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Quantum field theory (QFT) simulations are a potentially important application for noisy inter-
mediate scale quantum (NISQ) computers. The ability of a quantum computer to emulate a QFT
therefore constitutes a natural application-centric benchmark. Foundational quantum algorithms
to simulate QFT processes rely on fault-tolerant computational resources, but to be useful on NISQ
machines, error-resilient algorithms are required. Here we outline and implement a hybrid algorithm
to calculate the lowest energy levels of the paradigmatic 1+1–dimensional φ4 interacting scalar QFT.
We calculate energy splittings and compare results with experimental values obtained on currently
available quantum hardware. We show that the accuracy of mass-renormalization calculations rep-
resents a useful metric with which near-term hardware may be benchmarked. We also discuss the
prospects of scaling the algorithm to full simulation of interacting QFTs on future hardware.

I. INTRODUCTION

The simulation of quantum field theories (QFTs) is
expected to be a key application for quantum comput-
ers [1, 2] with digital [3] and analog [4] algorithms having
already been proposed. The ability to efficiently simulate
QFTs on quantum computers would allow us to make
predictions with respect to the known Standard Model
of physics.

Previous QFT algorithms were developed for universal
fault-tolerant computers, operating at fixed logical error
rates, in order to compute quantities to a known preci-
sion. On the other hand, in the Noisy Intermediate-Scale
Quantum (NISQ) [5] era, quantum simulation via noise-
resilient hybrid quantum-classical algorithms [6], hybrid
digital-analog [7] algorithms, and fully analog computa-
tion [8–10] have been developed as experimental com-
putational methods in the presence of noisy environ-
ments. Recent results for QFTs, namely the Schwinger
model [11, 12], showed that digital hybrid quantum-
classical algorithms can be used to effectively simulate
some aspects of QFTs on current quantum computers.

1 This manuscript has been authored by UT-Battelle, LLC, under
Contract No. DE-AC0500OR22725 with the U.S. Department
of Energy. The United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for the
United States Government purposes. The Department of Energy
will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan.
∗ pooserrc@ornl.gov
† siopsis@tennessee.edu

In this work, we reformulate previous QFT algo-
rithms [3, 4] as hybrid quantum-classical programs which
are executed on available quantum hardware. We con-
sider the paradigmatic relativistic quantum theory of
scalar fields interacting via a quartic (φ4) potential. We
discuss and demonstrate how to calculate the ground and
excited state energies by hybrid variational algorithms,
with IBM’s Tokyo quantum processor [13] serving as ex-
ample hardware. Our calculations illustrate how mass
renormalization can be described by hybrid quantum-
classical computations, and we also discuss phase transi-
tion to a symmetry-breaking phase. These results repre-
sent early progress towards quantum simulations of QFTs
in the NISQ era. As such, our demonstrations, with lim-
ited depth (and width), can serve as practical high-level
benchmarks for near-term technologies.

The rest of the paper proceeds as follows. In Sec-
tion II, we review the 1 + 1–dimensional φ4 scalar QFT
on a lattice, mass renormalization, and the quantum dis-
cretization scheme. In Section III, we compare the quan-
tum simulations performed on the IBM Tokyo supercon-
ducting quantum processor against classical numerical
results. We conclude with a brief summary and discuss
potential paths forward in Section IV.

II. CLASSICAL SIMULATIONS

A. The model

Let us begin by considering a real massive scalar field
φ(x) in a single spatial dimension denoted by x. For nu-
merical calculations, we discretize space into a finite set
of lattice points along a chain of length L, and choose
units so that the lattice spacing is a = 1. Imposing pe-
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riodic boundary conditions, the lattice coordinates x are
given by integers x = 0, 1, . . . , L − 1 where L is the full
extent of the spatial dimension. In the chosen units, the
continuum limit is obtained in the limit L → ∞ as well
as m→ 0.

Let π be the conjugate momentum to φ. We quan-
tize the system by imposing the standard commutation
relations

[φ(x), π(x′)] = iδxx′ , (1)

where we have also set c, ~ = 1. The model Hamiltonian,
including the quartic interaction, is

H =
1

2

L−1∑
x=0

[
π2(x) + (∇φ(x))2 +m2

0φ
2(x) +

λ

12
φ4(x)

]
,

(2)
where ∇φ(x) = φ(x + 1) − φ(x) is the finite difference
gradient operator, m0 is the bare mass of the field, and λ
is the interaction strength (of units mass-squared). The
interaction term introduces quantum effects that result
in a renormalized physical mass m which differs from m0.

