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Quantum simulations is a promising field where a controllable system is used to mimic another
system of interest, whose properties one wants to investigate. One of the key issues for such simu-
lations is the ability to control the environment the system couples to, be it to isolate the system or
to engineer a tailored environment of interest. One strategy recently put forward for environment
engineering is the use of metamaterials with negative index of refraction. Here we build on this
concept and propose a circuit-QED simulation of many-body Hamiltonians using superlattice meta-
materials. We give a detailed description of a superlattice transmission line coupled to an embedded
qubit, and show how this system can be used to simulate the spin-boson model in regimes where
analytical and numerical methods usually fail, e.g. the strong coupling regime.

I. INTRODUCTION

One of the most promising applications of quantum
technologies is the simulation of physical phenomena too
complex to be dealt with by other techniques. Amongst
the many possible physical implementations of such sim-
ulations, superconducting circuits take a central role,
with experiments being able to engineer a large number
of different many-body Hamiltonians [1–6] and reaching
regimes that are otherwise challenging for other plat-
forms, e.g. the strong and ultrastrong coupling regime
[7–14].

An important challenge for quantum simulations is
the ability to engineer an adequate environment with
which the simulated system interacts. While some en-
vironments may have a simple, e.g. ohmic spectrum,
some will have more complex, structured spectral den-
sities. Reservoir engineering is a field that has found
widespread applications, such as quantum state prepara-
tion [15–17], steady-state entanglement generation [18–
20] and the study of light-matter interaction in structured
photonic environment [21, 22]. These usually rely on the
creation of media with specific properties, control of the
coupling of the system of interest to its environment or
manipulation of the properties of existing environments.
These approaches complement the use of lumped circuits
to engineer decoherence [23, 24]. One avenue recently
suggested to devise media with a particular spectrum is
the use of metamaterials, more specifically left-handed
metamaterials [25]. Contrary to regular, right-handed
(RH) materials, the eigenfrequecies of left-handed (LH)
materials increase with wavelengths [26]. Coupling RH
and LH media one can thus find materials with new, in-
teresting spectral properties. Such a hybrid material was
shown to have a high density of modes at low frequencies

[27], which could in turn be used to couple an embedded
qubit to multiple environmental modes [25].

The ability to couple a system of interest in a con-
trolled way, to an adjustable number of environmental
modes opens the path to the quantum simulation of a
myriad of different physical phenomena. In this paper
we build on these ideas and show how left-handed super-
conducting superlattices can be used to investigate the
phase diagram of the Spin-Boson model [28] with a novel
structured environment. The superlattice structure in-
vestigated here (for which [25] is a special case) leads to
a 2-band spectrum, with the number of modes in each
band given by the array length. This is used to control
the number of modes with which an embedded qubit in-
teracts, allowing for great flexibility on the design of the
qubit’s environment. As a testbed for our system, we
present a detailed investigation of the phase structure of
the spin-boson model and discover a rich phase diagram.
Our results pinpoint LH superlattice metamaterials as a
tool with interesting properties for microwave photonics.

This article is organized as follow: in sec. II we de-
scribe the coupled transmission line and determine its
spectral properties. In sec III we investigate the interac-
tion of the photonic modes with an embedded qubit. Our
results are obtained by both an analytical and a numeri-
cal approach and we show the phase diagram under weak
coupling. We present our concluding remarks in sec. IV.

II. THE SYSTEM

In this work we will investigate a superlattice structure
consisting of LC resonators in series and its interaction
with the system of interest, a superconducting qubit. A
standard circuit transmission line (TL), e.g. a coaxial
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cable, can be modeled by an LC array of series inductors
and grounded capacitors as shown in Fig. 1 (right side).
In the continuum limit, where the LC unit-cell size tends
to zero while the inductance and capacitance per unit
length are kept constant, this array presents the disper-
sion of the TEM-modes of the transmission line [29]. For
such a system, the group and phase velocities are oriented
parallel and both energy and wavefronts travel away from
the source. These are termed right-handed transmission
lines (RHTL), as these parallel velocities stem from the
electric and magnetic field vectors and the wave vector
forming a right-handed set in three-dimensions [30]. If
we now invert these unit-cells, connecting the inductors
to ground in parallel, while placing the capacitors in se-
ries, the resulting waves will have anti-parallel group and
phase velocities. Now the electric and magnetic field vec-
tors and the wave vector form a left-handed set [31] and
such metamaterials are called left-handed transmission
lines (LHTL). The properties of LHTL include opposite
group and phase velocities as well as a falling dispersion
relation [26, 27] and applications of left-handed materials
range from cloaking [32, 33] to a perfect lens [34, 35].

