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It is known that secondary non-stoquastic drivers may offer speed-ups or catalysis in some models of adiabatic
quantum computation accompanying the more typical transverse field driver. Their combined intent is to raze
potential barriers to zero during adiabatic evolution from a false vacuum to a true minimum; first order phase
transitions are softened into second order transitions. We move beyond mean-field analysis to a fully quantum
model of a spin ensemble undergoing adiabatic evolution in which the spins are mapped to a variable mass
particle in a continuous one-dimensional potential. We demonstrate the necessary criteria for enhanced mobility
or ‘speed-up’ across potential barriers is actually a quantum form of the Rayleigh criterion. Quantum catalysis
is exhibited in models where previously thought not possible, when barriers cannot be eliminated. For the
3-spin model with secondary anti-ferromagnetic driver, catalysed time complexity scales between linear and
quadratically with the number of qubits. As a corollary, we identify a useful resonance criterion for quantum
phase transition that differs from the classical one, but converges on it, in the thermodynamic limit.

PACS numbers: 42.50.-p,42.50.St,06.20.Dk

I. INTRODUCTION

In computer science, computational tasks may be crudely
divided into two categories: easy and hard. Easy problems
are soluble in a time limit ¢* that scales polynomially with n,
the number of available computing resources (bits or qubits);
t* ~ n®, whereas hard tasks might take an exponentially long
time to complete; t* ~ ™. Much of the interest in quantum
computing has been fueled by the possibility that classically
hard problems can sometimes become ‘easy’ when performed
by a particular quantum algorithm running on a quantum com-
puter.

One quantum computing paradigm particularly well-suited
to the solution of optimization problems is adiabatic quan-
tum computing!?, In this model, an ensemble of quantum
bits (qubits) is initialized in ground state of a trivial Hamil-
tonian. This could be, for instance, associated with a strong
linear magnetic field. During the execution of the algorithm
the Hamiltonian is smoothly and continuously changed or an-
nealed into the ‘target’ Hamiltonian encoding the original
computational task. This ground state represents a globally
optimal solution to that task. If the quantum annealing from
initial to target Hamiltonian occurs sufficiently slowly or adia-
batically, the system remains in the instantaneous ground state
throughout, guaranteeing that the optimal solution is recov-
ered in finite time. The system always stays at the lowest point
on the energy surface or ‘cost function’ landscape. This ap-
proach differs quite dramatically from classical approaches to
optimization, possibly involving gradient descent techniques,
where it can be impossible to know whether a recovered so-
lution corresponds to a local or global minimum. This also
assumes the cost function in parameter space is sufficiently
smooth that gradient information can be derived — not often
the case in combinatorial optimization.

While success is guaranteed in finite time by the adia-
batic theorem?, the energy landscape may become highly non-
trivial during the annealing process; the ground state must
navigate through a landscape of hills and valleys that spring
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FIG. 1: Pairing of energies during transition from unimodal to

bimodal ground state. Here &; is a displacement variable and (3
a ‘width’ variable. This important transition we call the quantum
Rayleigh limit: &; ~ 3, derived later in eqn.(@): As plotted, adjacent
even and odd eigenvalues E,:f of the piecewise-parabolic potential
are seen to ‘pair up’, to become doubly degenerate, as the scaled
separation of the wells increases beyond the order of the well widths,
i.e. & > [ (above for the case § = 1). In this limit (blue shaded
region) the energies are well below the barrier height (dashed line)
and the intra-pair spectral gap decreases exponentially with the bar-
rier height V. A sketch of the ground-state wavefunction is shown
(upper middle) in the limit of well-separated wells. For & < S,
violating the Rayleigh criterion, the wells coalesce and the vacuum
energy E; (red) and other eigen-energies subsume the barrier. At
the leftmost edge the two wells merge completely, and eigenvalues
revert to those of a simple harmonic oscillator: (n + 1/2)hw.

up around it as the algorithm progresses. Large time penal-
ties are suffered when energy barriers, of height O(1) on the
scale of the Hamiltonian, emerge between the current state of
the system and the true minimum energy. These energy bar-
riers are associated with a first order phase transition during
the adiabatic process. Under ideal circumstances the algo-
rithm is executed at zero temperature, to preserve the system



in its ground state, so there is no possibility of thermal activa-
tion over the barrier in question. The only remaining option is
for the quantum state to tunnel through the barrier to the true
ground state on the other side, exactly as first discussed by
Georg Gamow in his famous paper of 1928 describing alpha
particle decay,®. The ground state is seen to jump in a discon-
tinuous way between configurations and the phase transition
is described as ‘first-order’. This phenomenon is possibly the
Achilles heel of quantum annealing: Tunneling, only possible
via quantum mechanics, is also an exponentially slow process
in w, the barrier width: ¢* « ¢". Consequently, for prob-
lems which exhibit barrier widths scaling positively with sys-
tem size n (number ot qubits), the exponential delay in adi-
abatic passage at the phase transition produces an exponen-
tial slowdown in performance. This is reflected in an overall
exponential-scaling time-to-solution with n. The problem in-
stances that feature such first-order phase transitions seem to
belong (unavoidably) to the class of ‘hard’ problems=.

In this note, we will explore, in a fully quantum setting,
techniques by which those barriers may be reduced, by the in-
troduction of additional control fields or interactions. The idea
that secondary control interactions might eliminate barriers,
turning hard problems into easy ones, was proposed 16 years
ago in Ref. 16/ and the idea resurfaced more recently in Ref.
"/l where the secondary driver was of a specific non-stoquastic
type. Numerical support for quantum speed-up in instances of
spin glasses was given in Refl8l

Here we refer to controlled barrier suppression in a more
general sense as ‘coherent catalysis’. This invites a compar-
ison with classical chemical kinematics in a sense that was
perhaps first used for quantum information in Ref!9|and that
surfaced again recently in the context of adiabatic quantum
computing in the excellent review by Albash and Lidar'?. The
application of the ‘catalyst’ (secondary driver) during anneal-
ing lowers the activation energy of the migration from false
to true ground state. The purity of the quantum state is pre-
served, hence the process is coherent.

We begin with an examination of a prototype double-well
system, for which we establish the necessary conditions for
a crossover from exponential to polynomial time complexity.
This is associated with a qualitative change in the quantum
ground state from a bimodal to unimodal profile, and energy
level ‘unpairing’, as illustrated in FIG.[I] An analogy is made
with the Rayleigh diffraction limit of angular resolution in
physical optics'! (Two point-like objects are considered re-
solved when the maximum of one image coincides with the
first minimum of the other. When applied to two gaussian
point-spread functions, the distance between the two maxima
becomes comparable to the sum of their standard deviations.).

Moving to composite systems, we will see that the num-
ber n of adiabatically-evolving qubits plays a non-trivial role
in the time complexity — in some sense, quantum computers
of mesoscopic scale might be better suited to certain classes
of computational task, rather than holding fast to the naive
idea that ‘more is simply better’. Even in a completely
decoherence-free setting the limit of large n will lead to a pre-
dominantly classical behaviour. A peculiarity in our analysis
produces an effective Planck’s constant & that varies inversely

with the number of qubits, attaining values much larger than
1073* in systems of modest size (to be clarified in section
[VII). As a result of this inverse relationship larger ensembles
of qubits exhibit weaker quantum behaviour.

The novelty of our technique is to move beyond a conven-
tional ‘mean-field’ calculation by inclusion of phenomena de-
rived from or modified by the zero point (vacuum) energy of
the quantum system as it evolves through the shifting potential
landscape. (In contrast, the mean field description reproduces
only that potential energy surface and ignores kinetic energy
completely.) Even at zero temperature a quantum system pos-
sesses vacuum energy and there exists the possibility that it
overwhelms any adjacent barrier and/or ‘delocalizes’; this ef-
fect is magnified for a large effective .

To showcase the utility of these results, we re-examine the
widely-studied quantum 3-spin model, presenting 3-body in-
teractions of uniform strength between all qubit triples. It is
revealed, contrary to previous thinking, that a crossover from
hard to easy solution is indeed possible, with non-stoquastic
drivers. (In the appendix we further discuss the somewhat
simpler Lipkin-Meshkov-Glick model'*! that again has long
range order but only 2-local interactions in the presence of
both transverse and longitudinal fields. Such a setting may be
more amenable to near-term experimental verification of co-
herent catalysis, given some of the latest advances in quantum
computing hardware!*.) We choose to examine these highly
symmetric ‘toy’ Hamiltonians with no topological features as
they are analytically tractable yet exhibit first and second or-
der phase transitions typical of real-world optimization prob-
lems.

II. INTRODUCING QUANTUM TRANSPORT BY
VACUUM DELOCALIZATION

It is said that ‘a rising tide raises all ships’. Traditionally
one examines the potential landscape of quantum annealing
problems in isolation, seeking insight from the landscape’s
shifting topology as the annealing progresses. That level of
analysis, however, may miss some subtleties and features that
allow quantum speed-ups where they were previously thought
not possible. In essence, the Hamiltonian has both potential
and kinetic energy, and the latter may play a significant role
in transport. The evolution of the ground state components is
not that of a classical hill-walker exploring the contours of the
potential landscape, nor that of a quantum particle tunneling
underneath the barrier — it is more akin to a ship buoyed up
over it on the sea of its own vacuum energy, FIG. 2}

