and
coherences between the sectors decay away exponen-
tially as e−γt/2.

This simple dissipative network and the resulting
decoherence-free subspaces can therefore be used to
not only evaluate the clause C(x) for x ∈ X . One
can now give meaning to and compute quantities
such as C(ψ) where |ψ〉 ∈ DFSc. In particular in this
case the network will output C(ψ) = c. We will pro-
vide a more rigorous definition below in Sect. II B.

We lastly comment, that in the infinite time limit,
upon tracing out the ancilla qubit, the state of
the system HX , is the same as under a purely de-
phasing Lindbladian defined by jump operator O =∑
x C(x)|x〉〈x|. In particular, our scheme (in the

long-time limit) is equivalent to measurement of the
observable O. That is, the engineered dissipation
can be interpreted as performing the required mea-
surement on the system.

B. Dissipative evaluation of arbitrary 3-CNF

Consider now the more general case where one
wishes to evaluate a 3-CNF formula consisting of N
clauses C = ∧Ni=1Ci. We show how to construct a
dissipative network to achieve this, which uses N
ancilla qubits, each of which is coupled to at most 3
of the input qubits, and evolves in a similar manner
as Eq. (5). The full Hilbert space, of the ‘input’
qubits, and ancilla qubits is therefore of the form
H = HX ⊗ Ha, where Ha is of dimension 2N . We
provide an illustration of this set-up in Fig. 2.

The structure is now much richer, and we will
see the Hilbert space is actually partitioned into (at
most) 2N DFSs, according to the output of each of
the N clauses.

The full Lindbladian acting on the system of n+N

qubits is now given by L =
∑N
i=1 Li, where Li is a

Lindblad generator defined by a single jump oper-
ator, of the form Eq. (2), which acts on the qubits
defined by the i-th clause in C.

Proposition 2. For Et := etL, with L defined as
above, the infinite time evolution of matrix element
|x〉〈y| ⊗ |1〉〈1|, with x, y ∈ X , is given by

lim
t→∞

Et
(
|x〉〈y| ⊗ |1〉〈1|⊗N

)
={

|x〉〈y|
⊗N

i=1 |ci〉〈ci| if ∀i Ci(x) = ci = Ci(y)
0 if ∃ i s.t. Ci(x) 6= Ci(y).

(11)

5

Moreover, under a finite time evolution of input
state |x〉 (x ∈ X), upon measuring the N ancilla
qubits, to successfully obtain Ci(x),∀i with probabil-
ity 1 − ε, it is sufficient to evolve the network for
time t > O(1

γ log N
ε).

Proof. Given a 3-CNF, C = ∧Ni=1Ci, we construct a

4-local Lindbladian L =
∑N
i=1 Li, where Li is de-

fined for each clause, with single jump operator of

the form Eq. (2). Here, Li acts on the three qubits
defined by clause Ci, and the ith ancilla qubit.

The full evolution is in fact easy to calculate ex-
actly, since the individual Lindbladians, Li all com-
mute with each other. Moreover, as can be seen from
Eq. (5), the action of a single Li only changes the
state of the ith ancilla qubit.

These two facts and Prop. 1 imply

Et
(
|x〉〈y| ⊗ |1〉〈1|⊗N

)
=

N∏
i=1

E(i)
t

(
|x〉〈y| ⊗ |1〉〈1|⊗N

)
= |x〉〈y|

N⊗
i=1

{
e−γt|1〉〈1|+ (1− e−γt)|ci〉〈ci| if Ci(x) = ci = Ci(y)
e−γt/2|1〉〈1| if Ci(x) 6= Ci(y)

(12)

… … …

…

FIG. 2. Illustration of a dissipative computational net-
work, capable of computing a 3-CNF with N clauses,
on n variables. The qi represent input qubits, and the
ai are ancilla qubits (where the i-th clause is evaluated).
In this particular example, we show explicitly the clauses
C1 = l1 ∨ l2 ∨ lk and CN = lk ∨ lj ∨ ln, where li is either
xi or ¬xi.

where Et := et
∑N
i=1 Li , and E(i)

t := etLi .
Taking t→∞ gives precisely Eq. (11).
We comment on errors associated with finite-time

evolution, t <∞. In particular, for input of the form
|x〉〈x| (x ∈ X), the probability of correctly obtain-
ing via a projective measurement outcome Ci(x) for
the i-th clause is 1−e−γt. This is precisely the same
calculation as in point 1) following Prop. 1. Since
these N clauses are all independent, in order to cor-
rectly evaluate C(x) = ∧Ni=1Ci(x) with probability
1− ε, one requires

(1− e−γt)N > 1− ε, (13)

and hence t > O(1
γ log N

ε) [24].

One can see from Eq. (12) that this construction
completely generalizes the results of the previous
subsection (i.e. where N = 1), and therefore pro-
vides a richer structure than previously described.
In particular, there are now up to 2N decoherence-
free subspaces, defined according to binary represen-
tation

C̄(x) := (C1(x), . . . , CN (x)), (14)

which uniquely determines the DFS to which |x〉
(x ∈ X) belongs. In particular, the generalization
of (9) is

DFSC̄ := span
{
|x〉 : C̄(x) = C̄

}
. (15)

If indeed C̄(x) = C̄(y), then coherences of the
form |x〉〈y| will be preserved under the time evo-
lution of the dissipative quantum network, and if
|ψ〉 ∈ DFSC̄ , then

Trā
[
Et
(
|ψ〉〈ψ| ⊗ |1〉〈1|⊗N

)]
= |ψ〉〈ψ| (16)

where Trā traces out the N ancilla qubits.
Similarly, for an arbitrary input ρ ∈ L(HX), the

infinite time evolved state is of the form

ρ∞ =
∑

C̄∈{0,1}N
ΠC̄ρΠC̄ ⊗ |C̄〉〈C̄|,

ΠC̄ :=
∑

x∈X : C̄(x)=C̄

|x〉〈x|,
(17)

where Π2
C̄

= ΠC̄ are projectors (
∑
C̄∈{0,1}N ΠC̄ = I)

over HX .
In order for the final state ρt := Et(ρ ⊗ |1〉〈1|⊗N)

to be ε-close [25] to the steady state ρ∞,

‖ρt − ρ∞‖1 < ε, (18)