Recently it was shown that a composite transmission
line, with left-handed and right-handed elements could be
used to engineer the electromagnetic environment expe-
rienced by a superconducting qubit [25]. It constructs on
the fact that a pure left-handed transmission line shows a
cutoff infrared frequency. Close to that cutoff frequency,
the LHTL and therefore also the coupled transmission
line has a high mode density. The RHTL has a linear dis-
persion relation an therefore does not support as many
different modes as the LHTL close to the cutoff frequency.
Therefore, all these modes share similar voltage profiles
with only small variation of wavelengths when entering
the RH part of the transmission line. This permits mul-
timode strong coupling of a qubit embedded in the RH
part of the line to the bosonic modes. The study pro-
posed this system as a test bed to simulate the spin-boson
model [36].

In this paper we build on these ideas and consider
the next step on this approach, namely a superlattice
LHTL consisting of two alternating left-handed LC cells
with different frequencies 1√

LC
, where L = Lsl (L′sl) and

C = Csl (C ′sl) are the inductance and capacitance of
the first (second) cell (see Fig. 1). To avoid unwanted
reflections between cells the characteristic impedance

Z =
√

L
C must match, Zsl = Z ′sl [29]. This means

the inductance must change between the two cells in the
same way as the capacitance. We introduce the param-
eter ε ∈ R to quantify this ratio and set L′sl = εLsl and
C ′sl = εCsl. This superlattice LHTL will then couple di-
rectly to a RH transmission line, impedance matched to
the characteristic impedance of the superlattice. In con-
trast to the metamaterial LHTL which has to be created
with discrete circuit elements, the right-handed part can
be a simple coplanar waveguide.

The above composite transmission line is coupled to

FIG. 1. (Color online) Composite left-handed superlattice
and right-handed transmission line coupled to a qubit. The
superlattice unit cell is formed by two cells, indicated by red
(dark gray) and green (light gray) background. The equiva-
lent discrete circuit model for the RHTL is illustrated.

the (high-temperature) control and measuring part of
the experiment trough coupling capacitors. Finally, a
superconducting qubit inside the RHTL can be designed
to couple to the bosonic modes. We shall now describe
properties of the composite transmission line and in the
next section give details on the qubit and its effective
dynamics.

A. Dispersion relation

For the discrete RHTL, the dispersion relation can be
found to be

ω(kr) =
2√
L̃rC̃r

sin

(
krdr

2nr

)
, (1)

kr,max = π
nr

dr
(2)

where L̃r and C̃r are the corresponding cell inductance
and capacitance, dr is the total length of the line and
nr is the number of cells. Taking the limit nr → ∞
while keeping the inductance and capacitance per unit
length constant, equation (1) reduces to the usual linear
dispersion

ω(kr) ≈
krdr

nr

√
C̃rL̃r

=
kr√
crlr

, (3)

with cr and lr being capacitance and inductance per unit
length.

The dispersion relation of the superlattice can be ob-
tained via its ABCD-matrix, b, which connects incoming
and outgoing voltages and currents of circuit elements as
shown in Fig. 2 [30]:(

Vout

Iout

)
= b ·

(
Vin

Iin

)
, (4)

where Vin and Iin (Vout and Iout) are respectively the
input (output) voltage and current. For an arbitrary cir-
cuit consisting of a series element with impedance Z1

connected in parallel to an element with impedance Z2
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FIG. 2. Incoming and outgoing voltage and current of lattice
cell with impedances Z1 and Z2. The matrix describing the
relations between outgoing and incoming values in terms of
Z1 and Z2 is the ABCD-matrix.