To account for the difference of the two mass (energy)
parameters, we define the mass counter term by

δm = m2
0 −m2 . (3)

The value of the counter term can be calculated analyti-
cally as a perturbative expansion in the coupling constant
λ, as will be discussed below. In the strong-coupling
regime, δm can only be deduced in retrospect from the
poles of correlators (Green functions) or the energy levels
of the Hamiltonian. Here, we will discuss the former ap-
proach for perturbative analytic calculations, and the lat-
ter for numerical calculations and experimental results.

Using Eq. (3), we can re-write the total Hamiltonian
(2) as H = H0 +HI , with

H0 =
1

2

L−1∑
x=0

[
π2(x) + (∇φ(x))2 +m2φ2(x)

]
,

HI =

L−1∑
x=0

[
δm
2
φ2(x) +

λ

4!
φ4(x)

]
. (4)

We may expand the field φ and its conjugate momentum
π in terms of the canonical creation and annihilation op-
erators as

φ(x) =
1√
L

∑
k

1√
2ω(k)

(
a†(k)e−ikx + a(k)eikx

)
,

π(x) =
i√
L

∑
k

√
ω(k)

2

(
a†(k)e−ikx − a(k)eikx

)
(5)

where the momentum k resides on the dual lattice (k ∈
2πZ/L), a†(k), a(k) are the plane wave creation and an-
nihilation operators, respectively, and

ω2(k) = m2 + 4 sin2 k

2
(6)

is the free dispersion relation.
The canonical commutation relations (1) lead to the

standard commutation relations between the creation
and annihilation operators of the different Fourier modes,

[a(k), a†(k′)] = δkk′ , (7)

with all other commutators vanishing. Transforming
Eq. (4) via the field expansion of Eq. (5), the free Hamil-
tonian is diagonalized,

H0 =
∑
k

ω(k)a†(k)a(k) , (8)

with its spectrum given by the free dispersion relation
(6). We discard the zero-point energy, for simplicity.

B. Perturbative calculations

Treating HI as a perturbation, we note that at zeroth
order (i.e., ignoring HI), m is the mass gap, i.e., the dif-
ference in the energy levels between the ground state |0〉
and the first excited state a†(0)|0〉. Since m is the phys-
ical mass, it should coincide with the gap at all orders
in perturbation theory. Therefore, the mass gap should
not receive any corrections at higher perturbative orders.
This leads to a determination of the counter term δm (or,
equivalently, the bare mass m0) as a series expansion in
the coupling constant λ.

At first perturbative order, after some algebra, we ob-
tain a correction to the gap which is proportional to

δm +
λ

4L

∑
k

1

ω(k)
. (9)

Demanding that the correction vanish (in order for the
gap to remain at the chosen value m), we deduce

δm = − λ

4L

∑
k

1

ω(k)
. (10)

Thus, for a given physical mass m, we ought to choose
the counter term

δm = − λ

4L

∑
k

1

ω(k)
+O(λ2) (11)

In the continuum limit (L→∞, and also m→ 0 in units
in which the lattice spacing is a = 1), this becomes

δm = −λ
4

∫ π

−π

dk

ω(k)
+O(λ2) = − λ

8π
log

64

m2
+ . . . (12)

Higher perturbative orders can be computed similarly.
Figure 1 shows the counter term δm as a function of

the coupling constant λ at first perturbative order for
finite L and the continuum limit (L → ∞). We have
chosen m2 = 0.1, 1.5. Perturbation theory is valid at
weak coupling, i.e., λ/m2 . 1.
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FIG. 1. (Color online) The counter term, δm, vs. the inter-
action coefficient, λ, at first perturbative order for various
values of L, including the continuum limit L→∞. The mass
is chosen as m2 = 0.1 (upper panel) and m2 = 1.5 (lower
panel).

For fixed λ in the continuum limit, the system ap-
proaches a critical point as m2 → 0. Below that point
(m2 < 0), the system undergoes symmetry breaking. To
approach criticality, we need to go beyond perturbation
theory, because as m2 → 0, we have λ/m2 →∞.
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FIG. 2. (Color online) The mass gap vs. the interaction co-
efficient λ for m2

0 = −1.5, L = 2, and Hilbert space cutoff
nmax = 4, 8, 12.

FIG. 3. (Color online) The mass gap dependence on the pa-
rameter δm with L = 2, m2

0 = −1.5, and λ = 6, 10, 24 (curves
going from bottom to top in each panel). The Hilbert space
cutoff increases as nmax = 4, 8, 12 going from the top to bot-
tom panels. Circles indicate the position of the counter term
δm corresponding to the mass gap m for nmax = 4.

