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The glued-trees problem is the only example known to date for which quantum annealing provides
an exponential speedup, albeit by partly using excited state evolution, in an oracular setting. How
robust is this speedup to noise on the oracle? To answer this, we construct phenomenological short-
range and long-range noise models, and noise models that break or preserve the reflection symmetry
of the spectrum. We show that under the long-range noise models an exponential quantum speedup
is retained. However, we argue that a classical algorithm with an equivalent long-range noise model
also exhibits an exponential speedup over the noiseless model. In the quantum setting the long-range
noise is able to lift the spectral gap of the problem so that the evolution changes from diabatic to
adiabatic. In the classical setting, long-range noise creates a significant probability of the walker
landing directly on the EXIT vertex. Under short-range noise the exponential speedup is lost, but a
polynomial quantum speedup is retained for sufficiently weak noise. In contrast to noise range, we
find that breaking of spectral symmetry by the noise has no significant impact on the performance
of the noisy algorithms. Our results about the long-range models highlight that care must be taken
in selecting phenomenological noise models so as not to change the nature of the computational
problem. We conclude from the short-range noise model results that the exponential speedup in the
glued-trees problem is not robust to noise, but a polynomial quantum speedup is still possible.

I. INTRODUCTION

Quantum annealing (QA) [1–5] usually refers to a fam-
ily of analog quantum optimization algorithms that in-
terpolate between an initial Hamiltonian whose ground
state is easy to prepare and a final Hamiltonian whose
ground state is the answer to the optimization problem
we want to solve [6]. Typically, QA is operated adiabat-
ically, which means that the interpolation timescale tf
(also referred to as the annealing time) is much larger
than the smallest energy gap between the ground state
and the first excited state that is encountered along the
interpolation. The adiabatic theorem for closed system
dynamics provides a guarantee that for a sufficiently long
tf , the evolution reaches the ground state of the final
Hamiltonian with high probability (see, e.g., Ref. [7] for
a rigorous statement).

We can also consider QA operated non-adiabatically.
Here too, the goal is to end the evolution with the sys-
tem in the ground state of the final Hamiltonian, but
the system can undergo diabatic transitions to excited
states and return to the ground state. To further com-
plicate matters, QA can also refer to a version of open
system analog quantum optimization algorithms operat-
ing at non-zero temperature [8].

In this work, we consider a particular diabatic, orac-
ular QA algorithm for solving the glued-trees problem,
which we modify by the addition of noise to the oracle.
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The glued-trees problem was first introduced in Ref. [9],
where it was shown that any classical algorithm must nec-
essarily take exponential time to solve this problem, and
a quantum walk algorithm was presented which solves
the problem in polynomial time. Subsequently, a dia-
batic QA algorithm was presented which also solves the
problem in polynomial time [10]. This is so far the only
explicit QA algorithm for which an exponential speedup
is known. The QA evolution in the algorithm takes the
system from the ground state to the first excited state,
then back down to the ground state. This transition from
and back to the ground state is enabled by the Hamilto-
nian spectrum, which is symmetric about the middle of
evolution.

Oracular models may not be practical examples of
quantum speedups because it is highly non-trivial to con-
struct an oracle in a way that does not assume that we
already know the answer to the problem at hand; and,
even if we could do so, oracular Hamiltonians acting on n
spins typically involve n-body operators. However, they
provide insights into the mechanisms and boundaries of
quantum speedups, and can sometimes serve as step-
ping stones to more practical, non-oracular algorithms
[11, 12]. In this work, we address the question of whether
the exponential speedup of the QA glued-trees algorithm
is robust under noise. The noise models we consider are
phenomenological and add a time-independent random
matrix with Gaussian entries to the interpolating Hamil-
tonian. Such noise is more appropriately viewed as a
model of control errors than as originating from a system-
bath interaction [13]. We consider two dichotomies of
noise models. One dichotomy is between noise mod-

mailto:muthukri@usc.edu


2

els which induce long-range interactions among distant
nodes in the graph and noise models which only induce
interactions between nearest-neighbor nodes. The other
dichotomy is between noise models which break a certain
reflection symmetry in the spectrum and noise models
which preserve the reflection symmetry.

Our noise models are motivated by three concerns.
First, they offer ways to perturb features of the prob-
lem that are considered explanatorily relevant to the per-
formance of the QA algorithm. This will become clear
later, but the main idea can be illustrated as follows.
The QA algorithm described in Ref. [10] works reliably
because the spectrum is symmetric upon reflection about
the middle of the evolution. This symmetry guarantees
that if the system is excited to the first excited state in
the first half of the evolution due to the presence of an
exponentially small energy gap, the system will then en-
counter the same exponentially small gap in the second
half of the evolution and return back to the ground state.
Therefore, a perturbation that breaks this reflection sym-
metry offers a control knob to explore the importance of
this symmetry. Second, given that this is an oracle prob-
lem, in order to obtain physical noise models, we need
to consider physical realizations of the oracle. But or-
acles are generically unrealizable as local Hamiltonians.
Thus, in the absence of physical implementations, we as-
sume the noise is Gaussian at the oracle level. Finally,
we choose these noise models because they allow for a
numerical and analytical treatment to reasonably large
system sizes.

We now summarize our results. We find that for the
long-range noise models, the quantum dynamics show
an exponential speedup over classical algorithms that
respect the glued-trees graph-structure. However, this
speedup is misleading because an exponential speedup is
also observed for a classical algorithm with long-range
transition terms. More precisely, the long-range noise
corresponds to a classical random walk on a graph con-
taining edges connecting any two columns (see Fig. 1),
which allows for a sufficiently high probability for the ran-
dom walker to jump directly to the EXIT vertex. Mean-
while, we find that the quantum dynamics with the long-
range noise exhibit a speedup because of a perturbative
lifting of the spectral gap, which turns dynamics that
were diabatic in the noiseless setting to dynamics that
are adiabatic in the noisy setting. We also observe that
the short-range noise models lose the exponential quan-
tum speedup over the noiseless classical algorithm, but
they do show a polynomial speedup for sufficiently small
values of the noise strength [14].