It has been discovered in certain quantum annealing models
(by an external control field or coupling) the potential land-
scape of complex hills and valleys may be altered in the prox-
imity of a phase change, when the quantum state tunnels from
one potential well to another through an intervening barrier.
The wells on either side of the barrier begin to coalesce as
the intervening barrier is suppressed, ‘softening’ the phase
change from first order to second order (or discontinuous to
continuous). It is sometimes assumed that the barrier must be
completely razed for such a qualitative change in the charac-



teristics of the phase change to occur. It is our observation
that lowering the barrier to the scale of the vacuum energy is
sufficient. This allows the vacuum state to subsume the bar-
rier and delocalize. In tandem, the adiabatic transfer of the
quantum state between the wells proceeds at an exponentially
increased rate. Interestingly, we shall see that the more funda-
mental condition for this enhanced mobility is that the ground
state profile be at the point of coalescing from bimodal to uni-
modal, see FIG.[2] This limit we refer to as the Rayleigh limit,
for obvious reasons, examined further in FIG. 3] At such a
point, the system may be considered as a ‘particle in a box’,
the dimension of the box corresponding to the width of the
unimodal ground state at the phase transition. (In the antithet-
ical scenario a large intervening barrier greatly exceeds the
vacuum energy, permitting only exponentially-slow quantum
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FIG. 2: Three quantum transport mechanisms exist in a double well
during annealing. Potential barrier (dark blue curve) has height V
and the vacuum energy is E; (red horizontal line). The inverted
parabola centered at the origin is stitched to two parabolic wells
centered on +¢£; with characteristic width 5. The join location is
¢ = +& /(1 + B*) (vertical dashed lines in all subplots). Upper
panel indicates two well-understood mechanisms of quantum tun-
nelling (red dashed line) through the barrier and classical activation
over the barrier (black dashed line) following absorption by a ther-
mal photon from the environment. The ground state is shown as a
grey profile in all three panels. Tunnelling and thermal activation are
possible transport mechanisms when the wells are far apart, &1 > £,
and the barrier is larger than the vacuum energy, Vo > E‘S‘ . There is,
however, another transport mechanism, vacuum delocalization, that
comes into play when the width of the ground state in one isolated
well approaches the well-separation, i.e. 8 = &1, perhaps initiated by
some external catalysis. This ’Rayleigh limit’ may occur when the
vacuum energy subsumes the barrier, as in the middle panel. While
sufficient for delocalization, this is by no means a necessary condi-
tion — as the lower panel demonstrates. The potential in this lower
panel has values (o, 8) — (2,2) , as compared with — (3, 1) in the
upper panel, and — (1.08,1.08) in the middle panel.
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FIG. 3: Contour plot of iso-gaps (constant spectral gap Ag1) in
{&1, B} parameter space for the potential of section Rayleigh
limit is indicated by magenta line. As in previous figure, effective
width of the wells vs. the width of the top of the barrier is character-
ized by ratio 8 = o1 /0 from eqns.(A2). The distance between the
well minima is 2¢; in the same scale-free units. Gap Ag; is expo-
nentially small when the ground state is split into two localized com-
ponents (lower right sketch), one in each well; & > B. If these two
parameters become comparable the gap approaches fw; as the wells
effectively merge (upper right sketch). For a bulk unimodal state of
effective width L the energies and gaps will scale oc L2 (particle in
a box). For fixed well separation £; the magenta curve traces 3 val-
ues associated with a maximum gap, i.e. where the indicated iso-gap
contours are vertical. This line asymptotes to 5 ~ 0.82&;. For larger
[ (above the magenta line) Ao remains large but the well energies
and gaps decrease as 1/32, no longer exponentially.

tunneling of a localized state from one side to the other.)
First, a thorough investigation of a double well will provide
a more mathematical underpinning to the above remarks.

III. QUANTUM TRANSPORT IN A DOUBLE WELL

Since the performance of the adiabatic algorithm stems
from the ability of the ground state to conquer potential bar-
riers as it evolves towards the target state, let us examine this
simplest of possible scenarios — that of a generic symmetric
double well in one dimension, with real coordinate z, and cen-
tered on z = 0. Such models are used extensively with great
success to explain phenomena such as diatomic molecular
bonding in chemistry and microwave frequency oscillations
between the vibrational modes of the ammonia molecule.

As the distance between two wells increases, the spec-
trum of energy levels is observed to pair up in doublets, each
containing adjacent orthogonal symmetric and anti-symmetric
eigenstates. Doublets are separated in energy by ~ fw (the
characteristic energy of one well taken in isolation) but the
intra-doublet splitting itself shrinks exponentially small in the
well separation. See FIG[T] By this exercise, and in the spirit
of Gamow’s work® mentioned earlier, we wish to gain insights
about any crossover in the scaling behaviour of these spectral
gaps as the wells distance varies. For the execution of the adi-



abatic algorithm, the gap size fundamentally dictates time to
solution. To foster confidence in the veracity of this statement
we present the following illustration.

Supposing the system begins in the ground state of the left
well, we can calculate the probability it will migrate to the
right well. Assume the true ground state of the system is a
real-valued positive set of amplitudes that corresponds to an
equal superposition ¥ (2) = (vo(2z — 21) +Yo(z + 21))/V/2
of the local simple harmonic oscillator ground states con-
fined to the left and right wells. This is a reasonable as-
sumption for wells separated by a wide barrier. Near a mini-
mum the potential is by definition quadratic: V(z ~ 21) =
Vo + Vi'(z — 21)?, we recall the eigenstates of a simple
harmonic oscillator are Hermite functions, with the ground
state Gaussian-distributed: o (2) oc exp{—22/(20?)} where
o = /h/(mw) provides a natural length-scale and w =
/' V' /m relates the energy scale of local quanta to the well-
curvature. Equally, we can assume the first excited state is
the anti-symmetric superposition ¢ (2) = [to(z — 21) —
Yo(z + 21)]/v/2, as its orthogonality to the ground state is
guaranteed, even when the overlap [ 1o(z — 21)¢o(z + 21)dz
becomes substantial. The symmetry of the potential energy
V(z) = V(—=z) guarantees that eigenstates will have definite
even/odd parity, ¥;5(z) = +1iF(—2) where k labels a par-
ticular doublet. The Sturm-Liouville theorem! dictates that
in one dimension there can be no degeneracies, and that the
odd/even doublets will be paired with the odd states above the
even ones in energy-2.

Now to relate the spectral gap size to the rate of migration
across the barrier for the two state model: Taking the Hamil-
tonian to be quasi-static during the transition, a particle local-
ized in the left well, at t = 0 will be ¥o(z — 21) o< ¥ — ;s
which evolves to:

(2, 1) = exp{—iEJ /Mg — exp{~iE t/h}y
— exp { *i(Ea;g Ea)t}

2h
(D

A A
x {(%* +¢5)cost2—h + (g —wo—)smt}

(ignoring normalization) and A = E; — Eg is the energy
gap. The system oscillates back and forth between the two
wells at a frequency A/(2A4) and a characteristic time-scale
for the migration from left to right well is

T~ h/A. )

Armed with the knowledge that barrier migration occurs
on time scales varying inversely with the size of the spec-
tral gap, one is motivated to understand how the latter varies
with the height of the barrier and the distance between the two
wells. This has been a heavily researched topic in the limit of
tall barriers and large separations'®, however the behaviour in
transition to lower barriers and small separations is not well-
documented.

If we demand the double well to be continuous, smooth and

Asymmetric Wells
| I \ 77 i}

]/

IRTACRIRTAACAIRT

28, 202

&1 +52*|

FIG. 4: An asymmetric well may also be modelled as piecewise
parabolic, with two location and two width parameters, {£1,2, 81,2}
respectively. Here we have chosen different width parameters
{B1, B2} + {1,374} for all plots, and equal location parameters
&1 = & =~ 1.25. These values correspond to the optimal catalysis
of the quantum 3-spin, see eqn. (22). To identify the point of phase
transition at the barrier summit the vacuum energy e of all three po-
tentials must coincide; the asymmetric potential and both symmetric
wells from which it is composed (vacuum energy level depicted by
red horizontal lines). Near the barrier summit the potential is an in-
verted parabola; the ground state has identical analytical form in all
three cases (upper plots); a standing wave formed from right and
left-moving parabolic cylinder functions, see Appendix [A] for fur-
ther discussion. Without this resonance condition we cannot assume
that the ground state represents a system at the point of phase transi-
tion. FIG[I9]illustrates the different phenomenon of resonance tun-
neling for slow phase transitions where neither well approaches the
Rayleigh limit and the barrier greatly exceeds the vacuum energy.

piecewise-parabolic, the barrier height can be calculated:

mz? (1 1\!
Vo = B (Wz +w%> . 3)
At the barrier summit we define a characteristic frequency
wy = y/—V{'/m, and a length scale by 0, = \/hi/(m.w.);
the width of a localized ground state, were the maximum in-
verted. Analogously we can define o1 = \/h/(mjwy), the
width of a localized ground state in one of the two wells with
frequency, w; = /V{’/m. This ‘Frankensteined” potential
represents a restricted subset of all possible double wells but
its modest formulation, we hope, will produce insights that
generalize well to the wider domain (for instance, when we
examine the quantum 3 spin model in section [V]) One might
arbitrarily imagine wells with more elaborate structure away
from the well extrema, without revealing much about quantum
transport mechanisms in general. As was stated earlier, it is
not the barrier height, or even its size relative to the ground
state energy that establishes the spectral gap and computa-
tional complexity. The more correct question one should ask
is whether the distinct well components have coalesced, i.e.
whether a quantum Rayleigh ‘resolution limit’ is reached.
Detailed examination of the piecewise potential and its ana-
lytical eigenstates is presented in the appendix [A] Eigenstates
¢* are composed of parabolic cylinder functions, e.g. the
ground state ¢ is a superposition of such cylinder functions'-
called a Kummer function, eqn.(A6).




The following useful expression is derived in appendix [A]
for the spectral gap as a scale-free ratio:

Ao _ 93(0)(0) “
hw. 2 [[7 ¢f ¢g dé

where the denominator is the semi-overlap of the ground and
excited states, and the variable § = z/o, is the displace-
ment variable (measured in units of o, the effective width of
the barrier summit). Substituting the analytical forms of the
eigenstates, the gap function of eqn.(d) is maximized for well-
separation §; = z1/0,. +— 0, demonstrating that the largest
gap occurs when two wells merge. Introducing the scaled
well-width 8 = o1 /0., FIG indicates a maximum of the
spectral gap in 5 near 8 ~ 0.82 &;. For distinct, localized
wells (£1 > ) the gap quickly vanishes to become exponen-
tially small. For fixed &; and larger S >> £; beyond its max-
imum, the gap shrinks again, but only polynomially quickly.
This is because the coalesced well is now becoming wider as
[ increases. (Further reduction in the barrier height occurs
but is now irrelevant.) The gap decays as the inverse square,
A/(hwy) = 1/3% = wy Jw., as should be expected —the wells
are merging and the gap maps onto that of a single harmonic
oscillator: Aw;. We shall learn that the spread/confinement
of the (unimodal) ground state is the harbinger of quantum
mobility, rather than barrier suppression.

In terms of the original variables, fast adiabatic transport
across a potential barrier does not depend directly on the po-
tential barrier size, nor the curvature at the summit. Rather it
depends on the violation of a Rayleigh separability criterion:

1 1/4
21> 01 =Vh [ G )} (Rayleigh limit) ~ (5)
1

mi V"

This criterion is entirely defined in terms of the potential cur-
vature and coordinate extent in the vicinity of the well minima
at z = £2z;. Quantum mechanics only enters via the coupling
constant \/7 — its value dictates the spread or confinement of
the ground state in a potential minimum. This may seem an
odd remark, but it is relevant for later sections where an effec-
tive fi(n) emerges that will depend on the number of qubits n,
see eqn. (T3).