shunted to ground, currents and voltages are related as

Z1 =
V1

I1
=
Vout − Vin

Iin

Z2 =
V2

I2
=

Vin

Iout − Iin
,

where the sub-indices 1 and 2 denote current or volt-
age across the corresponding element. Since our lattice
cells consist of a series capacitance and an inductance to
ground, we can write

Z1 =
1

iωCsl
, Z2 = iωLsl,

for the first lattice cell. The second cell is found by sub-
stituting the corresponding capacitance and inductance.
The resulting ABCD-matrices are

bA =

1− ω2
sl

ω2
1

iωCsl

1
iωLsl

1

 , bB =

1− ω2
sl

ω2ε2
1

iωεCsl

1
iωεLsl

1

 ,

where ωsl = 1√
LslCsl

is the resonance frequency of the first

cell. The matrix of a supercell, the most fundamental
building block of the superlattice, is given by the product
of the two single cell matrices

b = bAbB

=

1− ω2
sl

ω2 (1 + 1
ε + 1

ε2 −
ω2

sl

ω2ε2 ) 1
iωCsl

(1 + 1
ε −

ω2
sl

ω2ε )

1
iωLsl

(1 + 1
ε −

ω2
sl

ω2ε2 ) 1− ω2
sl

ω2ε

 .

(5)

To find the dispersion relation for the superlattice ar-
ray we use a plane wave ansatz

V (z, t) = V0e
i(kz−ωt) (6)

I(z, t) = I0e
i(kz−ωt). (7)

For a supercell of size ∆z, we see that, at fixed times

Vout = e−ik∆zVin (8)

Iout = e−ik∆zIin. (9)

Comparing equations (8) and (9) with the ABCD-matrix
(4), we obtain

e−ik∆zVin = b11Vin + b12Iin

e−ik∆zIin = b21Vin + b22Iin.

Here bij are the {i, j} elements of matrix b. This readily
leads to

(e−ik∆z − b11)(e−ik∆z − b22) = b12b21. (10)

All elements in the superlattice circuit behave inde-
pendent of the direction in which current flows, there-
fore, from reciprocity arguments, it follows that b11b22 −
b12b21 = 1 must be fulfilled [30]. Equation (10) now sim-
plifies to

b11 + b22 = 2 cos(k∆z), (11)

from which the dispersion relation is found to be

ω(ksl) =

√√√√ ω2
sl

(1+ε)2

2 ±
√
ε2(2 cos(ksl∆z)− 2) + (1+ε)4

4

.

(12)
Appendix A describes an alternative formalism to obtain
the dispersion relation based on Euler-Lagrange equa-
tions.

FIG. 3. Mode number vs. frequency of a left-handed super-
lattice transmission line with ε = 2. The periodic structure
gives rise to a band gap with the high frequency band reveal-
ing the left-handedness of the system.

Naturally, as shown in Fig. 3, the superlattice gives
rise to a frequency band gap, which can be found by
looking at the codomain of the cosine in the superlattice
dispersion relation. The two bands are limited to

ω(k) ∈ [ω1−, ω1+] ∪ [ω2,∞)
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with

ω1− =
ωsl

1 + ε
,

ω1+ =
ωsl√

1
2 (1 + ε)2 +

√
1
4 (1 + ε)4 − 4ε2

,

ω2 =
ωsl√

1
2 (1 + ε)2 −

√
1
4 (1 + ε)4 − 4ε2

.

This band gap can also be understood as a result of de-
structive interference from Bragg reflection due to the
two different cells the superlattice consists of. Similar
effects are known from photonic crystals or phonons in
diatomic lattices [37]. Moreover, a signature of the left-
handedness of the coupled line is present in the upper
band, where the frequency decays with growing wave
number. Figure 4 shows the dependency of the band-
width ∆ω = ω1+ − ω1− on the ratio ε of the two su-
perlattice resonance frequencies. One sees that already
moderate changes of ε are enough to decrease the band-
width and therefore increase the mode density by orders
of magnitude.

b
a
n
d
 w

id
th

FIG. 4. Width of the lower frequency band as a function of
the superlattice parameter ε.