The paper is organized as follows. In Sec. II, we de-
scribe the glued-trees problem and the QA algorithm that
solves it. In Sec. III A, we describe the noise models that
we study. In Sec. IV, we present numerical results on how
the performance of the algorithm changes under the dif-
ferent noise models. In Sec. V, we provide an explanation
for these results and we conclude in Sec. VI.

j = 0 j = 1 . . . . . . j = n j = 2n + 1. . .. . .j = n + 1

FIG. 1. (Color online) The graph structure of the glued trees
problem. j = 0, 1, 2, . . . , n, n+1, . . . , 2n+1 indexes the differ-
ent columns of the graph starting from one vertex to another.

II. THE GLUED-TREES PROBLEM

Consider two identical perfect binary trees, of depth n,
glued together as depicted in Fig. 1. The gluing is done
such that each leaf on one tree is randomly joined to two
leaves on the other tree, and vice versa. This ensures that
every vertex in the graph, except the two root vertices,
have degree 3. One root node is called the ENTRANCE
vertex and the other root node is called the EXIT vertex.
Starting from the ENTRANCE vertex, the objective is
to find the EXIT vertex [15].

All the vertices have labels. A classical algorithm can
query the oracle with the label of any vertex, and the
oracle returns the labels of the vertices connected to the
given vertex. A quantum algorithm can query the oracle
with the label of any vertex and the oracle will return
a uniform superposition over all the vertices connected
to it. Thus, the oracle encodes the adjacency matrix A
of the glued-trees graph. Since n is the depth of one
of the binary trees, the total number of vertices in the
glued trees is 2n+2 − 2 = O(2n), which is the minimum
number of distinct labels we need. Therefore, the entire
graph can be labeled using (n+2)-length bitstrings. But
this labeling system is insufficient to make the problem
hard for classical algorithms. Rather, to prove classical
hardness, there need to be exponentially more labels than
vertices [9]. It turns out to be sufficient to choose labels
as randomly chosen from the set of 2n-length bitstrings.

Under this labeling scheme, Ref. [9] showed that any
classical algorithm that makes fewer than 2n/6 queries to
the oracle, will not be able to find the EXIT vertex with
probability greater than 4 × 2−n/6. This means that it
will at least take a time Ω(2n/3) to find the EXIT vertex,
because in order to boost the success probability we must
repeat the algorithm 2n/6 times.

On the other hand, it was shown in Ref. [9] that a quan-
tum walk algorithm which starts from the ENTRANCE
vertex and evolves under the Hamiltonian equal to the
adjacency matrix of the graph, can find the EXIT vertex
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with probability O( 1
n ) if the algorithm is run for times

chosen uniformly at random in the interval [0,O(n4)].
This means we can can get a probability of success ar-
bitrarily close to 1 by simply repeating the algorithm
O(n) times, and therefore the algorithm will take at most
O(n5) time. This yields an exponential speedup over the
classical algorithm [16].

A. The quantum annealing algorithm

We now turn to the QA algorithm for the glued-trees
problem presented in Ref. [10]. The initial Hamiltonian
is taken to be the projector onto the ENTRANCE vertex:
H0 = − |ENTRANCE〉 〈ENTRANCE|, such that the ini-
tial state of the system coincides with the ground state
of the Hamiltonian. The final Hamiltonian is the projec-
tor onto the EXIT vertex: H1 = − |EXIT〉 〈EXIT|. We
then interpolate between these projectors while turning
on and off the adjacency matrix A:

H(s) = (1− s)αH0 − s(1− s)A+ sαH1, (1)

with s = t/tf ∈ [0, 1], where t is the physical time and tf
is the total evolution time. Also, 0 < α < 1

2 is a constant.
We set ~ = 1 throughout. In Ref. [10], it was shown that
if tf = O(n6), then the above interpolation ends with
sufficiently high probability in the ground state of H1,
the EXIT vertex.

With the initial state being |ENTRANCE〉, the evolu-
tion associated with the Hamiltonian in Eq. (1) confines
the system to the subspace spanned by the column basis,
whose elements are defined as

|colj〉 ≡
1√
Nj

∑
a∈column j

|a〉 , (2)

where |a〉 denotes the state associated with a vertex in
column j with label a and

Nj =

{
2j , 0 ≤ j ≤ n
22n+1−j , n+ 1 ≤ j ≤ 2n+ 1

(3)

is the number of vertices in column j (there are 2n + 2
columns in total). It is straightforward to show (see Ap-
pendix A) that in the column basis, the matrix elements
of the Hamiltonian [Eq. (1)] are

H0,0 = −α(1− s) (4a)

Hj,j+1 = Hj+1,j = −s(1− s) for j 6= n (4b)

Hn,n+1 = Hn+1,n = −
√

2s(1− s) (4c)

H2n+1,2n+1 = −αs. (4d)

1. Reflection symmetry

This Hamiltonian is invariant under the composition of
two transformations, which together we call the reflection

symmetry. The first transformation is the reflection of
the graph around the central glue. In the column basis,
this is represented by the permutation matrix P which
has 1’s on the anti-diagonal and 0’s everywhere else,

Pij = δi,2n+1−j , i, j ∈ {0, 1, 2, . . . , (2n+ 1)}. (5)

The second transformation is s 7→ (1− s): the reflection
of the interpolation parameter s around s = 0.5. The
reflection symmetry is the invariance of the Hamiltonian
[Eq. (1)] under the composition of these two transforma-
tions:

H(s) = PH(1− s)P. (6)

One consequence of the reflection symmetry is that
the spectrum of the Hamiltonian is symmetric under the
second transformation s 7→ (1−s) alone. This is because
Eq. (6) implies that s 7→ (1−s) corresponds to effectively
conjugating the Hamiltonian by P , and since P is unitary,
the spectrum is unchanged. Therefore,