It is not obvious how universal such a criterion might
be, and whether it might be extrapolated to wells of differ-
ent shape and symmetry. In a later section we tackle the
quantum 3-spin, where we will encounter transitions between
asymmetric double wells of a quantum particle with position-
dependent mass.

IV. ASYMMETRIC POTENTIAL AND RESONANCE
CONDITION

The asymmetric double-well with a high barrier and widely
separated minima &; and &, can be characterised as being far
from the Rayleigh limit: &; > 3;. Such a scenario is less inter-
esting in the current context of vacuum delocalization, and has

already been carefully examined, including the phenomenon
of resonant tunneling, in Refs. [18H20L

When the wells begin to coalesce and 3; ~ &; one might
ask now what are the conditions for quantum catalysis when
the potential has asymmetry? To begin with, we must consider
whether the system is at the point of a quantum phase transi-
tion. In the symmetric well it was guaranteed that the ground
state represents a phase transition due to its inherent symme-
try. But for a asymmetric double-well, the ground state may
be largely confined to the wider/deeper minimum.

To correctly identify the point of transition we should look
to the barrier summit. A key observation is that the asym-
metric piecewise parabolic potential still has a maximum of
unit curvature there. Locally this inverted parabola has travel-
ling wave solutions ¢)(+z); parabolic cylinder functions with
imaginary arguments'’, moving to the left and right, see ap-
pendix A. (Bound states of double well must share the same
eigenvalue and the travelling waves are mirror images of each
other.) The overall solution in the vicinity of the barrier is a
linear combination of these, A (z) + By(—=z).

Given the context of phase transition, if we associate the
minimum spectral gap with the maximum ground state vari-
ance, this maximum is only possible when the state is as
equally distributed as possible between the two asymmetric
wells. By matching energy levels and introducing the bound-
ary condition at the barrier summit ¢’(z,) = 0, it’s as if we
have introduced a double-sided mirror — each side of the bar-
rier has a ground state that is one half of a fully-symmetric
double-well. This is the key to an evenly distributed wave-
function between the two asymmetric wells. So the real-
valued symmetric combination (A = B above) is the only
possibility.

Once this Kummer wavefunction (A6) is matched to the so-
lutions further out in each of the two wells of different widths
and depths, it will be stitched to a different decaying solution
as z — Fo0. The join points will differ on each side because
of the asymmetry, £ = —&;/(1+ B1) and € = +& /(1 + 33).
The overall ground state will look like the ground state of
a symmetric double-well for z < 0 joined at z = 0 to the
ground state for a different symmetric double-well for z > 0.
It is necessary that the two symmetric wells have the same
ground state energy; all the stitched together ground state
components must share the same eigenvalue to represent a
composite eigenstate. See FIGH]

Thus we have a resonance condition analogous to the one
for tunneling through high barriers mentioned at the start of
this section: Phase transitions in asymmetric double-wells oc-
cur when the ground states of the two symmetric double-wells
(from which the asymmetric well is derived) have the same
energy deficit below the barrier summit.

V. INTRODUCING THE FERROMAGNETIC 3-SPIN
MODEL

Now let us apply this delocalization transport mechanism
to systems of n spins or qubits. We can define a quantum
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FIG. 5: In the quantum 3-spin model, increasing the anti-
ferromagnetic coupling governed by (1 — «) from eqn.(7) ‘softens’
the discontinuous or first-order phase transition occurring for the ex-
ternal magnetic field parameter I' = 0.565, to approach a continu-
ous or second-order transition nearby. This is illustrated above for
n = 100 spins. For k = 1 the discontinuity in the ground state
(amplitudes 1(z) on the vertical axis) is quite apparent as it tunnels
from the paramagnetic phase centered on z = m/j = 0 to the ferro-
magnetic phase near z = +1. For x = 0.1, this transition has been
‘smeared out’ by the contribution of the non-stoquastic driver 4.J2;
the state distribution changes continuously with I" in the second plot.

annealing Hamlitonian as follows:
H=-T=Z-(1-I)2% (6)
J

where I is an annealing parameter. The operators jTyz are
associated with spin along the three Euclidean axes. Scalar j
is a total spin quantum number, and p is an integer power. The
control parameter I' is typically initialized at 1 and reduced
slowly and smoothly to 0. In the current context I is associ-
ated with the strength of a transverse magnetic field (along the
x direction). In the usual sense, J P is therefore the ‘target’ or
‘problem’ Hamiltonian. (The quantum annealing prepares the
ground state of a problem Hamiltonian.)

As it is written, the Hamiltonian is bounded: |H| < 1 This
model is called quantum ferromagnetic p-spin, and we will
explore the p = 3 case. It is worthy of a comment that the
limiting case p ~ oo faithfully represents the annealing for-
mulation of Grover’s unstructured search problem, which be-
longs to the class of hard problems mentioned in the introduc-
tion. Since, for example, jz = Zl agl) /2 is a collective spin
operator, the interaction term with p = 3 gives rise to 3-local
interactions of type a,(zi) ®a,(zj ) ®0£k) . This may seem at first to
be somewhat unphysical. The advantage for us is that despite
the uniform and infinite range couplings and no topological
features the model exhibits a first order phase transition for
a particular I'.. It may provide insights about the nature of
‘hard’ problems in quantum annealing.

By the addition of a second control parameter x € [0, 1],
that varies the strength of a transverse anti-ferromagnetic cou-

(@)

pling oy’ ® a§? ) , the 3-spin model becomes more interesting:

T Jp J2
H=-TZ _k1-DZ4+0-D)1—-kr)=Z. @
; ( )j,, ( )( )32
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It should be noted that this second control Hamiltonian +j§
has opposite sign to the other terms which implies that in the
computational basis the off-diagonal terms are no longer real
and non-positive. This is a definition of non-stoquasticity. It
has been conjectured that the inclusion of such non-stoquastic
terms might be crucial to any speed-up of quantum annealing
over classical computation. Indeed, non-stoquastic Hamilto-
nians may not be simulated efficiently by classical algorithms.
Seki and Nishimori proved in Ref!7|that for p-spin models of
p > 4 the inclusion of the non-stoquastic term above can, dur-
ing the annealing schedule, circumvent the first order phase
transition. For p = 3, the mean-field analysis they performed
indicates the first order phase transition should persist, result-
ing in an exponential slowdown of the adiabatic evolution. We
will show that actually this is not the case; even for p = 3 there
is the possibility of non-stoquastic speed-up.

The non-stoquastic term has the effect of widening the
spectral gap at the phase transition. Equivalently, the free en-
ergy landscape is altered such that potential barriers are sup-
pressed entirely into second order phase transitions. Travers-
ing the fully lowered barrier, the ground state no longer jumps
discontinuously at the phase transition; rather it stretches
across the valley floor to occupy the other well, with ampli-
tudes that ‘smear’ across the intervening coordinate space, see
FIG.

VI. MEAN FIELD PICTURE

In a conventional treatment one proceeds with a mean field
analysis. In such an approach, all n qubits are unentangled
and identical, collectively forming a large spin coherent state:

|¥) =cos(0/2)|0) + sin(6/2)[1) ®)
W) =[y)®" )

This state, because all the qubits are identical, is also in the
j = n/2 fully-symmetric subspace. Also note the qubit is
confined to the  — z plane just like the Hamiltonian, and that
0 is the polar angle made by spin coherent state with the x
axis. If we take the expectation value of H with |¥) we can
write it in terms of {T", x, 8} parameters:

(H) = —T cos 0—k(1—T) sin® 0+(1—-T)(1—~) cos? 0 (10)

In Cartesian coordinates, we may express sinff = z and
cos) = x = +/1— 22 and introduce the annealing ratio

v =D/(1-T);

) =V(z)=—-v1-22— [H] 2P+ F KJ} (1—2%)
r gl gl

(1)
This is a mean field description of the energy V(z) as a
function on the line z = m/j € [—1, 1] where m is the mag-
netic quantum number. We continue in the fully symmetric
space of maximum spin j = n/2, as the Hamiltonian always
commutes with the total spin operator J? = ij + JE +J 2 for
all {T", k} values. This energy function on the line will con-
tinuously change as « and I" are varied, and if the changes are
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FIG. 6: Zero temperature energy surfaces V (z) associated with quantum annealing as a transverse field I is lowered adiabatically (upper row
of 2D plots provide an overhead plan view): Coordinate z = m/j € [—1, 1] is the ratio of the magnetic quantum number m to total spin
j. For an m-qubit ensemble confined to the fully symmetric subspace, the total spin j = n/2. Loci of the maximum (dashed red line) and
minima (unbroken red line) are indicated, as are births of new maximum/minimum pairs (red dots), and second order phase transitions where
a minimum becomes a maximum (black dots). These latter points are associated with lines of zero curvature, V"' (2) = 0. As I is reduced,
the ground state evolves in (a) and (b) by a first order phase transition connecting z = 0 via tunneling through an intervening barrier ( dark
blue contour) to reach the global minimum at z = 1. The blue/cyan contours trace out the potential wells when they have equal depth, as
defines the classical first order transition. (In the 2D plan view, the blue transition line intersects the red dashed line associated with a potential
maximum, a signature of barrier penetration.) To contrast, case (c) illustrates the Lipkin-Meshkov-Glick (LMG) model in which the
ground state smoothly evolves from being localised at z = 0 to z = +£1, bifurcating continuously near the critical point I'. = 2/3 (green line).
The ‘gentler’ phase transition here is described as second order or continuous; the green contour intersects no intervening V' (z) maximum,
there is no barrier penetration. Cases (a) and (b) present the p-spin model for p = 3 which, at least classically, presents an unavoidable first
order phase transition; the barrier cannot be fully suppressed to zero. Case (b) shows the modified potential produced by the presence of the
non-stoquastic catalyst term in the p-spin Hamiltonian, a transverse ferromagnetic coupling of strength (1 — &), as described in section The
catalysis softens the transition, bringing the first and second order transitions points in close proximity (red/black dots of top middle figure)
and effecting partial barrier suppression.