B. Eigenmodes of the hybrid transmission line

Equations (3) and (12) relate the wave number and
frequency for a plane wave solution inside the RH and
LHTLs. Now let us see what happens when we couple
both to create a hybrid transmission line. In order to
find the desired eigenmodes, we use a plane wave ansatz
with waves traveling in both directions, because we now
consider a system of finite length and reflections at the
input and output ports. The currents and voltages in

each part of the transmission line are thus

Isl(z, t) = I0(eikslz + α1e
−ikslz)e−iωt

Ir(z, t) = I0(α2e
ikrz + α3e

−ikrz)e−iωt

Vsl(z, t) = V0(eikslz + β1e
−ikslz)e−iωt

Vr(z, t) = V0(β2e
ikrz + β3e

−ikrz)e−iωt.

Naturally, the frequency ω must be the same in the
RHTL and the superlattice to fulfil energy conservation,
whereas the left- and right-handed wave numbers ksl and
kr may differ, by virtue of the different index of refraction
of the two separate TLs.

The unknown coefficients are found from the bound-
ary conditions Isl(0, t) = Ir(dsl +dr, t) = 0 (currents with
nodes at the input and output ports) and Isl(dsl, t) =
Ir(dsl, t) and Vsl(dsl, t) = Vr(dsl, t) (continuity of current
and voltage at the coupling between the lines). In addi-
tion, in the RHTL we use the characteristic impedance

Zr =
√

Lr

Cr
= V +

I+ = −V
−

I− , which relates the amplitudes

V ± = V0β2/3 of right, (+), and left, (−), travelling waves
[29]. In the superlattice, we use the ABCD-matrix to re-
late voltage and current before and after a supercell, sim-
ilarly to section II A. This leads to an over-determined
system of equations for αi, βi and V0 (I0 is chosen as a
free parameter). Leaving out the voltage coupling condi-
tion, we find the following wave equations:

Isl(z, t) = I0(eikslz − e−ikslz)e−iωt

Ir(z, t) = I0α(e−ikrdeikrz − eikrde−ikrz)e−iωt

Vsl(z, t) = ZslI0(eikslz + βe−ikslz)e−iωt

Vr(z, t) = ZrI0α(e−ikrdeikrz + eikrde−ikrz)e−iωt,

with α = − sin(ksldsl)
sin(krdr)

, β = − e
−iksl∆z−b22

eiksl∆z−b22
, Zsl = eiksl∆z−b22

b21

and d = dr + dsl. From the last condition, we finally find
the self-consistency equation

2Zrα cos(krdr)− Zsl(e
iksldsl + βe−iksldsl)

!
= 0,

which can be solved numerically for the frequency ω by
using equations (3) and (12).

C. Density of Modes

The high density of modes (DOM) observed in the
lower band of the superlattice spectrum, Fig. 3, is the
main ingredient required for the type of many-body quan-
tum simulation we wish to study. However, evaluation of
the DOM of the hybrid line is made difficult due to its
discrete nature. In the following we use both a numeri-
cal method and an analytical approximation to find the
DOM. All numerical calculations in this work are per-
formed with ωsl = 1/

√
2 · 6 · 10−23Hz ≈ 91.3GHz, ωr =

1/
√

2.5 · 7.5 · 10−23Hz ≈ 73.0GHz and Z =
√

3 · 103Ω ≈
54.8Ω. For the numerical approximation, as the modes
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are equally spaced in k-space we can set the DOM at
a given frequency ωi by the frequency difference to its
neighbouring modes

Dnum(ωi) =
2

ωi+1 − ωi−1
, (13)

for i > 1. We thus set the density at frequency ωi to
the average density in the region between ωi−1 and ωi+1,
which contains exactly two modes. It is important to
mention that this calculation will fail not only at i =
0 but also for the modes at the band edges, where the
next or previous mode is across the band gap. Therefore
we shall not consider these modes when determining the
density of modes by this method.