6

requires (as shown in Appendix A)

t > O

(
n

γ
+

1

γ
log

N

ε

)
. (19)

From Eq. (17) it is apparent that upon evolving an
initial state |ψ〉 ∈ DFSC̄ (i.e. where ΠC̄ |ψ〉 = |ψ〉),
that one can determine C̄ without directly measur-
ing or disturbing sub-system HX itself. That is, one
can learn C̄ passively, whilst still retaining the state
|ψ〉, since here ρ∞ = |ψ〉〈ψ| ⊗ |C̄〉〈C̄|.

In this case it is apparent that one can ‘classify’
a quantum state |ψ〉 ∈ DFSC̄ according to C̄(|ψ〉) =
C̄. The definition is ‘consistent’ in the sense that
C̄(|x〉) = C̄(x), for x ∈ X , where C̄(x) is defined by
Eq. (14). As such we will also write C̄(|ψ〉) = C̄(ψ).

One can generalize this notion as follows:

Definition 2. Let |ψ〉 ∈ HX . Then the ‘DFS-
classification’ of state |ψ〉 is given by a function

C̃ : HX → [0, 1]N , defined by

C̃(|ψ〉) ≡ C̃(ψ) :=
∑

C̄∈{0,1}N
‖ΠC̄ |ψ〉‖2C̄, (20)

where ΠC̄ is given in Eq. (17).

The interpretation of Def. 2 should be clear: Each
DFS in the Hilbert space corresponds to a unique
vertex of the hypercube [0, 1]N . Non-vertex points
correspond to states |ψ〉 which are superpositions be-
tween various DFSs, which, according to Eq. (17),
are the states that become mixed during the time
evolution of the associated dissipative quantum cir-
cuit.

This motivates the straightforward observation:

Lemma 1. Let |ψ〉 ∈ HX . Then, C̃(ψ) = C̄ ∈
{0, 1}N iff |ψ〉 ∈ DFSC̄ .

We now see that Def. 2 completely generalizes
Def. 1; x, y ∈ X belong to the same partition of
X according to Def. 1, iff C̃(x) = C̃(y) in Def. 2.

The i-th clause Ci evaluated on |ψ〉, is given by

the i-th entry of C̃(ψ) from Def. 2 – which we de-

note C̃i(ψ) ∈ [0, 1] – and shows that in the quantum
case, according to this definition, Boolean logic is
replaced by fuzzy logic [26], in accordance with the
DFS partitioning of the space. One would of course
require multiple samples to estimate this quantity
for a given state.

One can now also lift the definition of the Boolean
function C itself over classical bit strings to a func-
tion over the Hilbert space:

Definition 3. Let |ψ〉 ∈ HX . The function Ĉ1 :
HX → [0, 1] is defined by

Ĉ1(|ψ〉) ≡ Ĉ1(ψ) := ‖Πē|ψ〉‖2 (21)

where ē := (1, . . . , 1).

Def. 3 is also fully consistent with the definition of
the underlying classifier C, and therefore generalizes
this Boolean function. In particular, for x ∈ X ,
Ĉ1(|x〉) = C(x). Moreover, if |ψ〉 is of the general
form

|ψ〉 =
∑

x:C(x)=c

ax|x〉, (22)

the network will output Ĉ1(ψ) = c ∈ {0, 1}, with
probability 1− ε.

Inspired by the classical evaluation of a CNF for-

mula, C(x) =
∏N
i=1 Ci(x) for x ∈ X , one may alter-

natively be interested in perhaps the more natural
(fuzzy) generalization:

Definition 4. Let |ψ〉 ∈ HX . The function Ĉ2 :
HX → [0, 1] is defined by

Ĉ2(|ψ〉) ≡ Ĉ2(ψ) :=

N∏
i=1

C̃i(ψ) (23)

where C̃i(ψ) is the i-th entry of vector C̃(ψ) in
Def. 2.

This is also fully consistent with the underlying
classical definition, i.e. Ĉ2(|x〉) = C(x), for x ∈ X .

Moreover, under Def. 4, for |ψ〉 ∈ DFSC̄ , Ĉ2(ψ) =∏N
i=1 C̄i = Ĉ1(ψ) as expected.
In this section, we have shown how one can lift

classical notions pertaining to data classification in
a natural manner to the quantum case. We pro-
vided a practical construction for implementing this
physically, defining a local dissipative computational
network, which naturally evaluates such classifiers,
as in Prop. 2. Not only can the network evaluate
the clauses Ci(x) for x ∈ X of a CNF formula,
but also give a fuzzy logic meaning to Ci(ψ) for
quantum states |ψ〉, and therefore, similarly to the
CNF formula C(ψ) itself. As discussed in Sect. I A,
this framework applies also in the more general case
where C(x) ∈ {0, 1}m.

We now show how to use these ideas for practi-
cal applications relating to quantum learning theory
and state preparation.

III. APPLICATIONS AND EXAMPLES

A. A dissipative quantum data classifier

A common classical machine learning task is,
given labeled samples (x, f(x)) where x ∈ X , and f :
X → {0, 1}m, to build a classifier C : X → {0, 1}m,
such that given a new sample, y, that C(y) = f(y)
with high probability.

7

There are many approaches which attempt to
solve this problem classically, including linear regres-
sion models, Bayesian networks and artificial neural
networks [27].