made adiabatically, the spin configuration remains in the min- VII. FULL QUANTUM MODEL OF 3-SPIN WITH
imum of this function. Equivalently, the overall spin coherent NON-STOQUASTIC DRIVER
state is like a macroscopic pointer oriented in the direction 6,
associated with the minimum energy.
First, let us make the problem fully quantum. We could sim-
ply proceed by numerical diagonalization of the spin Hamil-
Of course, even though much can be gained from this clas- tonian, but this provides little insight about the problem or
sical analysis, this does not provide a complete picture. The  its characteristic features, and does not answer questions like:
spins are highly coupled with long range order and during its ~ Why is there a phase transition? or Why should we expect
evolution the system undergoes a first or second order phase ~ universality to the problem’s behaviour for different n? Why
transition. It is hard to believe that a description devoid of en-  should we expect the problem to compute quickly or slowly?
tanglement and other quantum properties will capture the cor- ~ And eventually, one might imagine running out of process-
rect characteristics in proximity to the phase transition where ~ ing power to perform the numerical computations at large n.
quantum features are dominant (e.g. peaks in entanglement  The approach we employ is to turn the discrete spin problem

and quantum Fisher information). Recall also that the bottle- into a continuous variable Schrodinger equation for a particle
necks occurring in this critical region dictate the overall time  in a potential. By similar techniques, we previously studied
complexity of the algorithm. We now illustrate this shortcom-  criticality as a resource for quantum metrology in the Lip-

ing with the p = 3 case. kin model*!. Using notation jz|m) = m|m), designate the



ground state as [¥o) = 37 ; ¥m|m). Let’s formulate the
difference equation, or recurrence relations for the Hamilto-
nian, featuring ¥, ¥, +1, etc., which for small ¢ = 2 in
jg‘;’ will not have many entries far from the leading diagonal.

Forming the inner product %<m|H [To):

) (5 () e

To proceed we recall J, = (J* + J7)/2 and the action of
these ladder operators is

JEm) =2 —m2+jFmim+1).

Operating with the Hermitian spin operators to the left on the
basis states (m/| < gives:

ja: _ j2_m2
ml <j> i T
[<m—1,/1+.1+<m+1|,/1+.1]. (12)
J—m J7+m

Similarly, J¢ for ¢ = 2 maps the |m) component into itself
and |m £ 2). Moving to pseudo-continuous coordinate z =
m/j € [—1, 1] we introduce a small parameter:

h=1/j (effective Planck const) (13)

and rewrite (m £ 1|¥o) = 911 — ¥(z £ h). The exact
result (before any approximation) is

(m| (‘2) W) = V-2 [w — iy

1

h
1+ —
142

(14)

+ Y(z+h)

The penultimate step is to identify a shift operator:

P(e+ 1) = EMPY(2) = exp {ihj} 6 as)
in terms of the differential operator D = d/dz, the generator
of translations in one dimension.

Finally, we expand everything to second order in the small
parameter /. This is only valid when the quantum state and the
form of the potential are sufficiently smooth: h2D? < hD <
1, which may not always be the case. There are errors associ-
ated with truncation to O(h?), but these should be less signif-
icant for larger qubit ensembles n = 25 > 1, resulting in the
effective i < 1. Then combinations like ¥ (z + h) + (2 — h)
map to cosh(AD)Y(z) =~ [1 + (hD)?/2]y(2). As a conse-
quence, transverse field term jz, as well as contributing to t?e

B2 d%y

potential energy, is the origin of a kinetic energy term — % =—

in the Schrodinger equation. In some sense, the transverse

. j=25 Phase Transition: In(1/A
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FIG. 7: Any annealing schedule that maps {I", '} values {1,1} —
{0, 1} will unavoidably traverse the minimum gap region that corre-
sponds to the phase transition of the quantum 3-spin model, eqn. (7).
The phase transition ridge may not be circumvented, as is quite ap-
parent in the upper contour plot of the inverse gap 1/A for n = 50
(3 = 25) . The ridge extends throughout the full parameter range
k € [0,1]. Near the line k = 1 the transition is first order, the as-
sociated minimum gap is always exponentially small in j. However,
for optimized control parameters {I'c, k.} = {0.598,0.479} (de-
noted by a white star) the ridge defining the phase transition has a
saddle, a ‘maximum minimum gap’. Optimized annealing sched-
ules that minimize computation time should pass near this point.
In fact, for k < K. as 7 > 1 a polynomially-small minimum
gap is always possible, even though a classical analysis of the po-
tential landscape alone would seemingly forbid this. The lower
plot shows the {T, k. } parameter pairs (stars) for different labelled
17.5 < 7 <95. (Forj <17, optimal k. = 1.) The orange and blue
curves describe respectively, the birth of the second potential mini-
mum V" (21) = 0, and the point at which both wells are of equal
depth, V(z1) = V(0). The green line corresponds to the second
order phase transition at z = 0. It is ‘hidden’ in the sense that any
adiabatic annealing schedule progressing from right (I' = 1) to left
sides will initially encounter the 1% order transition from the z = 0
minimum to z; > 0; the green curve never crosses the blue-orange
bounded region, for all x.
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FIG. 8: For direct comparison, here are plotted the spectral gap
‘landscape’ for both systems, as a function of the control parameters
I" (transverse field) and « (anti-ferromagnetic driver). The upper plot
depicts, for n = 80 spins, the 3-spin ensemble. The lower figure is
the equivalent analytical model: a particle of variable mass moving in
a one-dimensional continuous potential well. This 1D model is seen
to exhibit the same qualitative features as the original spin ensemble
(upper plot), except for an infinite mass singularity at z = 0 coin-
cident with the hidden second order phase transition (white dashed
curve in lower plot), see eqn.(T9). The saddle point of the phase
transition ridge for the original 80 spin system is indicated (in both
plots) by a white star marker, and with a cyan marker for the continu-
ous model. Ground state wavefunctions associated with both models
are shown in FIG. [[1]

field provides the kinetic energy that allows the quantum sys-
tem to migrate through barriers.

All transverse terms of form jg contribute to both kinetic
and potential energy terms in the Hamiltonian:

(ml (‘2) ) [qhm — D+ (1)} 6(2)

2
(16)
Note the slightly unusual form of the Kinetic Energy operator
for a variable mass, written in a manifestly Hermitian form:
PM-'P /2 (although such a position-dependent mass does
occur in the semiconductor tunnelling literature*?). Here, mo-

mentum operator P = —ihD and inverse mass
M~ (z) = —q(1 —2%)%. (17)

The potential energy contribution to V' (z) from the above
mapping of J9 is +(1 — 22)%. An analytical treatment of
the Schrodinger equation with position-dependent mass was
presented in Ref. 23|

Now we are at a point we can write out the eigen-equation
H|U,) = Ej|¥;) reformulated for a single particle of vari-
able mass in a continuous potential:

1A~ 14 E
SPM P+ V(z)} Vi (z) = ?kz/)k(z) ,  (13)
The inverse mass operator can be zero or negative in the pa-

rameter space of {T", x}:
M~Y(z) = V1 — 22— 2(1 — 22) F ; “} (19)

Despite the fact this was a completely different approach
to the mean field/classical spin derivation, the potential en-
ergy V(z) coincides with the free energy in the mean field
picture, eqn.(TT). The key improvement is that in addition to
defining a potential energy surface, we now have an analyti-
cal expression for the kinetic energy. Variable mass problems
are interesting in their own right, and studying this one, with
its possibility of infinite and negative mass, may reveal new
behaviours within the p-spin paradigm. Or these anomalies
may point to limitations of a model that is only quadratic in
momentum P. (Interestingly, the negative mass boundary is
coincident with the second order phase transition in the p=3
case.) It is also intriguing how this model will behave for
mesoscopic values of n: sufficiently large to maintain the va-
lidity of the transformation to continuous variables, but small
enough that the effective i = 1/ is of a size that the ensem-
ble behaves in an extravagantly quantum manner. This is the
opposite extreme to the thermodynamic limit n ~ oo, i.e. the
classical limit &4 ~ 0 where quantum effects vanish. The en-
ergy surfaces V(z) for z € [—1, 1] are indicated for a range
of annealing parameter I', two snapshots taken at values 1 and
0.4 for k, in FIG@ (a) and (b). The third subplot (c) will be
discussed in section Dl

VIII. ADIABATIC EVOLUTION ACROSS THE SOFTENED

PHASE TRANSITION

For adiabatic evolution the ground state will remain in the
global minimum of the potential surface. The system begins
at I' = 1 in the unique minimum at z = 0, then a second
minimum-maximum pair are born as the transverse field is
slowly turned off. The annealing ratio at which the new mini-
mum appears is given in eqn.(CI). The coordinate location of
the new minimum is rather clumsy if expressed as 21 (T, k),
but it can be compactly expressed as a condition in terms of
the associated polar angle 6, :

_ ysec(01) + 2k — 2

sin(6,) = 3 (20)
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FIG. 9: The phase transition ridge features a saddle point, or ‘maxi-
mum minimum gap’, more clearly visible in 3 dimensions when plot-
ted against control variables x and I'. The energy gap of this saddle
point scales polynomially with system size j. At larger « (reduc-
ing the influence of the non-stoquastic driver) the gap size shrinks to
be exponentially small in j. For very small « the gap again quickly
closes from polynomial to exponential or factorial, this anomalous
gap was first discussed in Ref24l

This minimum V'(z1) begins at a higher energy than the
z = 0 paramagnetic minimum but sinks quickly as I' — 0,
see FIG[6|again. During the annealing this ferromagnetic min-
imum drops lower than the central minimum, and it is at this
point the ground state of the system jumps discontinuously to
the ferromagnetic state in a first order phase transition. The
point on the annealing schedule that corresponds to the min-
imum spectral gap actually occurs somewhere between the
birth of the second ferromagnetic minimum and the point at
which the wells have equal depth. In fact all the interest-
ing quantum behaviour of this model occurs between these
extremes, outside of which a mean field description will suf-
fice. This is illustrated in FIG[7] a contour plot of the j = 40
inverse gap 1/A that indicates clearly a phase transition re-
gion bounded by curves associated with the birth of the sec-
ond minimum and the classical first order phase transition, in
orange and blue respectively. FIG. [ compares this anneal-
ing landscape of the original n-spin ensemble and the corre-
sponding 1D particle model we have developed, with good
agreement. Finally, FIG.[I8]in the appendix illustrates the do-
main of applicability of the mean field model quite explicitly
(including its failure in proximity to the phase transition).