An analytical expression can be found by calculat-
ing the individual DOM for the decoupled RH, Dr(ω),
and superlattice, Dsl(ω), transmission lines and approx-
imating the DOM for the coupled system by D(ω) ≈
Dr(ω) + Dsl(ω). For the decoupled transmission lines,
the DOM can be calculated from

D(ω) =
dn

dk

dk

dω
,

using the inverse of the dispersion relations (3) and (12)
and the fact that wave vectors in the decoupled systems
are equally spaced with kr/sl = nπ

lr/sl
and n ∈ N. The

derivatives of the inverse dispersion relations are

dkr
dω

=
1

ωrlr
,

dksl

dω
=

ω2
sl

ω3

(
1 + 1

ε

)2 − ω4
sl

ω5
2
ε2

∆z

√
1− 1

4

(
2 +

ω4
sl

ω4
1
ε2 −

ω2
sl

ω2

(
1 + 1

ε

)2)2
.

With these we obtain the approximate DOM of the cou-
pled system D(ω) = lr

π
dkr
dω + lsl

π
dksl

dω , with lsl
∆z = nsl being

the number of supercells in the superlattice.

Figure 5 shows the numerical and analytical approx-
imation for the DOM with nsl = 200 supercells. The
agreement between these two independent approaches
gives strong indication that both are valid approxima-
tions. The increased DOM in the low frequency region
reflects the small width of the superlattice energy band
and can easily be increased further: As the number of
modes in each band is independent of the band width,
narrowing the band implies a higher density of modes.
As shown in Fig. 4, the width of the low frequency band
has a maximum when the cells forming the supercell are
identical (the array is not a superlattice) and the band
narrows as the difference between the frequencies of these
cells increases.The Van Hove singularities will play an
important role in the phase diagram studied in Section
III C.
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FIG. 5. (Color online) Numerical (red dots) and theoretical
(black line) approximations to the mode density D(ω) of the
coupled system for a superlattice with 200 cells and ε = 2.

D. Voltage Profile

The high mode density observed above will be used in
the next section to allow a qubit to couple to multiple
cavity modes simultaneously. The qubit-cavity interac-
tion depends not only on their detuning, but also on their
natural coupling strength. For a flux qubit it will depend
on each mode’s current profile, which we will now anal-
yse. For a qubit embedded in a standard cavity, the
mode density at high frequencies can be increased sim-
ply by making the cavity longer [38], thus allowing the
qubit to couple to many modes. However, if the qubit is
positioned so as to maximize its coupling to a given low
frequency mode, the coupling to the following mode will
have a stark decrease due to the different voltage profile
along the right-handed line.

The hybrid transmission line considered here gives rise
to an altogether different behaviour. First, the high den-
sity modes appear at low frequency. Second, as shown in
Fig.6, low frequency neighbouring modes show sharp dif-
ferences in their voltage/current profiles inside the super-
lattice, but remarkably similar profiles within the right-
handed medium. This feature suggests that neighbouring
modes can be made to simultaneously have comparable
coupling strengths and detuning to the qubit. Put to-
gether, these tools allow us great versatility to engineer
distinct qubit environments.

III. SPIN-BOSON MODEL

To illustrate the use of the composite transmission line,
we will now use it to investigate the ground state of the
qubit interacting with the bosonic multimode environ-
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FIG. 6. (Color online) Voltage profile for the modes with
index 50 to 53 for a transmission line with nsl = 200 and
ε = 2. The superlattice is positioned at the left side and the
RHTL on the right side in the plot with their coupling at
0.01m. Due to the discreteness of the superlattice, the lines
do not represent the real voltage profile for each position along
the circuit but only at circuit nodes which are represented by
dots.

ment characterized above. The composite system is de-
scribed by the Hamiltonian

Ĥ = ~

(
−∆0

2
σ̂x +

∑
k

ωkâ
†
kâk + σ̂z

∑
k

g(â†k + âk)

)
,

(14)
where the first two terms describe the qubit and environ-
ment free Hamiltonians and the last term represents their
coupling. Here the qubit is taken to be degenerate and
∆0 is the tunnelling rate between the bare qubit energy
eigenstates |L〉 and |R〉. This Hamiltonian describes the
spin-boson model (SBM), which is a standard model for
dissipative two-level systems [28]. In the usual SBM the
energy eigenstates represent the position of a particle in
a double-well potential, i.e., |L〉 (|R〉) being a qubit in the
left (right) quantum well. This model admits two qubit
quantum phases, a localized phase (∆0 = 0), with the
qubit having no intrinsic dynamics and localizing in one
of the two wells, and a delocalized phase, when ∆0 6= 0
and the system displaying Rabi oscillations between the
two wells [39]. As discussed above, the low frequency
mode profiles are very similar close to the qubit’s posi-
tion. Therefore we will take qubit to have equal coupling
constant to all modes.