Ek(s) = Ek(1− s) for k ∈ {0, 1, 2, . . . , (2n+ 1)}. (7)

Another consequence of the symmetry is that if |φk(s)〉
is the k-th eigenstate of H(s), then

H(s) |φk(s)〉 = Ek(s) |φk(s)〉 (8a)

=⇒ PH(s)P †P |φk(s)〉 = Ek(s)P |φk(s)〉 (8b)

=⇒ H(1− s)(P |φk(s)〉) = Ek(s)(P |φk(s)〉) (8c)

=⇒ H(1− s)(P |φk(s)〉) = Ek(1− s)(P |φk(s)〉) (8d)

=⇒ |φk(1− s)〉 = P |φk(s)〉 . (8e)

Together, Eqs. (7) and (8e) imply that H(1− s) has the
same eigenvalues as H(s) and that the eigenvectors of
H(1−s) are the reversed-in-column-basis eigenvectors of
H(s).

B. Dynamics

As shown in Ref. [10], the key features of the Hamilto-
nian that results in a polynomial time performance are
the scalings of the avoided level-crossings in the spec-
trum, depicted in Fig. 2. The evolution that solves the
problem in polynomial time is as follows. The system
starts in the ground state of the Hamiltonian at s = 0
(i.e., the ENTRANCE vertex). In the optimal evolution,
the system diabatically transitions to the first excited
state at the first exponentially small gap (between s1 and
s2). Then, it adiabatically follows the first excited state
and does not transition to the second excited state be-
cause of the polynomially large gap between the first and
second excited states. Finally, the system returns back
down to ground state through the second exponentially
small gap (between s3 and s4). At the end of the anneal-
ing evolution described above, we get the EXIT vertex
with high probability, as long as the evolution time tf is
chosen to scale as O(n6).
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FIG. 2. (Color online) The smallest three eigenvalues of the
Hamiltonian for the case of n = 6 and α = 1/

√
8. We choose

a small n so that the exponentially small gaps are visible.
(This image from Ref. [6].)

Since the scaling O(n6) is an analytically derived up-
per bound, we expect and find the scaling obtained via
numerical simulations to be better. To see this, let us
define the threshold annealing time to be the minimum
time required for the success probability (where success is
defined as reaching the EXIT vertex) to reach a threshold
probability pTh:

tTh
f (n) ≡ min{tf : pGS(tf ) ≥ pTh}, (9)

(henceforth, we choose pTh = 0.95). In Fig. 3, we plot the
scaling of tTh

f (n) for the QA algorithm for the glued trees

problem. The scaling is O(n2.86), which is significantly
faster than O(n6).

It is instructive to examine the pGS(tf ) function. This
is exhibited for the case n = 10 in Fig. 4. For n = 10, the
threshold timescale is tTh

f (10) = 1690. This corresponds
to the second peak in the oscillations. In general, the
QA algorithm works by being in a region of the pGS(tf )
function before adiabaticity is achieved.

It is also instructive to examine what the dynamics
look like at different evolution timescales. We examine
the populations in the instantaneous ground state, first
excited state, and the second excited state as a function
of the interpolation parameter s for n = 4, 20 in Fig. 5.
For n = 4, at relatively small annealing times the evolu-
tion is close to optimal: the population starts off in the
ground state, enters the first excited state at the first ex-
ponentially small gap, and returns to the ground state at
the second exponentially small gap. At longer annealing
times the dynamics is closer to adiabatic, with some in-
teresting fluctuations that arise around the exponentially
small gaps. For n = 20, at the threshold annealing time,
the evolution is optimal and exhibits sharp transitions.

0 1 2 3 4 5

0

5

10

15

20

FIG. 3. The minimum time required to reach a success proba-
bility of pTh = 0.95 as a function of size size n for the noiseless
quantum annealing glued trees algorithm. The solid line cor-
responds to a scaling of n2.8613.
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FIG. 4. Probability of finding the ground state at the end
of evolution as a function of tf for the noiseless glued-trees
quantum anneal at problem size n = 10. Strong oscillations
are observed, indicating that the optimal time at which we
should terminate the algorithm is sub-adiabatic.

III. NOISE

The noise models we consider here are phenomenolog-
ical. They ignore the details of how the noise may be
realized and instead posit some general properties that
noisy systems might have. This method is especially
well-suited to oracle algorithms. This is because oracles
are typically very difficult to realize physically. Indeed,
for the glued-trees problem we can show that the terms
H0, H1, and A in Eq. (1) all need to be highly nonlocal
and require experimentally difficult-to-engineer interac-
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FIG. 5. (Color online) Populations in the instantaneous ground state, first excited state, and second excited state as a function
of the anneal parameter s for the glued-trees problem without any added noise. (a) n = 4, tf = 268; (b): n = 4, tf = 1000;
(c): n = 4, tf = 4000; (d) n = 20 at tf = tTh

f (20) = 12125 [see Eq. (9)].

tions (see Appendix B). Such oracle-level noise models
are studied, e.g., in Refs. [17–19] for circuit algorithms,
for the adiabatic Grover algorithm [20], and for some
quantum walk algorithms (see [21] for a review), includ-
ing the quantum walk version of the glued-trees algo-
rithm [22].

Our noise model is inspired by one due to Roland
and Cerf [23]. The noise model they consider is a
time-dependent random-matrix added to the Hamilto-
nian, with the entries of the random matrix being time-
dependent random variables distributed as white noise
with a cut-off. They show that this noise does not sig-
nificantly affect the performance of the adiabatic algo-
rithm as long as the cut-off frequency of the white noise
is either much smaller or much greater than the energy

scale of the noiseless Hamiltonian. They further explore
this noise model in detail for the adiabatic Grover algo-
rithm [24].