One such quantum generalization of this type of
task is to learn f(x) given samples of n + m qubits
of the form

|ψi〉 =
∑
x

a(i)
x |x, f(x)〉, (24)

where i labels the sample. Many well-known re-
sults in quantum learning theory are phrased in this
manner, and quantum speed-ups have been demon-
strated [6, 20, 28–31]. Using |ψi〉 as an input into our
quantum network, acting only on the n qubits en-
coding x and the N ancilla qubits defined by the
network (i.e. leaving alone the m qubits encod-
ing f(x)), following from Eq. (17) the infinite time
evolved state is∑
C̄∈{0,1}N

(ΠC̄ ⊗ I)|ψi〉〈ψi|(ΠC̄ ⊗ I)⊗ |C̄〉〈C̄|. (25)

Upon measurement of C̄ in the N ancilla qubits, the
state of the n+m qubits is (up to normalization)∑

x:C̄(x)=C̄

a(i)
x |x, f(x)〉. (26)

That is, the sample |ψi〉 is projected into subspace
DFSC̄ .

We will show by example how using the general
construction outlined in the previous section, one
can build a trainable quantum network, which can
be used to classify quantum data, in accordance with
Defs. 2, 3, 4.

At a high level, the prescription of using our
scheme to learn quantum data consists of four basic
steps:

i) Initialize network configuration: Define a sys-
tem of 4-local Lindbladians which each act on
up to three input qubits, and one unique an-
cilla qubit, as described by Eq. (2).

ii) Evolve the network: Input is a quantum state
of the general form Eq. (24). Evolve network
for time O(nγ + 1

γ log N
ε), where N is the num-

ber of ancilla qubits, and ε the error associated
with finite time evolution. The resulting state
will be ε-close to Eq. (25).

iii) Measurement: Perform post-processing of the
quantum data, e.g. by performing a POVM.

iv) Update: Based on the measurement result in
step iii), update the network configuration and

return to step ii). If no update is required and
the network has converged, subsequent evalua-
tions of the network will correctly classify new
quantum data (to error ε).

We demonstrate these general ideas by a simple
and well known classical example (see e.g. Ref. [15]),
where a priori the space of possible functions from
which one is learning is of exponential size 22n, but
where the problem class can be learned efficiently,
and moreover will require at most 2n ancilla qubits
in our construction.

Note that the goal of the proceeding example is
not to demonstrate a quantum advantage. Rather,
it is to show that using the tools outlined in this
work, certain classical tasks can be generalized to
a quantum setting. Indeed, in the example below,
the update procedure we use in step iv) is entirely
classical in nature. In principle one could achieve
the same outcome (learning the target function f)
by first measuring each of the qubits in the compu-
tational basis – destroying any quantum coherence
– and running the classical algorithm. By using our
network however, we show, as the algorithm pro-
gresses the amount of quantum coherence preserved
after step iii) of the procedure just mentioned, is
increased. An interesting question is whether one
can gain performance advantages using an algorithm
which is inherently quantum.

1. Example: Learning the class of conjunctions

Consider the task of learning the function f : X →
{0, 1} where f is guaranteed to be a pure conjunc-
tion. That is, f is of the form f = f1 ∧ · · · ∧ fk,
where the clauses fi contain just a single literal li
that are of the form xj or ¬xj for j ∈ [n]. Let us
also write for f the corresponding vector of clauses
f̄ = (f1, . . . , fk). Then f̄(x) = (f1(x), . . . , fk(x))
describes the evaluation of the k clauses on input
x ∈ X .

This is in fact an easy problem, and the classical
algorithm to solve it is to start with the hypothesis
C = x1 ∧ ¬x1 ∧ · · · ∧ xn ∧ ¬xn (i.e. a conjunction
of all possible literals), and whenever a positive la-
beled sample (y, 1) is observed, for all yi = 1, remove
the literal ¬xi from C, and similarly for all yi = 0,
remove the literal xi from C.

We will demonstrate the above in a dissipative
quantum network, by utilizing 2n ancilla qubits, and
therefore 3n qubits in total. The initial CNF formula
defining the network is as in the previous paragraph,
from which one constructs the 2-local Lindbladian
L =

∑2n
i=1 Li, where Li acts on input qubit di/2e,

and the i-th ancilla qubit. These Li are defined in
a similar manner as in Eq. (2), instead now with

8

just 2 qubits. We show an example of this initial
network in Fig. 3 (top), where the odd ancilla qubits
(top in figure) compute the positive variables xk,
and the even ancillas compute the negations ¬xk
(k = 1, . . . , n). Explicitly, the Lindbladian L2k−1 is
defined by Eq. 2 with Π¬ = |0〉〈0| acting on the k-
th input qubit (yellow). Similarly, the Lindbladian
L2k is defined by Π¬ = |1〉〈1| also acting on the k-th
input qubit.

Let us first consider the case where labeled states
are promised to be of the form (|x〉, f(x)), where x ∈
X . One evolves the network under L, and measures
the 2n ancilla qubits, obtaining Ci(x) where i labels
each ancilla qubit. We will assume that the network
is evolved for a sufficiently long time at each step so
that the probability of incorrectly computing Ci(x)
is negligible.

Given a positive sample, f(y) = 1, one can delete
any Li from the network which results in the i-th an-
cilla qubit measuring 0, since this implies C(y) = 0.
The network is then re-set and run again, possibly
now with fewer ancilla qubits. Repeating this pro-
cess guarantees the convergence of C to f . The total
number of times one must update the network in this
manner is upper bound by 2n. We show an example
of the network training process in Fig. 3.

It is at this point interesting to note that one can
perform the exact same algorithm if one receives la-
beled quantum states (|ψ〉, f(ψ)) where |ψ〉 is guar-
anteed to be a superposition of classical states all
with the same evaluation on the clauses of f . In
this case, following Defs. 3, 4, f(ψ) ∈ {0, 1}, and the
input state is of the general form

|ψ〉 =
∑

x:f̄(x)=f̄ ′

ax|x〉, (27)

for some f̄ ′ ∈ {0, 1}k such that f(ψ) = f ′1∧· · ·∧f ′k,
and ax arbitrary normalized complex amplitudes.
Note, these samples can also be described equiva-
lently as in Eq. (24), where one first measures the
qubit encoding f(x), since in this case f(x) ≡ f(ψ),
for all x in the sum Eq. (27).