As a side remark, we mention that in the {I", s} parameter
space, for very small x ~ 0 the gap closes very fast to be fac-
torially or exponentially small, without any associated phase
transition — this anomalous behaviour has been documented
previously in Ref. [24]and relates to the fact a finite number of
spins n = 2j cannot exactly represent an irrational value of
the variable z = m/j. (In the current context this is not an
interesting limit because the problem Hamiltonian vanishes
when x = 0.) See FIGD]for a three dimensional visualization
of the spectral gap landscape.

In FIG. [7] along the ridge of the phase transition there is
a white star marker indicating the location of the saddle, or
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FIG. 10: For the quantum 3-spin model, the Hamiltonian contribu-
tion of the transverse anti-ferromagnetic driver +(1 — ).J2 is illus-
trated near the classical first order phase transition (wells are of equal
depth). Control parameters « (indicated) and I' (not shown) and are
chosen to fulfill this condition, and as x + 0 the contribution of the
non-stoquastic driver increases, lowering the barrier Vp, and reduc-
ing the separation of the potential wells z;. The paramagnetic well is
centered on the origin (unbroken white line). The dashed white line
describes the ferromagnetic minimum at z = 2z;. Asymmetry of the
wells is apparent even when they are of equal depth, as above.

maximum minimum gap. As j increases we would like to
know whether this optimized gap begins to shrink at a polyno-
mial or exponential rate. In terms of classical phase transition
analysis, the second order phase transition (green arc of FIG.
[7] lower plot) is always hidden behind the first order transi-
tion (blue curve), and therefore there is no hope to produce a
polynomial-sized gap. Stated using carefully chosen language
in Ref. 23— on examining the potential surface,

‘the first-order transition line persists down
to k = 0. This fact may be interpreted in terms
of the Landau theory of phase transitions that
there would appear a cubic term in the Landau
free energy for the cubic Hamiltonian with p = 3,
which strongly enhances the possibility of first-
order transition.



V(z) and ground state at optimal catalysis
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FIG. 11: The Rayleigh limit is clearly violated at optimal catalysis
for both the original discrete spin system, and the continuous model
—i.e. for the widest minimum gap Ao — here illustrated for n = 80
qubits. Optimal control parameters {I'., k. } were found for the spin
system by numerical search using a truncated Newton method. The
ground state ¥(z) (blue and dashed red curves) no longer has iso-
lated components in each well, they are largely coalesced. Note the
asymmetry, not only of the potential well V'(z) (grey filled curve),
but of the wavefunction, biased towards the ferromagnetic well (cen-
tered on z1).

Here the authors are referring to the cubic term that arises in
eqn.(TI), setting p = 3. The apparent inevitability of barrier
penetration via tunnelling, with the associated exponentially
small spectral gaps and first order phase transitions in many
quantum annealing landscapes (beyond simple p-spin models,
e.g. spin glasses) is a phenomenon much-cited in arguments
against the efficiency of the adiabatic algorithm for practical
problems=. This is somewhat ironic: tunneling itself is one of
the vaunted traits of quantum annealing that offer it an advan-
tage over classical algorithms. Let’s examine what happens to
the double well as « is reduced, turning on the the influence
of the non-stoquastic antiferromagnetic driver —|—j£

From FIG[I(]it’s seen that reducing « also lowers the bar-
rier, it becomes completely suppressed only for x = 0. This
limit, however, brings us back to the anomalous case dis-
cussed earlier’®. How does the optimal non-stoquastic driver
contribution k. scale with the system size n = 235? If . ap-
proaches zero too quickly it suggests that the non-stoquastic
terms may not be very useful for larger ensembles. More cru-
cially, what gap scaling can we achieve, even without being
able to suppress the barrier entirely?

Algebraic analysis of the £ < 1 limit (appendix [C)) shows
at small x (strong non-stoquastic driving) the coordinate dis-
tances zq, characteristic frequencies w and barrier heights
Vo scale — {k, k2, k*}, respectively. And application of
Rayleigh criterion from eqn.(3) indicates a scaling law at the
saddle point:

ke~ O(VH) =a/\/7 . (21)

where o we shall call the ‘Rayleigh coefficient’.

This is encouraging, firstly because it vindicates our choice
to work in the limit of small « for larger ensembles. Also, it
says the relative strength x of the problem Hamiltonian —J 3
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to the non-stoquastic driver +j§ must decay only polynomi-
ally in system size n = 2j. An optimal barrier will decay as
k% oc 1/42. For any finite ensemble an optimized catalysis
occurs for a non-zero barrier. Total barrier suppression, if it
were even possible, would be sub-optimal. (It is of course, not
possible in the 3-spin model.)

Combining eqn.(T3) with eqn.(ZI) above, i = 1/j x r?
for optimal catalysis, the vacuum energy for the isolated wells
hwp 1/2 is of same order as the potential barrier height Vj ~
k2; all energy scales are equivalent.

Let’s examine the Rayleigh limit £; ~ [ for the asymmetric
potential e.g. of FIG[IT] We may apply the phase transition
resonance condition that was introduced in section [[V| Map-
ping the non-stoquastically driven 3-spin into the piecewise-
parabolic potential produces:

(0% (0%

1
{51761762762} — {31/47 17 W7 31/4} (22)

where « is the scaling coefficient of the Rayleigh criterion,
to be recovered presently (k. = «/+/7). Asymptotic expres-
sions for &, 5 terms in the small x limit are also worked out in
appendix [Crather than interrupting the current narrative. The
asymmetric potential in scale-free coordinates was depicted in
FIGH

From eqn. the energy Aw, contributes a multiplicative
factor o to the gap Ay, using the small-x result of eqn.
(C9¢). The saddle point of the phase transition (maximum

minimum gap) occurs when the spectral gap times a2 is a
maximum:
1.67
Ke RS —— (23)

\/j )

the explicit dependence of the gap on « is plotted in FIG[I2]
(The numerical solution to the scale-free problem unlocks the
fundamental scaling coefficient, universal to the 3-spin prob-
lem of any size j > 1.)

Going back to, and comparing, the original spin system,
numerical results for n < 400 are presented in the upper plot

o Rayleigh coefficient
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FIG. 12: The spectral gap Ap; in the 3-spin is formed by multiply-
ing the O(1) gap in scale-free coordinates by hw., which produces
Ao1 ~ O(1/4%). To find the numerical coefficient we may apply
the delocalization resonance condition of section IV to produce this
curve of the gap (in arbitrary units) as a function of the Rayleigh co-
efficient . It features a maximum at o = 1.67, corresponding to the
saddle of the phase transition.



of FIG which also asymptotes to k. ~ 1.6/+/7, confirming
the validity of the variable-mass model and the simplification
to a piecewise-parabolic potential.

These results further suggest that smaller systems will more
easily violate the Rayleigh separation criterion. In the thermo-
dynamic/classical limit, j ~ oo it is impossible to approach
this Rayleigh boundary. Classically, one will always have a
first order phase transition and exponentially small gap. More
correct than ‘classical’, we might designate this the ‘large spin
limit’; the framework we have illustrated remains quantum
mechanical and tunnelling is permissible, if unlikely.

Referencing eqn.(@) we know that A, ~ O(1/;?), with one
power of 1/j coming from % and the other from wi, the latter
was calculated at the critical . in eqn. . The scale-free
analysis that produced o = 1.67 also provides the scaling
here:

V3

Ap~ 2
252

(24
This compares remarkably well to the original 3-spin system,
verified numerically to 400 qubits in the lower plot of FIG[I3]

The prediction of a crossover from exponentially small gap
to a polynomial one and the resulting quantum speed-up, es-
pecially in models where it was assumed not possible, is a cen-
tral result of this note — as is the presentation of an optimized
catalysis (energy barrier suppression) associated with a type
of Rayleigh criterion and resonance for the quantum ground
state of a double well. A peak in mobility is possible because
of the competition between the increasing mass and increased
localization (narrowing of potential well) of the state that oc-
curs at lower k. The former decreases energy scales and the
latter increases them. The inclusion of kinetic energy and
quantum uncertainty in the analysis may require redrawing of
the boundaries in many phase diagrams produced for models
such as p-spin, that had previously been based on considera-
tion of the classical potential surface alone.

IX. t*: TIME TO SOLUTION VIA OPTIMAL PATH

Earlier we gave a simple justification in the tunneling case
that time to solution and minimum gap at the phase transition
are inversely related: t* ~ 1/Ap1(I'*, k*). Now we have a
Hamiltonian evolving under the influence of two drivers, I'
and k, for which we can adapt a recipe presented in Refl26.
With gradient operator V = (:%, 2):

1 1 N
JJo A

The open curve C' connects initial point {T',x} = {1,1} to
final point {0,1} in control space and ||M||2 denotes the 2-
norm of a matrix M. Approximately, for the Hamiltonian of
eqn.(7) in the limit j > 1 we have ||9H /OT||s ~ 2 — , and
|0H /0|y ~1—T.

We believe annealing through the saddle point, identified
by a star in FIG[7] permits a fast (polynomial time) adiabatic
evolution. Until now we have seen only the 1/52 scaling of

fM@ (25)
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scaling of x. with ensemble size
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FIG. 13: Upper plot collects numerical results for the non-stoquastic
control parameter k. of 3-spin system for 4 < j < 196. The opti-
mized parameter values asymptote to K. o< 1/4/7, eqn.(23). For
systems of j < 17 apparently the ground state is always delocal-
ized over the barrier, because the effective 7 = 1/ (and therefore
vacuum energy) is large. In these cases no catalysis (no barrier sup-
pression) is necessary to produce a polynomial gap: k. = 1. The
lower plot shows the scaling of the minimum gap, also with system
size. Even though it is forbidden from the perspective of classical
phase transition theory, a polynomial gap can be maintained in the
quantum 3-spin model by suppressing the potential barrier to an op-
timal non-zero height Vo o k2. A partially lowered barrier per-
mits the two well components to merge; at the Rayleigh limit they
become a unimodal state, with polynomial spectral gap. Without
any catalysis the minimum gap will quickly close at an exponential
rate (magenta line), the crossover again indicated at 7 ~ 17. The
exponential scaling of the uncatalyzed first order transition asymp-
totes to A ~ exp{—0.1755}, as documented in Refl5l The optimal
gap (black dots) eventually converges on the asymptote (cyan line)
predicted by the continuous model, eqn.(24). The rate of gap clo-
sure is always faster than that of the Lipkin Meshkov Glick (2-spin)
model? B A, « 574/3, a continuous phase transition. Its scaling is
indicated in the lower plot by a dashed line.

the gap size at the saddle; let’s establish that optimal paths
actually traverse the phase transition in the neighborhood of
this saddle.