The noise models we study are as follows. We add a
time-independent random matrix h to our Hamiltonian
H(s) [Eq. (1)]. We write our noisy Hamiltonian H̃(s) as

H̃(s) = H(s) + εh . (10)

We restrict the noise matrix h to be inside the subspace
spanned by the column basis, i.e., h has the same dimen-
sions as H(s) when written in the column basis. The four
noise models we consider correspond to different ways of
choosing the random matrix h.
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FIG. 6. (Color online) The median success probability, pGS, at the end of an evolution of duration tTh
f (n) as a function of n for

ε = 0, 10−3, 10−2, 5× 10−2, 10−1, 5× 10−1. ε = 0 is the noiseless evolution (ε increases from top to bottom at n = 1). tTh
f (n) is

chosen so that the success probability for the noiseless probability is just above 0.95. The error bars are obtained by bootstrap
sampling over 300 realizations of the noise. (a) The long-range symmetric noise model. (b) The long-range asymmetric noise
model. (c) The short-range symmetric noise model. (d) The short-range asymmetric noise model.

A. Four noise models

We construct four noise models by selecting one branch
in each of two dichotomies. The first dichotomy is be-
tween long-range and short-range noise models. The
second dichotomy is between reflection-symmetric and
reflection-asymmetric noise models.

First we consider a noise model in which h is chosen
from the Gaussian Orthogonal Ensemble (GOE). This
means that in any given basis, and in particular the col-

umn basis, the matrix elements of h are distributed as

hij = hji =

{
N (0, 1), i 6= j

N (0, 2), i = j
. (11)

(Here Gaussian random variables are denoted as
N (µ, σ2), with µ being the mean of the Gaussian and
σ the standard deviation.) A standard way of generating
such a matrix is to start with a matrix M whose entries
are independent N (0, 1) random variables (and therefore
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non-Hermitian) and setting

h =
M +MT

√
2

. (12)

That Eq. (11) is obtained from Eq. (12) can be seen from
the fact that the addition of two independent Gaussian
random variables obeys

N (µ1, σ
2
1)±N (µ2, σ

2
2) = N (µ1 ± µ2, σ

2
1 + σ2

2), (13)

combined with aN (µ, σ2) = N
(
µ, (aσ)2

)
(see Ap-

pendix C for more details about the GOE).
We call this noise model—i.e., the model generated by

adding a time-independent random matrix chosen from
the GOE—the long-range asymmetric (LA) noise model
and denote h in this case by hLA. Long-range refers to
the fact that h contains matrix elements which connect
all columns to all columns, and asymmetric refers to h
breaking the reflection symmetry of the Hamiltonian. To
see that h breaks the reflection symmetry, notice that h
is not invariant under conjugation with the permutation
matrix P , which, together with the fact that h is time-
independent, yields that H̃ is not reflection symmetric.

Next, we consider what we call the long-range symmet-
ric (LS) noise model. This noise model preserves the re-
flection symmetry of the problem. To generate this noise
model, we first pick a matrix ω from the GOE. Then we
reflection-symmetrize it:

hLS ≡
ω + PωP√

2
. (14)

Now hLS is manifestly reflection symmetric and there-
fore so is H̃ = H + εhLS. Note that hLS still contains
terms connecting distant columns. From the above defi-
nition, we can check that the matrix elements of hLS are
distributed as

(hLS)ij = (hLS)ji (15)

= (hLS)(2n+1)−i,(2n+1)−j = (hLS)(2n+1)−j,(2n+1)−i

=

{
N (0, 1), i 6= j

N (0, 2), i = j.

The reflection symmetry of hLS implies that the spectrum
of H̃ is reflection symmetric as well in this case.

We next turn to the short-range noise models. These
noise-models only connect neighboring columns in the
glued-trees graph. We examine both short-range asym-
metric (SA) and short-range symmetric (SS) noise mod-
els. In the SA model, the Hamiltonian perturbation is
given by

(hSA)ij =

{
N (0, 1) |i− j| = 1,

0 otherwise.
(16)

In the SS model, we have

hSS =
hSA + PhSAP√

2
, (17)
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FIG. 7. (Color online) Median success probability vs. the log
(base 10) of the strength of the noise for the LS model for
several, larger values of the problem size n. There is a fall,
then a rise, and then again a fall in this success probability
as a function of ε for all values of n displayed.

which preserves the reflection symmetry of the Hamilto-
nian.

We remark that the parameter controlling the strength
of the noise ε, can be absorbed into the standard devia-
tions of the Gaussian random variables: e.g., εN (0, 1) =
N (0, ε2). Therefore, the larger the noise, the greater the
spread of the Gaussians according to which the matrix
elements are drawn.

IV. NOISY GLUED-TREES: RESULTS FROM
NUMERICAL SIMULATIONS

We simulate the Schrödinger evolution

i~
d

dt
|ψ̃tf (s)〉 = tf H̃(s) |ψ̃tf (s)〉 (18)

using the different noise models and calculate the proba-
bility of finding the EXIT vertex at the end of the anneal,
i.e., the success probability:

pGS[tTh
f (n)] ≡

∣∣∣〈φ0(s)|ψ̃tTh
f (n)(1)〉

∣∣∣2 . (19)

We choose the annealing timescale tf to be equal to
threshold timescale of the noiseless algorithm, i.e., the
timescales depicted in Fig. 3. We do this because it is
natural to imagine that one operates the algorithm in the
regime in which the noiseless algorithm succeeds. Note
that this probability is a random variable whose value
depends on the specific noise realization, and we focus
on the typical (median) value of this random variable.
The median pGS will depend on (a) the noise model, (b)
the strength of the noise ε, and (c) the problem size n.
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FIG. 8. (Color online) Base-2 logarithm of the median ground state success probability, as a function of problem size n,
or the logarithm of the problem size log2 n, at different noise levels ε. Polynomial fits of the form O(nα) are performed
for the long-range models. Exponential fits of the form O(2αn) are performed for the short range models. This is done for
ε ∈ {10−3, 10−2, 5 × 10−2, 10−1, 5 × 10−1} for the short-range models (ε increases from top to bottom at n = 1). For the
long-range models, the set of values of ε is the same as for the short-range models, except that we omit the ε = 10−2 case since
it shows anomalous behavior (i.e., a rise and a fall) which doesn’t fit a decay. The scaling coefficient α as a function of the
noise ε is shown in Fig. 9. (a) The long-range symmetric noise model. (b) The long-range asymmetric noise model. (c) The
short-range symmetric noise model. (d) The short-range asymmetric noise model.