A. Adiabatic renormalization

The qubit multimode coupling renders Hamiltonian
(14) difficult to diagonalize. However, as some modes
have frequencies much larger than that of the qubit,
they adiabatically follow the qubit’s dynamics. Adiabatic
renormalization techniques can thus be used to transform

the Hamiltonian and find an effective tunneling element.
Let us first look at the ∆0 = 0 case. This Hamiltonian

can be fully diagonalized by the unitary transformation

Û = exp

(
−σ̂z

∑
k

g

ωk
(âk − â†k)

)
, (15)

which leads to

ÛĤ(∆0 = 0)Û† =
∑
k

ωkâ
†
kâk −

∑
k

g2

ωk
.

The adiabatic renormalization procedure consists of iter-
ative steps, where at each step we adiabatically eliminate
modes whose frequencies are higher than any qubit fre-
quency, i.e., modes that adiabatically follow the qubit’s
dynamics. To begin, we transform Hamiltonian (14) us-
ing

Û1 = exp

(
−σ̂z

∑
ωk>∆0

g

ωk
(âk − â†k)

)
, (16)

where the summation is taken over high frequency modes,
ωk > ∆0. By rewriting this operator as

Û1 = cos

(
i
∑

ωk>∆0

g

ωk
(âk − â†k)

)

+ iσ̂z sin

(
i
∑

ωk>∆0

g

ωk
(âk − â†k)

)
,

we find that σ̂x transforms as

Û1σ̂xU
†
1 = cos

(
i
∑

ωk>∆0

g

ωk
(âk − â†k)

)
σ̂x

+ sin

(
i
∑

ωk>∆0

g

ωk
(âk − â†k)

)
σ̂y.

Assuming weak coupling g/ωk � 1, the bosonic opera-
tors for modes with frequency ωk > ∆0 can be replaced
by their expectation values

〈
cos

(
i
∑

ωk>∆0

g
ωk

(âk − â†k)

)〉
= exp

(
− 1

2

∑
ωk>∆0

g2

ω2
k

)
,〈

sin

(
i
∑

ωk>∆0

g
ωk

(âk − â†k)

)〉
= 0.

We finally obtain for the renormalized Hamiltonian Ĥ1 =

Û1ĤÛ
†
1

Ĥ1 = −∆1

2
σ̂x+

∑
k

ωkâ
†
kâk+σ̂z

∑
ωk≤∆0

g(â†k+âk)−
∑

ωk>∆0

g2

ωk
,

(17)



7

where the constant term can be neglected and the re-
duced tunneling element reads

∆1 = ∆0 exp

(
−2

∑
ωk>∆0

g2

ω2
k

)
.

Comparing eq.(17) to the original Hamiltonian we see
that these transformations have reduced the tunneling
strength and decreased the number of modes interacting
with the qubit. Therefore another transformation can
be applied to eliminate all modes with ∆0 > ωk > ∆1

and once again obtain a reduced tunneling element. The
iterative transformation

Ûn = exp

−σ̂z ∑
∆n−2>ω>∆n−1

g

ωk
(âk − â†k)

 ,

with

∆n = ∆n−1 exp

−2
∑

∆n−2>ω>∆n−1

g2

ω2
k


= ∆0 exp

−2
∑

ω>∆n−1

g2

ω2
k

 ,

can be performed until ∆n = ∆n+1. The final renor-
malized tunneling element ∆eff must fulfil the self-
consistency equation

∆eff = ∆0 exp

(
−2

∑
ω>∆eff

g2

ω2
k

)
.

For a continuous spectrum, the renormalized tunneling
element reads

∆eff = ∆0 exp

(
−2

∫ ∞
∆eff

J(ω)

ω2
dω

)
, (18)

where J(ω) =
∑
k

g2δ(ω − ωk) is the environmental spec-

tral density. For the composite transmission line we use
the DOM obtained in section II C and write J(ω) ≈
g2D(ω). Note that the density of modes did not take
into account the presence of the qubit. A more detailed
calculation has to incorporate its effects.