C. Numerical calculations

The physical mass, m, can be calculated by finding the
energy difference between the first excited state and the
ground state (mass gap m = E1 − E0). However, m is
not a parameter that appears in the Hamiltonian (2) of
the system. The latter is parametrized by the bare mass
m0 and the coupling constant λ. If m2

0 > 0, then the
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eigenstates of the free Hamiltonian (setting λ = 0) are
well-defined, and one may use them to build the Hilbert
space. Unfortunately, the physically relevant domain is
near the critical line in the (m2

0, λ) plane, where m2
0 < 0

and the free Hamiltonian is ill-defined. One may, in-
stead, use the free Hamiltonian H0 (Eq. (4)) with mass
parameter m2 > 0. The mass parameter need not be the
physical mass; any parameter with m2 > 0 will do. This
is because the mass gap and other physical quantities
should not depend on this parameter, and consequently
the counter-term parameter δm can be chosen arbitrar-
ily. However, due to the truncation of the Hilbert space
of each mode (harmonic oscillator), which is necessary
for numerical calculations, there is a dependence on δm,
albeit mild.

Let us truncate the Hilbert space of each mode to di-
mension nmax, so that the creation and annihilation op-
erators become nmax × nmax matrices. Figure 2 shows
the effect of this truncation on the mass gap. As the
size of Hilbert space increases, the mass gap converges
to the value one obtains without truncation. Notice that
nmax = 8 is already a good approximation to the full
Hilbert space, being almost indistinguishable from the
higher cutoff nmax = 12.

Figure 3 shows the dependence of the mass gap on the
parameter δm for a fixed value of the bare mass parame-
ter m2

0 and various values of the coupling constant λ and
cutoff nmax of the Hilbert space. As expected the depen-
dence on δm is stronger for smaller cutoff nmax. For our
calculations, we will choose the value of δm that satisfies
Eq. (3) with m being the physical mass (counter term).
The value of the counter term is indicated in Fig. 3 by
circles for cutoff value nmax = 4, and compared with the
corresponding values at higher cutoffs. Notice that, even
though there is a strong dependence on δm for nmax = 4,
the values of the counter term (circles) are a reasonably
good approximation to the true value of the counter term
(obtained in the limit nmax →∞).

As indicated above, the error due to the introduction
of the cutoff nmax increases as the dimensionless coupling
constant λ/m2 increases. This occurs as we approach the
critical curve (m2 → 0). One can estimate the error due
to the cutoff by comparing with a larger cutoff. Such a
comparison is performed in Figure 4. As expected, the
error increases as m2 → 0. For comparison, Figure 5
shows that the error is negligible for positive values of
m2

0, so that even the digitization with cutoff nmax = 4 is
a reasonably good approximation for a wide range of the
coupling constant λ. As seen in figure 5, nmax = 8, 12 are
indistinguishable. As mentioned earlier, a phase transi-
tion is observed as the physical mass vanishes (m2 → 0+)
for particular m2

0 and λ values in the continuum limit. As
we go past the critical line, we enter a phase in which we
have symmetry breaking. There is, of course, no phase
transition on a finite lattice, but the critical line in the
(m2

0, λ) plane may still be approximated by taking the
limit m2 → 0 on the finite lattice. Fig. 4 shows approx-
imations of the critical curve for mass gap values close
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FIG. 4. (Color online) m2
0 vs. interaction coefficient λ for L =

2, mass gap m2 = 0.1, 0.25, 0.5, and cutoff nmax = 4, 8, 12.

to zero (m2 = 0.1, 0.25, 0.5). Remarkably, even with a
Hilbert space cutoff nmax = 4, we obtain reasonably good
approximations. As expected, the approximation is not
as good for the smallest value of the mass gap (m2 = 0.1).
As we increase the coupling constant λ, the approxima-
tion diverges from its true value, because we need a larger
cutoff nmax. As the system approaches the phase transi-
tion, it is expected to obey a power-law near the critical
line. It undergoes a second-order phase transition such
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FIG. 5. (Color online) The dependence of the mass gap on
the interaction coefficient λ for m2

0 = 0.5, L = 2, showing a
weak dependence on the cutoff such that even the nmax = 4
digitization is a reasonable approximation.