In Fig. 6, we plot the median success probability for
the four different noise models specified in Sec. III A as
a function of problem size n, equal to the depth of one
of the two binary trees.

The first observation is that the median pGS behav-
ior is not significantly different between the symmetric
and asymmetric noise model, for both the long-range and
short-range variants, although the symmetric noise does
slightly outperform the asymmetric case. This suggests
that while the symmetry of the spectrum is an impor-
tant aspect of the performance of the noiseless algorithm

(by allowing transitions from and back to the ground
state), the noisy algorithm is somewhat robust to reflec-
tion symmetry-breaking.

Next, a remarkable feature of Fig. 6 is that for large
enough n (n & 13), the success probability is non-
monotonic with respect to the strength of the noise ε.
This can be seen more clearly in Fig. 7: as expected,
there is a fall in the success probability from ε = 0 to
ε = 10−3, but, surprisingly, there is a rise from ε = 10−3

to ε = 10−2. For higher values of ε, the probability falls
off, again as expected. We explain the counterintuitive
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FIG. 9. (Color online) The exponential scaling coefficient α as
a function of the base-10 logarithm of the strength of the noise
ε for the short-range noise models. (The long-range noise
models do not show an exponential scaling.) The scaling co-
efficient α is obtained by performing an exponential fit of the
form O(2αn), to the median success probability, pGS(tTh

f ) vs.
n curves [shown in Figs. 8(c) and 8(d)]. The dashed horizon-
tal line at α = −1/3 represents the scaling coefficient below
which the speedup, over the best possible classical algorithm
to solve the glued-trees problem, is lost. Thus, the short-range
models lose the speedup for ε & 10−1.75. The error-bars are
95% confidence intervals. While some error-bars are large due
to the fits being performed on a small number of data points,
the trend in the data is clear.

rise in the next section.
We also examine, for a given noise model and a given

noise strength, whether the quantum speedup of the
noiseless algorithm is retained. Since 2n/3 is the best pos-
sible time scaling that a noiseless classical random walk
can achieve (see Sec. II and Ref. [9]), the pGS(tTh

f ) vs. n

scaling should decline no faster than 2−n/3 for a quantum
speedup to persist. But, it might not be an exponential
speedup: if the success probability for the noisy quan-
tum algorithm declines as an exponential function that
decreases slower than 2−n/3, then the speedup over the
classical algorithm will instead be a polynomial speedup.

We thus perform fits to the pGS(tTh
f ) vs. n curves, dis-

played in Fig. 8. For the long-range models, we exclude
small values of n because the asymptotic behavior starts
to show only at larger values of n. For the short-range
models, we only perform the fits on small values of n
because exponential decay causes the values of the suc-
cess probability to be very small for larger values of n.
The long-range models fit polynomials of the formO(nα).
This means that the long-range models have an exponen-
tial speedup over the noiseless classical algorithm. (We
argue below why in fact referring to this as a quantum
speedup is misleading.) On the other hand, the short-
range models fit exponentials of the form O(2αn), which
means that they do not exhibit a polynomial speedup

over the noiseless classical algorithm if α < −1/3 (as dis-
cussed in the previous paragraph). In Fig. 9, we plot the
scaling coefficient α as a function of the noise strength
ε for the short-range noise models. As is apparent from
Fig. 9, the quantum speedup is lost for the short-range
models for ε & 10−1.75 ≈ 0.018.

Let us now explain why the exponential speedup ex-
hibited by the long-range noise models is misleading. For
this speedup to count as a genuine quantum speedup, we
must compare the quantum algorithm with an appropri-
ate classical algorithm, so that we do not bias our analysis
in favor of the quantum algorithm. How do we construct
the appropriate classical algorithm in this case? Recall
that in the quantum case, the long-range noise Hamilto-
nians have N (0, 1)-distributed off-diagonal terms. These
terms connect distant columns of the graph. Thus, these
models ought to be compared with classical random
walks which have N (0, 1)-distributed transition proba-
bilities between distant nodes of the graph. This needs
to be normalized by a factor that is O(n) since there
are 2n + 2 columns in total. Therefore, at any given
time-step, in whichever column the random walker is,
there is an O(1/n) probability that the random walker
will transition directly to the EXIT vertex in the next
time-step. Hence such a classical random walk will land
at the EXIT vertex in O(n) time, and compared to the
appropriate classical algorithm, the quantum algorithm
with the long-range noise does not have an exponential
speedup.

V. NOISE-INDUCED ADIABATICITY

Two things stand out in the results presented in the
previous section. The first is that for the long-range mod-
els, there is a rise in success probability from ε ≈ 10−3

to ε ≈ 10−2. The second is that the long-range models
have an exponential speedup over the noiseless classical
algorithm for a wide range of noise strengths, when com-
pared to the short-range models. In this section, we will
provide explanations for these two observations.