B. Analytical Approach

The self-consistency equation, eq.(18), can be inverted
to give an expression for the coupling g as a function of
the effective tunneling, ∆eff. This requires an analyti-
cal solution to the integral. To obtain such a solution,
we approximate the DOM obtained in sec.(II C) using
a piecewise function describing the DOM in each of the

FIG. 7. (Color online) Typical solution to eq.(18) on inverted
axes for 20 superlattice cells with ε = 2 and an initial energy
splitting of the qubit of ∆0 = 1.2ωsl. Blue (solid) line shows
the coupling strength g (horizontal axis) for a given renormal-
ized tunelling element (vertical axis). Orange (dashed) line
indicates the value to which ∆eff converges.

bands,

D(ω) =


α1√

ω − ω1-
4
√
ω1+ − ω

, ω ∈ [ω1-, ω1+],

α2√
ω − ω2

, ω ≥ ω2,

0, elsewhere.

(19)

Here ω1- and ω1+ are, respectively, the lower and upper
band edges of the low frequency band and ω2 is the band
edge of the high frequency band edge. These are found
by examining the limiting cases of the dispersion rela-
tion, eq.(12), and α1 and α2 are fitting parameters. The
coupling constant for the first band can now be written
as

g =

√
ω

3/2
2 ln(∆eff

∆0
)

−πα2
(20)

and for the second band,

g =

√√√√√ ω
3/2
2 ln(∆eff

∆0
)

2α2

(
ω2

∆eff

√
∆eff

ω2
− 1 + arctan

(√
∆eff

ω2
− 1
)
− π

2

) .
Figure (7) shows an instance of this solution. The dashed
line shows the behavior of ∆eff with increasing coupling,
where we expect jumps when g reaches a local maximum.

C. Phase Diagram

We now turn our attention to the phase diagram of our
model. The results in this section were obtained using
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the iterative procedure of sec.(III A). From our previous
discussion, we expect the existence of two phases, a lo-
calized one, with ∆eff = 0, and a delocalized one, with
∆eff 6= 0. Figure (8) shows the renormalized tunneling
rate of the qubit as a function of the coupling constants,
g. Different lines represent different bare tunneling rates,
∆0. As expected, for g/∆0 sufficiently large, the system
reaches the localized phase, whereas for g/∆0 sufficiently
small it remains in the delocalized phase, characterized
by small corrections to the tunneling rate.

Interestingly, two new phases appear for which ∆eff lies
within the band gap or inside the first band. We term
these, partially localized phases. These are characterized
by strong renormalization of the tunneling rate, but not
sufficient to reach the fully localized phase. Differently
than the fully delocalized phase, for the phase lying in
the band gap, phase transitions only occur as ∆eff reaches
the band edge, entering the low frequency band. We note
that because the superlattice used for this simulations is
finite (with nsl = 200 supercells), no genuinely localized
phase is reached, as ∆eff → 0 only in the infinite coupling
limit. The qubit is thus in a quasi-localized phase. For
an infinite superlattice the localized phase can be recov-
ered. Figure (9) shows the corresponding phase diagram,
suggesting that jumps occur whenever the value of ∆eff

crosses a band edge frequency.
Finally, we note that renormalization of the qubit en-

ergies originates from off-resonant degrees of freedom in-
cluding those separated by a band gap. The band gap in-
troduces a minimum detuning hence limiting the impact
of each individual modes. The large density of modes
at the band gap - the van Hove singularity - partially
compensates for this suppression hence leading to a sig-
nificant contribution even for qubit energies lying within
the band gap. A more detailed model, where the fre-
quency dependent qubit-mode coupling strength is taken
into account is the object of future work.