To investigate such paths C' we can rasterize the contour
landscape of FIG[J7| turning it into a grid of pixels. Each
pixel becomes a node on a graph, we can use eqn[25| to un-
derstand movement costs (time penalty) along edges connect-
ing these nodes. Restricting movement to the {N, S, E, W}
directions (diagonal costs are not uniquely defined) mean that



each node/pixel is connected to at most four others. Next, we
can employ a pathfinding algorithm such as that pioneered by
Dijkstra in the late 1950s, Ref[27, which uses a prioritized
queue to explore the graph. The algorithm is greedy, par-
tial paths are favored that have the lowest accumulated costs.
Shortest paths found in this manner are presented in FIG. [T4]
We observed in FIG[T3|that the saddle moves off the straight-
line path (x = 1) connecting {0,1} <> {1,1} for j > 17. In
contrast, the pathfinding algorithm finds an optimal route that
deviates from the beeline trajectory for j = 20. The optimal
path ventures close to the saddle point (akin to a mountain
pass through the phase transition ridge) only for larger j — for
instance the case j = 40 presented in FIG[T4]

To find an analytical answer to the scaling of this algo-
rithm with j, we will make some approximations. First,
let’s assume the dominant contribution to ¢* will come from
the vicinity of the phase transition. In essence we want to
find an effective 61", or -y corresponding to the phase tran-
sition region. We can begin by assuming the optimal path
segment 6C will traverse the transition in a direction nor-
mal to the curve o from eqn.(CI) that defines the bound-
ary of the quantum region. In the parameter space of (k,~)
the vector 7o = (k,2(1 — k) + 9x2/4) has a normal vector
7i & (9%/2 — 2, —1). This produces

« O

£~ 533 (0} (26)
where we can easily find the effective width of the phase tran-
sition dx from the intersection of the normal line with curves
7« and o, see FIG[T3]

The hidden second order phase transition (occurring when
the paramagnetic minimum at the origin z = 0 becomes a
maximum) occurs precisely at vo = 2(1 — k), which is the
same as 7 to to first order in x. The quantum phase transition
must occur between 7o and 72, and therefore t* ~ O(x2) or
smaller.

Numerical results of FIG[I35]suggest that 6y ~ O(xk*7°) at
the critical k.. The associated small change dx normal to the
phase transition ridge must also be:

Ske ~ O(K% ™). (27)

when x < 1. Putting all our scaling relationships together, in-
cluding the Rayleigh limit s, ~ O(;5~'/?) and gap size scal-
ing A, ~ O(j2) gives

"~ 0(j%) (28)

for the catalysed time complexity where we have given the an-
alytical bound o < 2 and numerical evidence for n € [1,400]
qubits indicates an o ~ 13/8.

The overall algorithmic complexity of the catalysed 3-
spin is polynomial, between linear and quadratic in the
number of spins or qubits.

The continuous model’s validity relies on a degree of
smoothness in e.g. the wavefunction and its derivative. We
may be precluded from any refinement on smaller scales than
h = 1/j, e.g. in the coordinate z. Optimal catalysis has
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Dijkstra Pathfinding in 2D Control Landscape
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FIG. 14: The algorithm due to Dijkstra is employed on a graph
produced by rasterizing the control landscape of FIGm here the en-
semble size j = 40. Contours here are also of log 1/Ao1, the cost
of moving between adjacent nodes o« 1/A3;. Darker-shaded re-
gions may therefore be more rapidly traversed. Movement costs
along graph edges, between pixels, are defined by eqn. (23). The
green line represents an optimal adiabatic contour C*(T", k) from
the initialization parameters {I", x} = {1, 1} (green dot) to the final
values {0, 1} (red dot). The blue pixels of the upper plot represent
the phase transition ridge, with the saddle indicated by a white star
marker. One might imagine an explorer journeying south from his
home in the north-east corner to cross a river close to the shallow-
est point before heading to his destination in the north-west. There
are different anisotropic frictional movement costs for going south
(1-T)(dk) versus west, (2 — k) (dT"), independent of the node cost.
This explains the zero friction path traversed due south from {1, 1}
to ~ {1,0.3} that then turns westward towards the saddle marker.
On the lower plot is ¢*, the cumulative contribution to the total adi-
abatic time. Unexplored regions are left uncolored in the lower plot.
Admittedly, there will be error in the sampling of the phase transi-
tion terrain (the ridge is basically a delta function) which might be
improved by adaptive sampling of regions with steep gradients.



Parametric Boundary of Quantum Domain
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FIG. 15: 1In {k,~} parameter space, the quantum domain exists

between the birth of the ferromagnetic well in the potential at o and
the point of the classical first-order phase transition ~., where the
potential wells have equal depth. Also shown is the hidden second
order transition 72 = 2(1 — k), where the paramagnetic minimum
becomes a maximum (dashed line). Between ~. and 7o appears the
true quantum phase transition at .. Scaling of vo — 7« is observed
between 2 and «%; a fit line for k27 is indicated on a logarithmic
scale in the lower plot (red line).

ke ~ 1/4/7 so sharp effects such as locating the phase transi-
tion ridge might be associated with higher powers than 2, and
thus may not be captured here. For these reasons we may be
restricted to the statement that in parameter space, the phase
transition ridge has width 1/j or smaller at the saddle point
of optimal catalysis.

X. CONCLUSIONS AND OUTLOOK

One might expect that quantum mobility in a potential with
tall barriers increases monotonically as those barriers are sup-
pressed, by application of external control fields or couplings.
This can result in an exponential speed-up in time to solution.
Some coupled spin systems, however, exhibit a sweet spot,
an optimal catalysis, where mobility depends on more than
just complete barrier suppression. Indeed, that full suppres-
sion may not even be possible, and the exponential speed-up
seems out of reach. For instance, the 3-spin model with non-
stoquastic driver has a strong dependence on the variable mass
that results in a saddle point of the barrier in parameter space.

We have showed that kinetic energy scales should not be
ignored, as they are in mean field models. The scale is set
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by the effective Planck constant i = 1/4, the reciprocal en-
semble size. This ‘quantum uncertainty’ dictates the ability
of a ground state to delocalize across barriers. We re-purpose
the Rayleigh optical separation criterion for quantum comput-
ing, and identify its violation as a harbinger of exponentially
enhanced mobility, see FIG@ Also, when a double-well po-
tential exhibits asymmetry we identify a resonance condition,
allowing the quantum phase transition point to be precisely
located, as distinct from the nearby classical one. The full
quantum treatment of annealing through shallow barriers can
lead to radically different conclusions about time complexity
of the algorithm.

To illustrate this ‘optimized catalysis’ we created an ana-
lytical model, and verified numerically via a pathfinding algo-
rithm, previously unexpected polynomial scaling (and univer-
sal coupling coefficients) of the time-to-solution for the quan-
tum 3-spin catalyzed by an anti-ferromagnetic coupling.

In terms of future work, if typical barrier heights are known
in an annealing problem, e.g. Vy ~ n'/? for some spin
glasses, one might match vacuum energies to that scale in
our models, to effect polynomial time solutions of otherwise
‘hard’ problems. The challenge then will be the optimal con-
trol of the Hamiltonian landscape, without leveraging prior
knowledge of minimum gap, saddle or barrier locations and
magnitudes. Because the vacuum delocalization effect we de-
scribe relies on mesoscopic-scale systems, (a large effective
h = 1/j balanced against larger problem instances n = 2j)
there is motivation to distribute large computations in an op-
timal way among smaller quantum sub-systems, of e.g. 10 to
1000 qubits.

These results hold in the adiabatic limit at zero tempera-
ture. For the non-zero temperature case, we should assume
that kKT < Vp; for if kT ~ Vj, simulated annealing is known
to be an efficient approach.

I would like to express my gratitude to Waleed Kadous at
Uber, Zhang Jiang at Google, Itay Hen of the University of
Southern California, Birgitta Whaley, William Huggins and
Norm Tubman, all at University of California, Berkeley, and
finally, Sergey Knysh, my longtime collaborator at the NASA
Ames Quantum Laboratory. My thanks to each for their
encouragement, diverse perspectives and stimulating discus-
sions as this work progressed.



3-spin: mean field

1.0 0 i ————
(j=80)] 1% order
0.8
06 PP 2 order
N

0.4
0.2 *

0 0 . }O (1/\/.;)

0.50 0.60 0.70  0.50 0.60 0.70

r r

FIG. 16: A light at the end of the tunnel: Subject to a full quan-
tum analysis, the phase portrait for the anti-ferromagnetically driven
3-spin must be redrawn. The boundary between paramagnetic phase
(PP) and ferromagnetic phase (FP) in the space of control parame-
ters I" and « is no longer first-order, and admits a softer transition.
This ’polynomial back door’ of order 1/1/4 bounded by the saddle
point (star marker) circumvents the exponential slowdown in time-to-
solution associated with tunnelling; the annealling proceeds in poly-
nomial time.
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Appendix A: Details of the Piecewise-Parabolic Potential

In order to understand vacuum delocalization we may write
a Schrodinger equation for states in the vicinity of the barrier
maximum, where we will assume the potential is dominantly
quadratic.

_ R &Yy
2m dz?

mw?

2

+ Vo — Ef — 2ld =0 (Al

It’s possible that in this regime a typical WKB approach will
fail — although the WKB series is an exact asymptotic expan-
sion, its truncation to leading terms may not be justified here.
(It should be noted that a successful WKB analysis on the
phenomenon of quantum transport across a fully-suppressed
barrier was presented in Ref. 6l)

General characteristics become clearer by switching to non-
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dimensionalized energy and length scales:

£ =z/o. (A2a)
5 = (Vo — E*)/(hw.) (A2b)
e =Vo/(hw,) — o+ (A2c)
B =o01/0. (A2d)
&=n/0. (A2e)

The rescaled energies 6= are the energy deficit under the
barrier summit for the ground and excited states respectively,
and measured in ‘quanta’ fww, of the inverted maximumtY,
The rescaled ¢ is the ground state energy measured from the
well-bottom at V' = (. The barrier height will increase with

the square of well separation &;:

T, 1 o T B? 2
e LR Cre RS

For fixed well separation &; the barrier is lowered monotoni-
cally for increasing § = 01/0%, i.e. widening the wells also
suppresses the barrier. We may rewrite the Schrédinger equa-
tion for the ground and first excited states in the vicinity of the
barrier maximum (that is £ and [6%| < 1) as:

dF

g T (205 - €65 =0

(A4)

enabling us to ‘roll up’ parameters like m, i, w into the new
variable &.