One phenomenon helps explain both these behaviors:
In the long-range models, the noise typically leads to a
larger spectral gap. To see this, consider what happens
to the spectral gap at first-order in perturbation theory
when we add long-range noise. Consider first the asym-

metric case. Let E
(1)
0 (s) and E

(1)
1 (s) be the first-order

corrections to the ground- and first excited state respec-
tively. We know that

E
(1)
0 (s) = ε 〈φ0(s)|hLA(s)|φ0(s)〉 (20a)

∼ εN (0, 2), (20b)

where |φ0(s)〉 represents the ground state of the unper-
turbed (noiseless) problem at s. We have used the fact
that hLA(s) is drawn from the GOE, and that the di-
agonal elements of a GOE matrix are distributed with
variance 2 [see Eq. (11)]. A similar calculation gives that
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FIG. 10. (Color online) The scaling of the median minimum gap (log-scale) as a function of problem size n for the four
noise models with ε ∈ {10−4, 10−3, 10−2}. The solid blue line represents the noiseless algorithm (ε = 0), which has an
exponentially closing minimum gap. (a) Long-range symmetric. (b) Long-range asymmetric. (c) Short-range symmetric. (d)
Short-range asymmetric. The long-range models display a constant gap with problem size, while the short-range models exhibit
an exponentially decreasing gap with problem size. This is consistent with the perturbative argument given in Eq. (21).

E
(1)
1 (s) ∼ εN (0, 2). Putting these together, we can ap-

proximate the spectral gap of the perturbed Hamiltonian
using first-order perturbation theory as follows.

∆̃LA(s) = Ẽ1(s)− Ẽ0(s) (21a)

≈ [E1(s) + εE
(1)
1 (s)]− [E0(s) + εE

(1)
0 (s)] (21b)

= ∆(s) + εN (0, 4), (21c)

where ∆(s) is the spectral gap of the noiseless problem.
To obtain the last line we used Eq. (13) again. Using the
fact that ∆(s) scales either as inverse polynomially or in-
verse exponentially (shown in Ref. [10]; see also Fig. 2),
and the fact that the random variableN (0, 4) has no scal-
ing with problem size we can conclude that, typically, at

first order in perturbation theory, the perturbed problem
has an O(1) gap. (A similar argument establishes that
the gap is O(1) for the case of the LS model as well.)

This argument will only work if εN (0, 4) does not
make the right-hand side of Eq. (21c) negative; if the
right-hand side is negative, the perturbative approxima-
tion breaks down. The RHS is distributed according to
N (∆(s), 4ε2). This is a Gaussian centered around a pos-
itive mean, and thus the chance of this distribution sam-
pling negative values is small for small ε. So, heuristically,
we expect the perturbative argument to work in typical
instances. To corroborate the conclusion of this argu-
ment, we display the scaling of the gaps with problem
size in Fig. 10. It is apparent that the long-range models
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FIG. 11. (Color online) Two random instances of the long-range symmetric noise for n = 20 and tf = 12125, with ε = 10−3

and ε = 10−2. (a) The spectral gap between the ground state and the first excited state for the two noisy instances and the
noiseless case (ε = 0), around s = s∗, i.e., near the location of the first exponentially closing gap in the noiseless problem. Both
noisy instances increase the spectral gap from its value in the noiseless problem, with the increase being larger in the ε = 10−2

case. (b) The populations in the lowest three eigenstates of the noisy Hamiltonian as a function of the anneal parameter s, for
ε = 10−3. The diabatic transitions do not happen as cleanly as in the noiseless case [shown in Fig. 5(d)]. (c) As in (b), for
ε = 10−2. The dynamics are very close to adiabatic.

exhibit a constant scaling with problem size, while the
short-range models exhibit an exponential scaling.

Note that the perturbative argument presented above
is not directly applicable for the short-range noise mod-
els, because for these models matrix elements that are
arbitrarily far apart in the column basis are not normally
distributed.

Let us see how the perturbative lifting of the spec-
tral gap helps explain the non-monotonic dependence
on noise strength seen in Fig. 7. For ε ≈ 0, the algo-
rithm succeeds because of the diabatic transitions from
the ground state to the first excited state and then back
down to the ground state; recall Figs. 5(a) and 5(d). As
we increase ε from zero, the slight lifting of the gap inter-
feres with these diabatic transitions, leading to a some-
what smaller success probability. This corresponds to
the local minimum in Fig. 7. As we increase ε further,
the gap increases more and this causes the dynamics to
turn adiabatic, which increases the success probability.
This corresponds to the second peak in Fig. 7. These
two effects can be seen in Fig. 11, which shows typical
instances of the noisy spectrum and the noisy dynamics
under the LS noise model, at ε = 10−3 and ε = 10−2, for
n = 20. Figure 11(a) shows that both noise realizations
increase the spectral gap from its value in the noiseless
case, more so for the higher ε realization. Figure 11(b)
shows how the diabatic transitions are scrambled due to
the noise. Then, as we increase the noise to ε = 10−2 in
Fig. 11(c), we observe the onset of adiabaticity.

As we increase ε to values greater than 10−2, the suc-
cess probability falls off because even if the dynamics
are adiabatic, the noisy spectrum and eigenstates have
little relationship with the noiseless spectrum and eigen-
states. To corroborate this, in Appendix D, we show us-
ing perturbation theory that the overlap between the un-
perturbed ground state and the perturbed ground state

decays as 1 − O(ε2), which suggests that as we increase
ε, even if the dynamics are adiabatic, the ground state
found at the end of the noisy evolution has low overlap
with the EXIT vertex.

The perturbative lifting of the gap also explains why
the long-range models exhibit an exponential quantum
speedup. Indeed, because the noise induces adiabatic-
ity for a certain range of values of ε, then as long as
the overlap between the unperturbed ground state and
the perturbed ground state remains significant, the noisy
quantum system can still solve the problem by evolving
adiabatically as long as the anneal timescale is greater
than the adiabatic timescale. The latter is given by the
inverse of the perturbed gap squared, which is O(1), mul-
tiplied the norm of the Hamiltonian, which isO(poly(n)).
The anneal timescale is chosen such that it provides a
speedup in the noiseless case [Eq. (9) represents one such
choice], which means the noiseless dynamics are adiabatic
relative to the polynomially small gap between the first
and second excited states (see Sec. II B), and therefore,
the long-range noise dynamics will be adiabatic relative
the constant gap between the ground and first excited
state.