Evolving the network with input |ψ〉, and mea-
suring the ancilla qubits – obtaining outcome C̄ =
(C1, . . . , CN) ∈ {0, 1}N – results in a projection
|ψC̄〉 := ΠC̄ |ψ〉/‖ΠC̄ |ψ〉‖ (as in Eq. (17)), where
N is the number of ancilla qubits in the current
network. Since by assumption f(ψ) = f(ψC̄), if
C(ψC̄) = C1 ∧ · · · ∧ CN disagrees with f(ψ), one
updates the network as above, by deleting the con-
flicting Li which define C.

Once the network is fully trained, given an un-
labeled state |ψ〉 as above, one can evaluate f(ψ)
without directly measuring |ψ〉 itself, i.e., one only
needs to observe the ancilla qubits. Moreover, since
by assumption an input state |ψ〉 ∈ DFSf̄ ′ for some

FIG. 3. Example of a network learning the conjunction
f = x1 ∧ ¬x3, for n = 5. Ancilla qubits are in blue la-
beled ai, and the n data qubits by qi. The initial network
(top) is configured to compute x1 ∧¬x1 ∧ · · · ∧ x5 ∧¬x5
as described by the learning algorithm of the main text.
The top row of ancilla qubits (odd) compute the liter-
als xi, and the bottom row (even) the negations ¬xi.
After training for a sufficiently long time so that the
network has converged, the final network is given by the
bottom diagram, which now has just two ancilla qubits
(blue), corresponding to the computation of x1 ∧ ¬x3.
The Hilbert space therefore has 4 associated DFSs. In-
put (data) qubits are shown in yellow.

f̄ ′, and therefore Πf̄ ′ |ψ〉 = |ψ〉, no coherence is lost
under the network evolution, and the initial state of
the input qubits is the same as the final state; that
is, one can passively classify the state |ψ〉 (i.e. eval-
uate f(ψ)), whilst still retaining the quantum state
|ψ〉. One can therefore classify |ψ〉, and still use |ψ〉
for subsequent computations.

This is quite a unique occurrence, since typically
to obtain any information about a quantum state
requires at least some destructive measurement to
take place.

B. Dissipative preparation of PAC states

In the quantum version [20] of the Probably Ap-
proximately Correct (PAC) model [19], copies of

the state |ψ〉 =
∑
x∈X

√
p(x)|x, f(x)〉 are provided,

where p(x) are probabilities, and f(x) ∈ {0, 1} a
Boolean function which is to be learned. Quantum
states of this type, arising from a ‘quantum example
oracle’, are typically represented by some oracular
unitary Uf such that Uf |x, b〉 = |x, b ⊕ f(x)〉. We
show here that one can produce these states in a
fundamentally different manner using a dissipative

9

(non-unitary) network of the type outlined in this
work.

The goal is to prepare quantum PAC states given∑
x∈X

√
p(x)|x〉. The procedure which follows also

applies to the more general setting where the ampli-
tudes are complex.

We make a small modification to the Lindblad op-
erators L in Eq. (2) as follows:

L = Π¬ ⊗ σ− + (I−Π¬)⊗ σ+. (28)

Then we have:

Proposition 3. Let L be as in Eq. (28) defined
by clause C = l1 ∨ l2 ∨ l3. Then the infinite time
evolution of matrix element |x〉〈y| under the net-
work, given the ancilla state initialized as |+〉 =
1√
2
(|0〉+ |1〉) is

E∞(|x〉〈y| ⊗ |+〉〈+|) = |x〉〈y| ⊗ |C(x)〉〈C(y)|. (29)

Proof. To see this use that Et is linear, and consider
E∞(|x〉〈y| ⊗ |i〉〈j|), for i, j ∈ {0, 1} separately.

Consider the four cases:

L|x, 0〉 =

{
0 if C(x) = 0
|x, 1〉 if C(x) = 1

L|x, 1〉 =

{
|x, 0〉 if C(x) = 0
0 if C(x) = 1,

(30)

and similarly L†L|x, i〉 = δi,¬C(x)|x, i〉 where i ∈
{0, 1}.

One can then write

L (|x〉〈y| ⊗ |i〉〈j|) =

γ|x〉〈y| ⊗ [δi,¬C(x)δj,¬C(y)|C(x)〉〈C(y)|−
1

2
|i〉〈j|

(
δi,¬C(x) + δj,¬C(y)

)
].

(31)

From this one can check – in a similar manner as
the proof of Prop. 1 – that if C(x) = C(y), then

E∞(|x〉〈y|⊗ |i〉〈j|) = δi,j |x〉〈y|⊗ |C(x)〉〈C(y)|. (32)

Similarly, if C(x) 6= C(y), one has

E∞(|x〉〈y| ⊗ |i〉〈j|) = δi,¬j |x〉〈y| ⊗ |C(x)〉〈C(y)|.
(33)

That is, in this latter case, coherences |x〉〈y| remain
only when i 6= j.

The result follows noting that |+〉〈+| =∑
i

1
2 |i〉〈i|+

∑
i 6=j

1
2 |i〉〈j|.