These can be solved via parabolic cylinder functions, re-
membering the boundary conditions that ¢~ and d¢™/d€
are necessarily zero at the origin & = 0 (because ¢T is an
even function and ¢~ is odd). The unnormalized ground
state/excited state solutions at the barrier summit are/730

¢y = D_1/apist [(1 = )& £ D_y a5 [—(1 —0)€] (AS)

decomposed as an even/odd superposition of parbolic cylin-
der functions D, (az) £ D, (—az) respectively, with complex
a,v. The ground state is expressible as a Kummer confluent
hypergeometric function,  F} :

o = e R (iu —2i6"); ;;1‘52> . (A6)

a real function of the scaled coordinate ¢ and eigenvalue 5+
that we have pinned to ¢¢ (0) = 1.

Moving on to the wavefunctions at the well minima (and
beyond to £ ~ Z4o0) — in the scale-free setting these are
parabolic cylinder functions®!. Examining first the well cen-
tered on £ = &3, the Schrodinger equation for the ground state
takes a form associated with Weber:

oy, [(E-&)°
— dg; +{ 51 —26] ¢g = 0. (A7)
The vacuum energy is € = (v + 1/2)/3% and for an iso-

lated well the modified eigenvalues v are all non-negative in-
tegers. In the case of the ground state v = 0, the associated
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FIG. 17: In the left column the ground state ¢ valid at the summit
& = 0, a Kummer function from eqn.@]} (red curve), is joined to the
parabolic cylinder function of eqn. (black dashed curve) valid
within the well. The area under the correct piecewise solution for ¢™
is shaded blue. The barrier height Vj is proportional to the harmonic
mean of the squared frequencies, eqn.(3). The particular parabolic
cylinder function is chosen that decays to zero at £ ~ oco. Three
cases are considered in turn, vacuum energies £ below, equal to,
and above the barrier of height Vp, indicated in the right column, with
rows corresponding to {&1,8} — {2.5,0.5},{1.07,1},{0.5,1}
values. Recall that +¢; is the location of each well minimum, the
ratio of well width to barrier width is 8 = 01/0. = Jws«/w1 =
V(€ =0)/V" (& =&)Y, and +£& /(1 4 B*) are the ‘seams’.

eigenfunction would be a simple Gaussian profile, the low-
est order Hermite function, as one would expect of a simple
harmonic oscillator. For a double well with very large sep-
aration &; > [ the ground and first excited states are well-
approximated by an even or odd superposition of two Gaus-
sian components centered on each well. This becomes invalid
as the wells are allowed to approach one another. (The double-
Gaussian ansatz is the wrong choice of orthonormal basis to
span the two-dimensional subspace of ¢8—L.) For finite-width
barriers, tunneling causes the eigenvalues to shift away from
integer values and the ground state in proximity to the wells
becomes again a parabolic cylinder function D,, this time
with real non-integer v:

e (5 - +&1 ) = Dpa_, lM] (A8)

1+p4 B

Of the possible solutions to the Weber equation this par-
ticular form uniquely approaches zero in the limit £ ~ oo, a
necessary boundary condition for normalization, to make the
wave-function square integrable. For the left well we choose



the solution that approaches zero as £ ~ —oo, actually the
prior solution reflected in the y-axis:

(A9)

- —V2(¢+
MR

This is a guaranteed independent solution to Weber’s equa-
1

tion, as long as 3%¢ — 5 18 not a non-negative integer. For the
double well we have constructed, the parabolic regions were
stitched to the inverted parabola at £ = +¢&; /(1 + %) in the
scale-free coordinates. We must therefore join our two ground
(or excited) state solutions also at these locations. The two
states above are solutions for different regions of the poten-
tial, they do not exist in superposition, unlike eqn.(A3) near
the summit, where a superposition of parabolic cylinder func-
tions was necessary to achieve the required even/odd parity
about & = 0. (Note the sign change in eqn.(A9) for the ex-
cited state so it can be joined on to the odd parity solution of
eqn.(A3).)

Confining attention to £ > 0 there are two conditions
that allow our solutions to be matched, associated with the
continuity of both the wavefunction and its derivative at the
join. Matching eqn.(A3) to the parabolic cylinder function
eqn.(A9) provides the relative amplitude of the symmetric
state scattered off the potential summit. Then also matching
gradients at the join is only possible for a discrete set of en-
ergy eigenvalues, the lowest of which is the vacuum energy
€.

We are most interested in the gap 6~ <+ 6T so let’s multiply
equations respectively by ¢, and qzﬁa“, and then subtract-
ing one from the other, producing:

d*¢g P’y - -
1608~ g 00 + 20500 (0T —07) = 0. (AL0)
Next we may integrate by parts, using the result:
b B
[ — v ds = oavy - vae) 15 an

J
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With integration limits £ € [0, oo], and recalling that ¢~ (0) =
0, and that for normalization purposes we expect ¢+ (oc0) = 0,
we arrive at

A ¢ (0)%2-(0)

— =0 _5+| = 2[00 Tt -~

(A12)
where the denominator is the semi-overlap of the ground and
excited states.

Appendix B: Analysis of the Phase Transition in the Catalysed
3-Spin Model

Often, phase transitions in quantum spin systems are mod-
eled using a mean field model, where the ground state is repre-
sented as a product state of n spins (a spin coherent state) that
tracks the potential minimum during the annealing process.
The validity of such a description can be investigated, both
in the neighborhood of the phase transition, and far from it.
Without the possibility of entanglement the model of a large
rotating classical pointer falls short, in particular in the transi-
tion region, as evidenced by FIG[T§] Classically, one usually
defines the phase transition as occurring when the two well
minima are of equal depth, but in the quantum case we should
instead nominate the minimum gap location on the anneal-
ing landscape, which itself depends on the number of spins
n. Additional complications in the 3-spin model are: mass
that varies as a function of the well location, and the fact the
double well is asymmetric at the minimum gap.

Appendix C: Catalysed 3-Spin model in the x < 1 Limit

In the regime 0 < x < 1 near the phase transition, the
annealing ratio at the quantum boundary (birth of the second
minimum) is

Yo

The asymptotic expansion to second order of this expression
is:

Y =2(1-k)+ %%2 + O(K®). (C2)
Interestingly, this is not a convergent series for all £ € [0, 1],
cubic and higher terms are ignored at our peril. The hidden
second order phase transition (occurring when the paramag-
netic minimum at the origin z = 0 becomes a maximum) oc-
curs precisely at v = 2(1 — k), which is the same as o to

_ V/169k% — 1723 + 78k2 + 8k — 2(k — 1) (k(19k — 2) + 1)3/2 — 2
- 65 '

(ChH

(

to first order in k. The quantum phase transition must occur
between 7o and 72, and therefore must be O(x?) or smaller.

We choose to parameterize this sweet spot as

B0y =dy=[2] (€3)

where x < 1.07 is a small parameter. (Value z = 1.07 cor-
responds to the classical phase transition, at which the wells
have equal depth.)
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FIG. 18: Mean spin for the 3-spin model has components (.J) = (¥|{J,, J,, J.}|¥), normalized by the principal quantum number 5. In
polar coordinates the magnitude = [(.J)|/j and angle § = arctan{(J.)/(J.)}. The uncertainty is the standard deviation (red curves)

calculated from the quantum variance, jAr = \/ A2J, + Aij + A2J.. Dashed quarter circles in the polar plots correspond to uncertainty

of a classical spin (a spin coherent state), constant at 1/+/7, in these units. Most of the quantum behaviour is confined to a small parameter
region AT close to the classical first order phase transition (PT) value, I'.. Outside the region bounded by orange/blue lines the system behaves
as a large rotating spin with r = 1, and Ar = 1/4/j. Within this ‘quantum’ boundary, however, the vector is quite non-classical: r < 1
and Ar > 1/+/7. The orange/blue boundary lines in the polar plot correspond to the birth of the second potential minimum and the classical
phase transition, respectively. At j = 40 the appearance of the minimum spectral gap (green line) occurs at an angle almost exactly bisecting
the quantum sector. The associated angle coincides with maximum uncertainty, Ar. Within the boundary the spin vector describes almost a
straight line chord (magenta) perpendicular to the minimum gap ‘event’ angle (green line). The phase transition is seen to be ‘softer’ at lower
spin number, e.g. 7 = 10 (cyan curves of middle column). The j = oo line (black dashed curves of middle column) tracks the global minimum
of V(2) exactly — this is the thermodynamic limit where the vacuum (kinetic) energy vanishes. The right-most plots illustrates the shape of the
double well for k — {1.0,0.4} at the birth of the second minimum (orange) and at the classical phase transition (blue) and for the minimum
spectral gap in the case j = 40 (green). Observe that at the minimum gap the potential is not symmetric, nor the wells of equal depth.