A natural question arises at this stage. Is the anoma-
lous behavior of success probability with increasing sys-
tem simply due to the perturbation increasing the energy
scale of the system? That is, because the long-range
noise matrices are selected from the GOE (and variants
thereof), the norm of the perturbation increases with sys-
tem size as

√
n; one might think that since the energies

in the system increase, then so do its energy gaps, and
then the larger gaps are responsible for the increase in
success probability.

To test this explanation, we checked what happens
after normalization of the perturbation matrix by its
largest eigenvalue. This normalization ensures that the
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perturbation never adds an amount of energy that scales
with system size. If it were true that the perturbative
lifting of the gap is due to pumping energy into the sys-
tem, we would expect the perturbative lifting to disap-
pear upon normalization, and consequently also expect
the anomalous behavior of success probability with in-
creasing system size to disappear upon normalization.
However, as seen in Fig. 12, the non-monotonic depen-
dence of the success probability on n for intermediate ε
values continues to hold even after normalization. (This
will in turn lead to non-monotonic dependence of the suc-
cess probability on ε for larger values of n, analogous to
the behavior seen in Fig. 7.) This is qualitatively simi-
lar to the behavior seen in Fig. 6(b) for the long-range
asymmetric noise model, where the perturbation matrix
h is not normalized.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

FIG. 12. (Color online) The median success probability, pGS,
for the normalized long-range asymmetric noise case at the
end of an evolution of duration tTh

f (n), with ε increasing from

top to bottom at n = 1.tTh
f (n) is chosen so that the success

probability for the noiseless probability is just above 0.95.
Error bars were obtained by bootstrap sampling over 300 re-
alizations of the noise.

VI. SUMMARY AND CONCLUSIONS

We have analyzed the quantum annealing algorithm for
the glued trees problem under four different noise mod-
els: long-range vs. short-range and reflection-symmetric
vs. reflection-asymmetric. These are oracular noise
models: they add a Gaussian perturbation, of different
forms, to the Hamiltonian evolution. We studied the suc-
cess probability—i.e. the probability finding the EXIT
vertex—at the end of the Schrödinger evolutions for these
different noise models.

We found that the long-range noise models display a
perturbative lifting of the spectral gap which causes the
dynamics to transition from diabatic to adiabatic. This

allows the algorithm subject to long-range noise mod-
els to solve the glued trees problem in polynomial time
and hence display an exponential quantum speedup over
the noiseless classical algorithm. This seems surprising,
since it associates a robustness to noise with a quantum
algorithm exhibiting exponential speedup. However, we
argue that in fact this speedup is misleading, because it
disappears when we compare the quantum algorithm to
an appropriate classical analogue. More precisely, a clas-
sical random walk that has long-range transition proba-
bilities will also be able to solve the problem in polyno-
mial time and hence display an exponential speedup over
the noiseless classical algorithm.

This analysis highlights that care must be taken in the
selection of noise-models for oracular algorithms. Typi-
cally, oracles are hard to realize physically, so we must
select phenomenological noise models for them. But in
so choosing, we might end up with a model that changes
the nature of the problem, which is what occurred in
the long-range noise models. More precisely, the classi-
cal long-range noisy version of the algorithm changed its
complexity from exponential into polynomial, so a quan-
tum polynomially scaling algorithm for the problem can-
not count as providing an exponential quantum speedup.

It is instructive to compare this with the results of
Ref. [19], which analyzed the problem of learning the
class of n-bit parity functions by making queries to a
(noisy) quantum example oracle. There, the quantum al-
gorithm has a linear speedup in the noiseless case, while
it has a superpolynomial speedup when both the classical
and quantum oracles are noisy. This happens upon depo-
larizing the qubits at the oracle’s output at any constant
nonzero rate.

For the glued trees problem we found a weaker result
under the symmetric and asymmetric short-range noise
models, which retain the exponential complexity of the
classical problem. For sufficiently weak oracle noise, the
quantum annealing algorithm retains a polynomial quan-
tum speedup over the noiseless classical algorithm. But,
for sufficiently strong oracle noise even the polynomial
speedup is lost. The fact that for all values of the or-
acle noise the short-range noise models result in a loss
of exponential speedup demonstrates that the exponen-
tial speedup of the glued-trees algorithm is not robust to
noise.

We conjecture that more broadly, in the absence of
fault tolerant error correction, exponential speedups can-
not be obtained in any physical implementation of quan-
tum annealing. This should not necessarily be a cause for
pessimism: we are not ruling out polynomial speedups,
which remain highly interesting and valuable.
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Appendix A: Hamiltonian in the column basis

Here we show how the matrix elements of the noise-
less QA Hamiltonian are obtained in the column basis.
I.e., we show how Eqs. (4) are obtained when Eq. (1) is
written in the basis defined in Eq. (2).
H0 andH1 are straightforward: they are represented as

− |col0〉 〈col0| and − |col2n+1〉 〈col2n+1| respectively. This
immediately yields Eqs. (4a) and (4d). Consider the ad-
jacency matrix A. Consider first j < n. In this case, in
the column basis, Aj,j+1 is

〈colj |A|colj+1〉 = 〈colj |

 ∑
(x,x′)∈E

|x〉 〈x′|

 |colj+1〉

(A1)

=
1√

NjNj+1

∑
x∈colj ;x′∈colj+1

(x,x′)∈E

1 (A2)

=
Nj+1√
NjNj+1

(A3)

=

√
Nj+1

Nj
=

√
2j+1

2j
=
√

2, (A4)

where we have used the fact that for all columns to the
left of the central glue, every vertex has exactly one edge
connecting it to the column to its left. We have also used
that for j ≤ n, Nj = 2j . A parallel calculation will go
through for j > n+ 1. Now, for j = n:

〈coln|A|coln+1〉 =
1√

NnNn+1

× 2Nn+1 (A5)

= 2×
√
Nn+1

Nn
= 2, (A6)

where we used that, at the central glue, there are two
edges to every vertex. We have also used the fact that

the number of vertices in the two columns at the glue is
equal. Thus, we have:

〈colj |A|colj+1〉 =

{
2, j = n√

2, o.w.
. (A7)

For convenience, we redefine A such that Anew ≡
Aold/

√
2, giving us:

〈colj |A|colj+1〉 =

{√
2, j = n

1, o.w.
, (A8)

which yields Eqs. (4b) and (4c).