From Prop. 3 it immediately follows that under
the network with N clauses one has in the long time
limit [32] (t→∞)∑

x∈X

√
p(x)|x〉|+〉⊗N →

∑
x∈X

√
p(x)|x〉|f̄(x)〉 (34)

where |f̄(x)〉 = ⊗Ni=1|fi(x)〉 with fi(x) the i-th clause
of f(x) realized as a 3-CNF. Since |f̄(x)〉 contains all
the information required to compute f(x), states of
this type can equivalently be used in the PAC frame-
work. The only complication is that one now has N
additional qubits in the scheme, instead of just 1.
Nevertheless, if one is interested in machine learn-
ing involving CNF or DNF formulas [33] this frame-
work provides an alternative mechanism for obtain-
ing quantum PAC states. This is therefore relevant
even in the original formulation of the quantum PAC
model by Ref. [20] for which formulas in DNF over
the uniform distribution (p(x) = 1/2n) can be effi-
ciently PAC learned on a quantum computer (i.e. in
polynomial time), as compared to the best known
quasi-polynomial classical algorithm [34].

C. Probabilistic preparation of quantum states

By Eq. (17), upon measuring state |C̄〉 of the an-
cilla qubits, the resulting time-evolved input state
is, with probability 1 − ε, ΠC̄ρΠC̄/Tr(ΠC̄ρ), where
ρ was the initial state.

One can use this to prepare quantum states. In
particular, to prepare state |ψ〉, one requires a suit-
able, easy to prepare input state, |ψ0〉, and to de-
fine an appropriate CNF formula so that, for some
C̄ ∈ {0, 1}N , one has ΠC̄ |ψ0〉 ∝ |ψ〉. Then, upon
measuring C̄ in the ancilla qubits, which occurs with
probability 〈ψ0|ΠC̄ |ψ0〉, one has prepared state |ψ〉.

One could also prepare an ensemble of states in
this manner.

1. Preparation of entangled states

Consider for simplicity, two qubits, which we wish
to entangle, that are initially prepared in the prod-
uct state |ψ0〉 = |+〉⊗|+〉. Here, in the z-eigenbasis,
|+〉 := 1√

2
(|0〉 + |1〉). We wish to prepare the Bell

state |ψ+〉 := 1√
2
(|00〉+ |11〉).

This procedure will be effectively the same as per-
forming a projective measurement on |ψ0〉, although
we will in fact not perform any measurement over
HX . This example is interesting therefore for two
reasons: 1) dissipation is used directly to create en-
tanglement, and 2) it provides a novel manner in
which to actually perform a measurement of a quan-
tum system.

To achieve this task, we take the 2-CNF, C =
(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) =: C1 ∧C2, with associated

10

projectors

Π(0,0) = 0, Π(0,1) = |01〉〈01|, Π(1,0) = |10〉〈10|,
Π(1,1) = |00〉〈00|+ |11〉〈11|.

(35)

From this, utilizing two ancilla qubits that are ini-
tialized in the |1〉 state, one can construct a follow-
ing 3-local Lindbladian, L = L1 + L2. These Lind-
bladians are defined by Lindblad operators L1 =
|01〉〈01| ⊗ σ−1 , L2 = |10〉〈10| ⊗ σ−2 , where the second
term in the tensor product acts on a single ancilla
qubit, labeled by 1, 2 respectively. See inset of Fig. 4
for a schematic of the network.

This evolution will partition the space into three
DFSs, and in particular, the infinite time evolved
state is

ρ∞ =
∑

c1,c2∈{0,1}

Pc1,c2 |ψc1,c2〉〈ψc1,c2 |⊗|c1, c2〉〈c1, c2|,

(36)
with the probability of being in each sector af-
ter measurement of the two ancilla qubits PC̄ =
〈ψ0|ΠC̄ |ψ0〉,

P0,0 = 0, P0,1 =
1

4
= P1,0, P1,1 =

1

2
. (37)

The states in each sector are given by

|ψ0,1〉 =
Π(0,1)|ψ0〉√

P0,1

= |01〉

|ψ1,0〉
Π(1,0)|ψ0〉√

P1,0

= |10〉

|ψ1,1〉 =
Π(1,1)|ψ0〉√

P1,1

=
1√
2

(|00〉+ |11〉).

(38)

Note, the (c1, c2) = (0, 0) sector is empty since at
least one of the two clauses in C must be satisfied
by construction. That is, in this case, there is no
such state |ψ0,0〉.

After evolving the network for a sufficiently long
time, one can post-select on the ancilla qubits with
success probability 1

2 to pick out the Bell state:

ρ1,1(t) := Trā

[
Π̃1,1ρ(t)Π̃1,1

]
−−−→
t→∞

|ψ+〉〈ψ+| (39)

where

ρ(t) := Et (|ψ0〉〈ψ0| ⊗ |1, 1〉〈1, 1|) ,
Π̃1,1 := I4 ⊗ |1, 1〉〈1, 1|.

(40)

In Fig. 4 we provide a numerical verification of
this scheme, in which the state of the qubits, upon
post-selecting on (1,1) on the two ancilla qubits,
converges exponentially quickly to the desired max-
imally entangled state.

FIG. 4. Distance to maximally entangled Bell state
|ψ+〉 = 1√

2
(|00〉 + |11〉), under dissipative evolution for

time t (in units of 1/γ). Here, ρ1,1 is the state after post-
selecting on measuring 1 in both ancilla qubits Eq. (39),
which occurs with probability 1/2. Initial state is the
product state |+,+〉. We use three different norms to
evaluate the distance [35]. Inset: the connectivity of the
2+2 qubit dissipative network. q1,2 label the two qubits
which we wish to entangle, and a1,2 are the ancillas used
in our scheme. The solid dots represent the Lindbladian
connectivity, labeled respectively as L1,2.

2. Generating a superposition of all solutions to
3-SAT problem

3-SAT problems are NP-hard optimization prob-
lems, where one must find the solution(s) C(x) = 1
to a 3-CNF formula C.

Given a 3-SAT problem C over n literals, one can
construct a dissipative network (of 4-local Lindbla-
dians) with N ancilla qubits, where N is the number
of clauses in the 3-SAT problem.