IV. CONCLUSIONS

Reservoir engineering is a cornerstone for many quan-
tum technologies and systematic methods for implement-
ing it are scarce. In this work we have thoroughly de-
scribed how to apply superlattice, left-handed metama-
terials as a means to manipulate a bosonic environment.
The superlattice structure gives rise to a dual band spec-
trum, with the frequencies of the band edges controlled
by the circuit parameters. This allows one to engineer
spectra with a controlled number of modes in one band,
while leaving the higher energy band isolated from the
system of interest, i.e., the quantum system under inves-
tigation can be made to interact with a controlled num-
ber of modes. Moreover, these modes can have approxi-
mately the same coupling constant to the system, given
the hybrid left-right-handed nature of the transmission
line. The system proposed thus allows for specialized
environment designs.

1 -

1+

2

FIG. 8. (Color online) Effective tunneling rate of the qubit as
a function of the coupling constant (both in units of the super-
lattice resonance frequency ωsl) for ε = 2 and 200 superlattice
cells. Each color represents a different initial bare tunnelling
element, which coincides with the effective tunnelling element
for zero coupling. Shaded regions represent the two energy
bands. Localized, weakly localized and delocalized phases are
clearly visible.

localized

delocalized

FIG. 9. (Color online) Phase diagram of the spin-boson model
of a hybrid transmission line environment with ε = 1.1 and
200 superlattice cells. Four distinct phases are shown. The
colored background shows the energy region (separated by
the band edges ω1-, ω1+ and ω2) ∆eff is lying in as a contour
plot, whereas black dots are actual jumps found from numer-
ics. For smaller coupling strengths jumps are less likely to
be found numerically due to the decreased jump strength and
the discrete nature of the superlattice.

We have discussed one specific quantum simulation im-
plementation, that of the phase diagram for the spin-
boson model, where apart from a localized and a delo-
calized phase, we found two additional partially localized
regions. The composite superlattice-right handed trans-
mission line investigated here opens the possibility of ex-
ploring many different scenarios experimentally, like the
strong coupling regime, for which the adiabatic renormal-
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ization technique discussed here should fail. Therefore
experimental investigations would allow for the verifica-
tion of the numerical methods and approximations.

The ideas presented in this work can straight-forwardly
be adapted to other problems. Some possibilities include
the quantum-classical transition and a systematic exper-
imental study of the validity of some master equation
approximations, such as local vs. global environments.
Other applications can also be foreseen, such as the use
of hybrid, superlattice transmission lines for filtering or
to manipulate Purcell’s effect on a qubit. Naturally, more
general designs using left-handed transmission lines could
be used to create more elaborate environmental spectra,
suited for a number of different applications.

V. ACKNOWLEDGEMENTS

This work was supported by the Army Research Of-
fice under contract W911NF-14-1-0080 and the European
Union through ScaleQIT. B.G.T. acknowledges support
from Fapesc and CNPq.

Appendix A: An alternative method to find the
superlattice spectrum

Another approach to determine the dispersion relation
is to use Euler-Lagrange formalism. The Lagrangian of

the superlattice in terms of the magnetic flux Φ reads

L =
1

2

∑
n

[
Csl(Φ̇n − Φ̇n−1)2 + εCsl(Φ̇n − Φ̇n+1)2

]
−
∑
n

[
1

2εLsl
Φ2
n +

1

2Lsl
Φ2
n−1

]
.

We use the Euler-Lagrange equation d
dt
∂L
∂Φ̇
− ∂L

∂Φ = 0 to

find the differential equations

C(Φ̈2n − Φ̈2n−1) + εC(Φ̈2n − Φ̈2n+1) +
1

εL
Φ2n = 0,

C(Φ̈2n−1 − Φ̈2n) + εC(Φ̈2n−1 − Φ̈2n−2) +
1

L
Φ2n−1 = 0.

These equations can be combined, using Φ̈ = −ω2Φ by
assuming two independent wave equations in the two lat-
tice elements and writing an equation for the even lattice
cells

C2

(
Φ2j + εΦ2j−2

C + εC − 1
ω2L

)
+ εC2

(
Φ2j+2 + εΦ2j

C + εC − 1
ω2L

)
− (C + εC − 1

ω2εL
)Φ2j = 0.

(A1)

A plane wave ansatz valid only on even lattice sites

Φ2n(t) = Φ0e
i(kn∆z−ωt)

can now be used to solve equation A1 for ω which yields
the same result as equation 12.
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