Appendix B: Qubit versions of small glued trees
instances

If we wanted to implement the glued-trees algorithm in
a qubit system, we would need nonlocal and difficult-to-
engineer interactions. We do not provide a mathematical
proof of this claim, but the basic point can be illustrated
using the case of n = 1, the smallest instance of the
glued-trees problem which has 6 vertices. Consider the
shortest possible naming system, in which each vertex is
labelled by a length-3 bit-string. (Set aside, for the mo-
ment, the concern about this naming system interfering
with the proof of classical hardness.) This means we can
implement the QA Hamiltonian using 3 qubits.

We will name the vertices such that the Hamming dis-
tance between two vertices connected by an edge on the
graph is as small as possible. This is done in an attempt
to reduce the need for many-body terms as much as pos-
sible. For the case of n = 1, this is done as shown in
Fig. 13.

000

001

100

101

010

111

FIG. 13. (Color online) The smallest instance of the glued-
trees problem. The graph is labelled with 3 bits. The naming
is chosen so as to minimize the Hamming distance between
vertices joined by an edge.

Clearly the adjacency matrix A of this graph is

A = |v0〉 〈v1|+ |v0〉 〈v2|+ |v1〉 〈v3|+ |v1〉 〈v4|+ |v2〉 〈v3|
+ |v2〉 〈v4|+ |v3〉 〈v5|+ |v4〉 〈v5|+ h.c., (B1)
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where v0 ≡ 000, v1 ≡ 001, v2 ≡ 100, v3 ≡ 101, v4 ≡ 010,
and v5 ≡ 111.

Let us convert this adjacency matrix into a local
Hamiltonian. Let {Ii, Xi, Yi, Zi} denote the Pauli op-
erators on the i-th qubit (i = 1, 2, 3). We can compute
Tr[AX1], Tr[AX1X2], Tr[AX1Y2], and so on, for all the
43 = 64 terms to obtain the coefficients of these terms in
the Pauli representation of A. Doing this, we get

A =
1

4
(2X1 +X2 + 2X3 +X1X2 +X2X3

+X1X3 + Y1Y2 + Y2Y3

− Y1Y3 + 2X1Z2 −X2Z3 − Z1X2

+ 2Z2Y3 −X1Z2X3 +X1X2Z3

+ Y1Y2Z3 + Y1Z3Y3 + Z1X2X3

+Z1X2Z3 + Z1Y2Y3) . (B2)

Note that there are no Z terms because A does not con-
tain any diagonal matrix elements. We can already see
that in order to implement this adjacency matrix we need
3-body interactions, and also “cross-term” interactions,
i.e., interactions that couple, e.g., Z and X.

To complete the analysis, let us similarly write the
Pauli representations of H0 and H1. This yields

H0 =
1

8
(Z1 + Z2 + Z3 + Z1Z2 (B3a)

+Z2Z3 + Z1Z3 + Z1Z2Z3)

H1 =
1

8
(−Z1 − Z2 − Z3 + Z1Z2 + Z2Z3 (B3b)

+Z1Z3 − Z1Z2Z3) .

Again 3-body interactions are required.
We have not ruled out the possibility that there exists

an easily computed naming system for a general instance
of the glued-trees problem, which generates a Hamilto-
nian representation for the QA Hamiltonian in such a
way that the representation has small and constant lo-
cality, and the interactions required are simple (such as
XX or Y Y ). However, we are not aware of an explicit
method for doing so and conjecture that none exists.

Appendix C: The Gaussian Orthogonal Ensemble

The GOE is the measure over the set of N × N real
symmetric matrices described by

Pr(h)dh = cN exp

[
− 1

2σ2
Tr(h2)

]∏
i

dhii
∏
i<j

dhij , (C1)

where σ is the so-called scale factor, cN is a normaliza-
tion, dhii and dhij are the standard Lebesgue measure.
If {λi} are the eigenvalues of h, then Tr(h2) =

∑
i λ

2
i .

Therefore, the peak of this distribution is centered
around matrices with eigenvalues close to 0. The GOE
is invariant under conjugation by orthogonal matrices:
i.e., if Eq. (C1) holds in one basis, then it also holds
in another basis related by an orthogonal transforma-
tion to the first basis. See, e.g., Ref. [25] for more details.

Appendix D: Perturbative decay of overlap between
the noisy and noiseless ground states

Here we calculate how the overlap between the noisy
and noiseless groundstates decays as a function of ε for
the case of the long-range noise models. This is done
using perturbation theory, so we expect it to be valid for
small ε.

Consider first the perturbative expansion for the per-
turbed ground state.

|φ̃0〉 = c(ε) |φ0〉+ ε
∑
k>0

|φk〉
hk0

E0 − Ek
+O(ε2), (D1)

Since c(ε) = 〈φ0|φ̃0〉, this is the quantity we care about,
namely, the overlap between the noisy and the noiseless
ground states. Imposing 〈φ̃0|φ̃0〉 = 1 (we are free to
choose the normalization; see, e.g., Chapter 5 of Ref. [26])
and assuming c(ε) ∈ R, we get

c(ε) ≈
[

1− ε2
∑
k>0

h2k0
(E0 − Ek)2

] 1
2

(D2a)

≈ 1− ε2

2

∑
k>0

h2k0
(E0 − Ek)2

. (D2b)

Thus the fidelity between the noisy and noiseless ground
states goes as 1−O(ε2).
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