The input state to the network is initialized in the

maximal superposition state, |ψ〉 = 1
2n/2

∑2n

i=1 |i〉.
After evolving the network for time t > O(nγ +
1
γ log N

ε), upon measurement of |1〉⊗N of the ancilla

qubits, the resulting state of the input qubits is guar-
anteed (with probability 1− ε) to be

|S〉 =
1√
Ns

Ns∑
s=1

|s〉 (41)

where each classical bit string s is such that C(s) =
1. Moreover, there are no other bit-strings with this
property. That is, |S〉 is the uniform superposition
of all solutions to the 3-SAT problem. We strongly
stress however that in general it is exponentially un-
likely to observe such a state; we are not claiming to
have an efficient algorithm to solve SAT problems.

Nevertheless, this general methodology shows po-

11

tential promise in obtaining a fair sampling for cer-
tain problems, which is typically challenging on cur-
rent quantum optimization devices [36].

IV. DISCUSSION

We have shown how to evaluate 3-CNF (and DNF)
clauses (and hence arbitrary Boolean functions) us-
ing dissipative quantum dynamics. We did this by
providing a way to construct a dissipative network
consisting of 4-local Lindbladians, where upon mea-
suring a subset of the qubits in the network, one
can evaluate the CNF formula. We also showed
that errors associated with a finite time evolution
can be made arbitrarily small. The CNF structure
naturally partitions the Hilbert space into sectors in
which coherence is preserved, i.e., decoherence-free
subspaces. This provides a route to generalize clas-
sical notions of data classification, lifting the defi-
nitions to the case where the data is quantum in
nature. In particular, we achieve this task by clas-
sifying quantum data according to the partition, or
DFS, to which a particular state belongs, which itself
is defined by the dissipative network.

This has applications in state preparation, and
perhaps more interestingly, machine learning. We
provided one such example, but have hopefully have
demonstrated the general applicability of these tech-
niques. Indeed, one can make a connection between
the work presented here, and a Hopfield recurrent
neural network, which we now comment on.

A Hopfield network is a classical pattern recog-
nition and classification machine learning model,
where the ‘patterns’ or ‘memories’ one wishes to as-
sociate new data, are local minima of a pre-defined
energy function. In particular, these patterns act
like fixed points of the total space X of a dynamical
system (where the dynamics is described entirely by
the energy function). We make an analogy between
this classical dynamical system, and the quantum
dynamical systems described in this work defined en-
tirely by dissipative dynamics with attractive fixed
points.

In our model, which is morally similar, data is
classified according to the DFSs of the computa-
tional network, which are analogous to the patterns
of the corresponding Hopfield network. However,
not only can the dissipative networks presented in
this work classify classical data, e.g. compute a func-
tion C(x) ∈ {0, 1} for x ∈ X , they can also classify
quantum data in a consistent manner. Moreover,
given a quantum state |ψ〉 associated to a particular
memory pattern (i.e. a DFS), one can evaluate C(ψ)
passively, without disturbing the state |ψ〉.

We lastly mention that the same type of construc-
tion given in this work may of course be demon-
strated through local unitary evolutions and single-
qubit projective measurements alone. Though this
is true, it misses perhaps the main point; a demon-
stration that engineered dissipation can be used as a
resource for certain machine learning and classifica-
tion tasks. We have given a precise construction for
implementing the tasks described above, where the
engineered dissipation is essentially performing the
measurements of the relevant observables, required
for classifying quantum data according to Defs. 2, 3,
4. Indeed, similar arguments can be made against
any type of dissipative based scheme. In particular,
it is known that the dissipative model of quantum
computation is no more powerful than the unitary
gate model, and that therefore the latter can effi-
ciently simulate the former [2]. Nevertheless, it is
a conceptually interesting observation that purely
non-unitary dynamics can be used to carry out tasks
relevant for machine learning.

This work provides a well defined and consis-
tent starting point for generalizing certain aspects of
classsical machine learning theory, of which numer-
ous applications could benefit. We highlighted sim-
ple examples for demonstrative purposes, but hope
it is clear that the general protocols can be modi-
fied in a multitude of ways to be made applicable
for different applications. It would be interesting for
example to apply these techniques to learning quan-
tum data in the PAC framework [15, 19, 20, 37].

V. ACKNOWLEDGMENTS

We thank Evgeny Mozgunov for reading the paper
and providing useful comments. P.Z. acknowledges
partial support from the NSF award PHY-1819189.
L.C.V. acknowledges partial support from the Air
Force Research Laboratory award no. FA8750-18-
1-004. L.C.V. also acknowledges that this research
is based upon work (partially) supported by the Of-
fice of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity
(IARPA), via the U.S. Army Research Office con-
tract W911NF-17-C-0050. The views and conclu-
sions contained herein are those of the authors and
should not be interpreted as necessarily represent-
ing the official policies or endorsements, either ex-
pressed or implied, of the ODNI, IARPA, or the U.S.
Government. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation
thereon.

12

[1] F. Verstraete, M. M. Wolf, and J. Ignacio Cirac,
“Quantum computation and quantum-state engi-
neering driven by dissipation,” Nat. Phys. 5, 633
(2009).

[2] M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano,
and J. Eisert, “Dissipative Quantum Church-Turing
Theorem,” Phys. Rev. Lett. 107, 120501 (2011).

[3] P. Zanardi, J. Marshall, and L. Campos Venuti,
“Dissipative universal Lindbladian simulation,”
Phys. Rev. A 93, 022312 (2016).

[4] J. Marshall, L. Campos Venuti, and P. Zanardi,
“Modular quantum-information processing by dissi-
pation,” Phys. Rev. A 94, 052339 (2016).

[5] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian,
A. Micheli, and P. Zoller, “Preparation of entan-
gled states by quantum Markov processes,” Phys.
Rev. A 78, 042307 (2008).

[6] E. Bernstein and U. Vazirani, “Quantum Complex-
ity Theory,” in Proceedings of the Twenty-fifth An-
nual ACM Symposium on Theory of Computing ,
STOC ’93 (ACM, New York, NY, USA, 1993) pp.
11–20.