The well separation within this quantum regime is On the other side of the summit, the second minimum is below
(3+2) the maximum by an energy:
T)K
n=-—g O(k?), (C4) B
Voo = +O(r%) . (C8)

and the distance to the maximum from the minimum at the

origin is In the same limit, the characteristic frequencies associated
3_ with the quadratic extrema of V'(z) are:
7= % O (C5) )
99—z , 3
The barrier summit and ferromagnetic ground state are there- wo = 8 K-+ 0K (C92)
fore separated by V3
w ~ Y234+ 2) K2+ Ok (C9b)
21 — 2y = kx + O(K?) (C6) 4
V3x
zero at v = g or = 0, where these two extrema merge. Wy = T(3 —z)&* 4+ O(x”) . (C9)
The barrier, or potential difference to the summit from the
minimum at z = 0, is polynomially dependent on r: To summarize, in the small x limit that coordinate distances,
. characteristic frequencies and potential barrier scale with the
. . 2 4
Vo= " _(3_1:301 O(k5 7 non-stoquastic driver as — {k, k%, k*}. FIG shows at the
07 128 (B—2) (1 +2)+0(x") €7 classical phase transition point how the barrier size and shape
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FIG. 19:  Asymmetric double-well: Here is illustrated the case
that the left well is outside the Rayleigh boundary: {&1,5:1} —
{3.0,1.5} (white circle marker). Then one may employ WKB-like
methods; the gap can become so small on resonance to be dic-
tated by the potential shape and structure away from the parabolic
extrema. In such a case the piecewise-parabolic model loses its
generality; errors or simplifications in the description of the potential
have greater magnitude than the spectral gap calculated via this po-
tential. The light-shaded channel identifies the resonance condition
for {&1, B1, &2, B2}; an exponentially small minimum gap where one
can expect a first-order phase transition via slow tunnelling.

change with x. (The implicit I' values are chosen to maintain
the wells at equal depth as « is varied.) At this point we un-
derscore some of the subtleties of this 3-spin model, namely
the asymmetry of the double well compounded by a position-
dependent mass variable, eqn.(T7). The WKB method has
been discussed in the literature for tunneling under a barrier
between asymmetric wells'®2 though we find no previous
work that discusses the coherent catalysis limit of a ‘low bar-
rier’, hw/2 ~ Vj (where lowest order WKB truncation will
likely fail). We simplify the position-dependent mass chal-
lenge by taking delta samples of the mass at the potential min-
ima. This is a reasonable assumption for narrow wells and
7 > 1, but less accurate as wells become more shallow and
merge. Even so, the characteristic frequency at a quadratic
minimum will be w(z) = /V"(z)/m(z) and the quantum
ground state is ‘heavier’ within the ferromagnetic phase cen-
tered on z; > O than at the z = 0 (paramagnetic phase)
ground state. Recall that S is a ratio of frequencies, and not a
function of h:

01 TN W

(C10)
Oy miwi

On the other hand, §&; = Az/o. = Azy/m,w,/h. This is

where the energy scale will enter — in terms of parameter 7 =
1/5.
We shall also need the x ~ 0 asymptotic expression for the
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variable masses:

2
L e o), (Clla)
mo 8
1o §(3 + 2)K% 4+ O(K?) (C11b)
mq 4 ’
L ~ §(3 —2)s? + O(K*) . (Cllc)
My 4

Notice that mowo = 1, and therefore oy = 1/+/7. For the
Rayleigh limit, powers of x balance on both sides of z, ~
V/h/(mowo) only if i = O(k?), since z. = O(x), eqn.(C3).
Re-ordering the terms, demanding &; ~ [ leads to a scaling
law at the maximum minimum spectral gap (saddle):

IiCNO(l/\/j) .

This result is employed to derive the asymptotic scaling of the
saddle spectral gap for the 3-spin in section[V]

Other useful asymptotic expressions for xk < 1 in the quan-
tum region between the birth of the second minimum and clas-
sical phase transition point are:

11 1/4 9—a?
oG (1) rou e

g1 g

(C12)

The ratio deviates from unity only slightly:
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(C14)

The scaled distance from the barrier summit to the ferromag-
netic minimum is

5/4

52212*\/3{;/4er0(/£2)]

O«

(C15)

The remaining two parameters are:
. : 1/4 /3 —
@5 Vil(5) () erow] e

i ()" o

(C17)

If we apply the ground-state resonance condition of sec-
tion [[V] to our scale-free model, this produces = 1. FIGH]
presents the asymmetric well with x = 1. The parameters
above then map onto eqn. (22) in the main text.

Appendix D: Quantum 2-Spin: Lipkin Meshkov Glick

The quantum 3-spin will prove challenging to implement
experimentally. In contrast, the 2-spin, the simplest p-spin
model, is an isotropic variant of the Lipkin Meshkov Glick
(LMG) model introduced by Fallieros in 1959 in Ref!12/to de-
scribe the nuclear physics of Oxygen, and re-visited by Lipkin
and collaborators in Ref. [13| It is an Ising model with infinite
range interactions; however, with 2-local rather than 3-local



interactions the implementation on an experimental quantum
annealer (such as that of Refi28), may be relatively manage-
able. Current devices have up to n = 4000 qubits, but do
not implement the fully connected graph required of the LMG
model, (physical spins are topologically constrained to cou-
ple to nearby spins). Their partially connected architecture
does, in fact, admit simulations of fully-connected models of
smaller ensembles, via a process called ‘embedding’.

For LMG we dispense with the anti-ferromagnetic driver
+(1 — k)J2. Instead there may exist some longitudinal field
component in addition to the transverse one, represented by
control parameters I, , respectively:

R “ .
fliwg = 1.2 — (-1 |- )% 1.5
J J J

(D1)
We previously studied the behaviour of this model during
quantum annealing for the ', = 0 setting?!, it undergoes a
second order phase transition close to I'; = 2/3 where the
unimodal ground state smoothly and continuously bifurcates
into a bimodal Schrédinger cat state, eventually becoming a
GHZ state??. The associated minimum gap at the phase transi-
tion is polynomially small, the symmetry of this model means
that adiabatic transitions are forbidden from the ground to first
excited state due to their opposite parity; the relevant mini-
mum gap along the contour I'; = 0 in parameter space is
actually Agy = Eo — Ey ~ n~*/3. For non-adiabatic (e.g.
thermal) transitions Fy +— FEj, or the first order annealing
transitions where I', is non-zero and switches sign, that gap
also scales o< ~%/3 near ', ~ 2/3 before becoming expo-
nentially small in the tunnel-splitting limit characterized by
the Gamow factor when ', < 2/3. All of this is illustrated
in the contour plots of FIG[20]

The LMG continuous potential function becomes

V[LMG](Z) _ 7\/@7 <(1_|W +ze> +0O(h) .

Ve
(D2)
For zero longitudunal field I', and within the ferromagnetic
phase I';, < I'y the potential above is a beautifully symmetric
double well, with a barrier height fully controlled by I',,.. In
term of the ratio v, = I',,/(1 — T, the barrier is:

1 «
yimal _ Lo Ye

D
0 VYo o 4 3

This very regular potential with a simple analytical form pro-
vides a perfect setting in which to examine the mechanism of
vacuum delocalization. For «, increasing through the critical
point vy, — . = 2, the potential barrier is completely razed
to a flat-bottomed quartic profile ~ z* that evolves further
into a single quadratic minimum centered at the origin z = 0
for v, > 2. The classical transition at vy, = 2 is described
by a green contour line in the right-side plots of FIG[] In
the small ~, ferromagnetic phase (double well potential) one
may introduce asymmetry or bias in the potential by a (pos-
itive or negative) longitudinal field of |I",| < 1. This will
lower one well minimum with respect to the other and the
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Lipkin Meshkov Glick : gap = Agy
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FIG. 20: The Lipkin-Meshkov-Glick (LMG) model with transverse
and longitudinal field parameters I';, I, respectively, exhibits a rel-
atively gentle second order phase transition we explored in Refl21
(lower plot) . It occurs for an annealing schedule that follows the
lineof I', = 0 fromI'y > 2/3to ", < 2/3 (direction of red arrow).
The minimum gap Agz near I', = 0,I'; = 2/3 is polynomial in n
— transitions between ground and first excited state Ag; are forbid-
den by parity along I', = 0. In contrast, an annealing schedule for
which T, # 0 will not respect parity and the relevant gap is Ao1
(upper plot). A schedule crossing this zero longitudinal field line (di-
rection of white arrow) must undergo a first order phase transition
if 'y < 2/3. Gap Ao is then exponentially small when crossing
I, = 0. The landscape above is for a j = 25 spin ensemble.

adiabatic ground state will lose its fragile superposition state.
It shifts completely to being a spin coherent state pointed at
the deeper well.

Then by reversing the bias of I', the ground state will have
to tunnel across the large intervening barrier from the false
minimum to the true minimum. A magnetization measure-
ment should be able to record the characteristic time for the
population inversion to occur. The extrema of the potential
energy surface are plotted in FIG22]

When +, is increased to lower the intervening barrier to
a fixed height, (the analogue of non-stoquastic catalysis in



Following the Phase Transition Ridge, N= 100 spins
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FIG. 21: For both Lipkin-Meshkov-Glick (LMG, red curve) and

quantum 3-spin model (blue curve), increasing the separation of the
well minima z; leads to exponentially small minimum gaps, which
occur along the ‘ridge’ of the phase transition (contour plots to the
right show these ridges in parameter space and the direction along
which they are traversed as 2 is increased). The 3-spin model is
distinctive in that the minimum gap (blue) goes through a maximum
in 21, indicating a saddle point of ‘optimal catalaysis’ (white star
marker). Exploring the ridge in the reversed direction now, from top
left to bottom right (lower right panel), the well separation contin-
ues to decrease with decreasing s, but the inverse mass 1/m o< x2.
There is apparently a competition between the quantum ‘particle’ be-
coming more confined at lower x, but heavier at the same time. The
increasing mass eventually wins at very low x, causing the spectral
gap to shrink again.

the p-spin model), one may observe directly a crossover in
the characteristic magnetization ‘switching time’, (population
transfer from the left to the right well) as I, is varied from
slightly negative to slightly positive. Increasing the transverse
field, the v, < 2or T, < 2/3 regime (wells start to coalesce
as the potential barrier between them shrinks) should permit
a polynomial gap for a range of I',, allowing the ground state
energy to delocalize close to the barrier summit, before the
wells completely coalesce at T, = 2/3. The change in the
rate of population inversion from exponentially slow to rapid
polynomial time scales should be apparent and measurable in
the T, < 2/3 regime. Because parameter 1/ plays the role
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of an effective & when transforming to a particle in a poten-
tial, smaller ensembles exhibit more ‘extravagantly’ quantum
effects, e.g. magnified vacuum energies, allowing increased
mobility across barriers without (exponentially slow) tunnel-

ing.
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FIG. 22: For longitudinal field I", — {0, +0.05, +0.25} the ground
state amplitude density (found numerically) and potential extrema
(derived analytically) are shown in the left and right columns respec-
tively. For the right column, the locus of the potential maxima in
coordinate space z is indicated (dashed red line), with the exterior
minima are shown in blue (shallow) and green (deep). As the barrier
maximum is lowered with increasing I';, for a symmetry breaking
I'. > 0 one of the minima collides with the now off-center maxi-
mum. Only the green minimum remains, moving towards the origin
z = 0 as I'; is increased further. Changing I', to —I'. just reflects
the diagrams through the origin (top to bottom). In the lower figure
then the minimum at z &~ —1 would become the true minimum, and
the (now false) ground state at z = +1 will tunnel through the inter-
vening barrier (red dashed maximum line), unless the barrier is small
enough, Eqn.(D3), for vacuum delocalization to occur.
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