[7] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quan-
tum Algorithm for Linear Systems of Equations,”
Phys. Rev. Lett. 103, 150502 (2009).

[8] S. Lloyd, S. Garnerone, and P. Zanardi, “Quantum
algorithms for topological and geometric analysis of
data,” Nat. Commun. 7, 10138 (2016).

[9] P. Rebentrost, T. R. Bromley, C. Weedbrook,
and S. Lloyd, “Quantum Hopfield neural network,”
Phys. Rev. A 98, 042308 (2018).

[10] A. Monras, A. Beige, and K. Wiesner, “Hidden
Quantum Markov Models and non-adaptive read-
out of many-body states,” arXiv:1002.2337 (2010).

[11] M. Schuld, I. Sinayskiy, and F. Petruccione, “Quan-
tum walks on graphs representing the firing patterns
of a quantum neural network,” Phys. Rev. A 89,
032333 (2014).

[12] M. Schuld, I. Sinayskiy, and F. Petruccione, “The
quest for a Quantum Neural Network,” Quantum
Inf. Process. 13, 2567 (2014).

[13] P. Rotondo, M. Marcuzzi, J. P. Garrahan,
I. Lesanovsky, and M. Müller, “Open quantum gen-
eralisation of Hopfield neural networks,” J. Phys. A
51, 115301 (2018).

[14] J.-ichi Inoue, “Pattern-recalling processes in quan-
tum Hopfield networks far from saturation,” J. of
Phys.: Conference Series 297, 012012 (2011).

[15] M. J. Kearns and U. V. Vazirani, An Introduction to
Computational Learning Theory (MIT Press, 1994).

[16] C. Wang and J. M. Gertler, “Directional Transfer of
Quantum Information by Dissipation Engineering,”
arXiv:1809.03571 (2018).

[17] P. Zanardi and M. Rasetti, “Noiseless quantum
codes,” Phys. Rev. Lett. 79, 3306 (1997).

[18] D. A. Lidar, I. L. Chuang, and K. B. Whaley,
“Decoherence-free subspaces for quantum computa-
tion,” Phys. Rev. Lett. 81, 2594 (1998).

[19] L. G. Valiant, “A Theory of the Learnable,” Com-
mun. ACM 27, 1134 (1984).

[20] N. H. Bshouty and J. C. Jackson, “Learning DNF
over the Uniform Distribution Using a Quantum Ex-
ample Oracle,” SIAM J. Comput. 28, 1136 (1999).

[21] G. Lindblad, “On the Generators of Quantum Dy-
namical Semigroups,” Comm. Math. Phys. 48, 119
(1976).

[22] V. Gorini, A. Kossakowski and E.C.G Sudarshan,
“Completely positive dynamical semigroups of N-
level systems,” J. Math. Phys. 17, 821 (1976).

[23] σ− = |0〉〈1| is defined in the eigen-basis of σz =
|1〉〈1| − |0〉〈0|.

[24] We wish to find t such that (1 − e−γt)N > 1 − ε.
Noting that e−ε > 1− ε, we can instead bound (1−
e−γt)N > e−ε. Using the identity − log(1 − x) <
x

1−x with x = e−γt gives Ne−γt

1−e−γt < ε which can
be rearranged to give the result in the main text,
t > O(1

γ
log N

ε
).

[25] Here ‖ · ‖1 is the trace norm: ‖X‖1 = Tr|X| with

|X| =
√
X†X.

[26] L. A. Zadah, “Fuzzy sets,” Information and Control
8, 338 (1965).

[27] S. Russel and P. Norvig, Artificial Intelligence: A
Modern Approach, 3rd ed. (Pearson, 2010).

[28] E. Aı̈meur, G. Brassard, and S. Gambs, “Machine
Learning in a Quantum World,” in Advances in
Artificial Intelligence (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006) pp. 431–442.

[29] E. Aı̈meur, G. Brassard, and S. Gambs, “Quan-
tum speed-up for unsupervised learning,” Machine
Learning 90, 261 (2013).

[30] D. R. Simon, “On the power of quantum computa-
tion,” in Proc. 35th Annual Symposium on Founda-
tions of Computer Science (1994) pp. 116–123.

[31] R. A. Servedio, “Separating Quantum and Classical
Learning,” in Automata, Languages and Program-
ming (Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2001) pp. 1065–1080.

[32] Similar arguments as in Appendix A apply to
Prop. 3 regarding the evolution time as a function of
error ε, which is therefore still t > O(n

γ
+ 1

γ
log N

ε
).

[33] As mentioned in point 4 following Prop. 1, our
framework can equivalently be used to evaluate both
CNF and DNF formulas.

[34] S. Arunachalam and R. de Wolf, “A Survey of Quan-
tum Learning Theory,” arXiv:1701.06806 (2017).

[35] Here, ‖ · ‖1 is the trace norm, ‖ · ‖2 the Hilbert-
Schmidt norm, and ‖ · ‖∞ the maximum singular
value norm.

[36] B. H. Zhang, G. Wagenbreth, V. Martin-Mayor,
and I. Hen, “Advantages of Unfair Quantum
Ground-State Sampling,” Sci. Rep. 7, 1044 (2017).

[37] S. Arunachalam and R. de Wolf, “Optimal Quan-
tum Sample Complexity of Learning Algorithms,”
in Proc. 32nd Computational Complexity Confer-
ence, CCC ’17 (Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Germany, 2017) pp. 25:1–25:31.

http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1103/PhysRevLett.107.120501
http://dx.doi.org/10.1103/PhysRevA.93.022312
http://dx.doi.org/ 10.1103/PhysRevA.94.052339
http://link.aps.org/doi/10.1103/PhysRevA.78.042307
http://link.aps.org/doi/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1145/167088.167097
http://dx.doi.org/10.1145/167088.167097
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1038/ncomms10138
http://dx.doi.org/10.1103/PhysRevA.98.042308
https://arxiv.org/abs/1002.2337
http://dx.doi.org/10.1103/PhysRevA.89.032333
http://dx.doi.org/10.1103/PhysRevA.89.032333
http://dx.doi.org/10.1007/s11128-014-0809-8
http://dx.doi.org/10.1007/s11128-014-0809-8
http://stacks.iop.org/1751-8121/51/i=11/a=115301
http://stacks.iop.org/1751-8121/51/i=11/a=115301
http://stacks.iop.org/1742-6596/297/i=1/a=012012
http://stacks.iop.org/1742-6596/297/i=1/a=012012
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://arxiv.org/abs/1809.03571
http://link.aps.org/doi/10.1103/PhysRevLett.79.3306
http://link.aps.org/doi/10.1103/PhysRevLett.81.2594
http://dx.doi.org/10.1145/1968.1972
http://dx.doi.org/10.1145/1968.1972
https://doi.org/10.1137/S0097539795293123
http://dx.doi.org/ 10.1007/BF01608499
http://dx.doi.org/ 10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0019-9958(65)90241-X
https://www.pearson.com/us/higher-education/program/Russell-Artificial-Intelligence-A-Modern-Approach-3rd-Edition/PGM156683.html?tab=overview
https://www.pearson.com/us/higher-education/program/Russell-Artificial-Intelligence-A-Modern-Approach-3rd-Edition/PGM156683.html?tab=overview
https://link.springer.com/chapter/10.1007/11766247_37
https://link.springer.com/chapter/10.1007/11766247_37
http://dx.doi.org/10.1007/s10994-012-5316-5
http://dx.doi.org/10.1007/s10994-012-5316-5
https://doi.org/10.1109/SFCS.1994.365701
https://doi.org/10.1109/SFCS.1994.365701
https://link.springer.com/chapter/10.1007/3-540-48224-5_86
https://link.springer.com/chapter/10.1007/3-540-48224-5_86
https://arxiv.org/abs/1701.06806
http://dx.doi.org/10.1038/s41598-017-01096-6
http://dx.doi.org/ 10.4230/LIPIcs.CCC.2017.25
http://dx.doi.org/ 10.4230/LIPIcs.CCC.2017.25

13

Appendix A: Proof of Eq. (19)

Let ρ
(xy)
t = Et(|x〉〈y| ⊗ |1〉〈1|⊗N). By the triangle

inequality and linearity of Et, we have ‖ρt− ρ∞‖1 ≤
22n‖ρ(xy)

t − ρ(xy)
∞ ‖1. We set ‖ρ(xy)

t − ρ(xy)
∞ ‖1 < ε/22n

and directly compute this norm. There are two gen-
eral cases i) C̄(x) = C̄(y), ii) C̄(x) 6= C̄(y).

In i), let us first consider the case where C̄i(x) =

0 = C̄i(y),∀i. Then ρ
(xy)
∞ = |x〉〈y| ⊗ |0̄〉〈0̄| where

|0̄〉 ≡ |0〉⊗N . Then, using Eq. (12),

(ρ
(xy)
t − ρ(xy)

∞)†(ρ
(xy)
t − ρ(xy)

∞)

=
∑

C̄∈{0,1}N
α2
C̄ |y〉〈y| ⊗ |C̄〉〈C̄|

(A1)

with

αC̄ 6=0̄ = e−h(C̄)γt(1− e−γt)N−h(C̄)

α0̄ =
√

(1− e−γt)2N − 2(1− e−γt)N + 1

= 1− (1− e−γt)N
(A2)

where h(C̄) is the Hamming weight of bit-string
C̄. The form of a0̄ comes from the cross terms in
Eq. (A1).

Taking the matrix square root of Eq. (A1) (which
is diagonal), followed by the trace, gives

‖ρ(xy)
t − ρ(xy)

∞ ‖1 = 1− (1− e−γt)N+

N∑
k=1

(
N

k

)
e−kγt(1− e−γt)N−k

(A3)

which can be rearranged (by the Binomial theorem)
to

‖ρ(xy)
t − ρ(xy)

∞ ‖1 = 2(1− (1− e−γt)N). (A4)

Similarly as in the proof of Prop. 2, to guarantee
this is less than ε/22n requires t > O(nγ + 1

γ log N
ε)

as required.

Note, if instead C̄(x) = C̃ = C̄(y) 6= 0̄, the
only difference is that in Eq. (A4), N is replaced by

N−h(C̃), and therefore the final conclusion remains
unchanged.

For case ii), ρ
(xy)
∞ = 0, and if there are m clauses

which differ between x and y (and all others evaluate
to 0), one instead bounds

e−γtm/2

[
N−m∑
k=0

(
N −m
k

)
e−γkt(1− e−γt)N−m−k

]
< ε/22n,

(A5)
which by the Binomial theorem gives t >
O(1

γ log 2n

ε). As before, in the case where the are

clauses Ci(x) = Ci(y) = 1, one instead replaces N
in Eq. (A5) with N −H, where H is the number of
such clauses. The result is unchanged.

Overall then, to achieve ‖ρt − ρ∞‖1 < ε, one
requires evolution time t > O(nγ + 1

γ log N
ε), i.e.

Eq. (19).

	Classifying quantum data by dissipation
	Abstract
	Introduction
	Background and Notation

	Theory
	Dissipative evaluation of 3-CNF clause
	Dissipative evaluation of arbitrary 3-CNF

	Applications and Examples
	A dissipative quantum data classifier
	Example: Learning the class of conjunctions

	Dissipative preparation of PAC states
	Probabilistic preparation of quantum states
	Preparation of entangled states
	Generating a superposition of all solutions to 3-SAT problem

	Discussion
	Acknowledgments
	References
	Proof of Eq. (19)