●
● ● ●

● ●
● ●

● ●
●

■
■ ■ ■ ■ ■ ■

■ ■ ■ ■

● nmax=4

■ nmax=8

4.0 4.5 5.0 5.5 6.0
0.00

0.02

0.04

0.06

0.08

λ

dm
/d
λ

● ●
● ● ● ● ● ● ● ● ●

■
■ ■ ■ ■ ■

■
■

■ ■
■

● nmax=4

■ nmax=8

5.0 5.5 6.0 6.5 7.0
0.00

0.02

0.04

0.06

0.08

λ

dm
/d
λ

FIG. 6. (Color online) The dependence of the gap m on
the interaction coefficient λ, for L = 2, Hilbert space cut-
off nmax = 4, 8, and bare mass parameters m2

0 = −1.5,−2.5
(upper and lower panel, respectively) as m→ 0 showing that
dm
dλ

approaches a constant at criticality.

that, for a fixed value of the bare mass, m2
0,

m ∼ |λ− λc|ν , (13)

where λc is the value of the coupling constant at the crit-
ical line. Generally, critical properties of systems are in-
dependent of their microscopic structure depending only
on the dimensionality of the system and the universality
class the system belongs to. The critical exponent, ν,
which is a critical property of our scalar QFT, depends
only on the dimension of space, which is 1 in our case. φ4

scalar field theory is expected to be in the same univer-
sality class as the Ising model (see ref. [14] and references
therein).

The critical exponent for the Ising Model in one spa-
tial dimension is ν = 1. The results of our analysis of the
mass gap near the phase transition are consistent with
the expected ν value for one spatial dimension. As we
approach the critical line from above, keeping m2

0 con-
stant, approximations to λc values are seen in Figure 6.
Moreover, the derivative dm/dλ approaches a constant
(albeit noisily, due to the low Hilbert space cutoff cho-
sen, nmax = 4, 8) as λ → λ+c , providing evidence that
near (and above) the critical line, the mass gap is a lin-
ear function of λ, supporting the expectation that the
critical exponent (Eq. (13)) is ν = 1.

III. QUANTUM SIMULATIONS

With the theoretical description and numerical simu-
lations completed, we can now compare the accuracy of
quantum simulations and use this metric to judge the
quantum computer’s performance in QFT calculations.
The calculations were performed on IBM’s Tokyo chip, a
device consisting of 20 fixed frequency transmon qubits
[15].

A. Field Digitization

We first impose periodic boundary conditions and con-
sider the model system in Sec. II consisting of L = 2
spatial points. Next, the free part of Eq. (2) is diago-
nalized by Fourier transformation, with the symmetric
and anti-symmetric momentum states k ∈ {0, π} being
the solutions to the free theory. Each momentum oscil-
lator φ(k) still contains a real continuous degree of free-
dom, which would ideally be modeled by devices which
can encode quantum information into continuous vari-
ables [4, 16]. However, the public availability of such
platforms remains limited, and this motivates us to en-
code the problem directly into a collection of two-level
systems. In this case, we digitize each continuous degree
of freedom in a truncated Fock space of the momentum
modes as discussed in Sec. II C. By constraining the simu-
lation to the truncated low-energy Fock space, i.e., up to
a cutoff occupancy nmax, we only require O(log2(nmax))
qubits per field mode. While a real space encoding and
discretization is more appropriate in the asymptotic limit
[17], the momentum space encoding remains amenable
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FIG. 7. (Color online) Experimentally optimized ground (top data points and and lines) and lowest lying excited energies
(bottom data points and and lines) as a function of the interaction parameter λ are given in the left panel. Experimentally
determined mass gaps ∆E = E1 −E0 are provided in the right panel. The dashed (solid) lines correspond to the theoretically
optimal product (entangled) ansatz energies, which are determined by a noiseless numerical simulation. Experimental results
for the product (entangled) ansatz are given by the • (+) markers, where purple (green) error bars, which indicate one standard
deviation, are determined by repeated sampling of the energy functional at the optimal parameters. We take m2

0 = −1.5 with
δm being determined by Eq. (3).

due to the simplicity of the interaction term for the spe-
cial case of a two site system.

Let us now outline the encoding scheme used to eval-
uate the Hamiltonian defined in Section II. The creation
and annihilation ladder operators for each mode are de-
fined in terms of their matrix elements,

a†(k) =

∞∑
n=0

√
n+ 1n+ 1nk

a(k) =

∞∑
n=1

√
nn− 1nk. (14)

The number operator is simply n(k) = a†(k)a(k) =∑∞
n=0 nnnk. Each of these operators, and higher order

functions of them, may be transformed into qubit spin-
operators by a direct matrix element encoding. To en-
code the raising and lowering operators, note that they
can be written in the general form O =

∑
i αiij, where

j ∈ (i− 1, i, i+ 1), such that the operator consists of the
set of diagonal, super-diagonal, or sub-diagonal matrix el-
ements. Regardless of the exact form, we consider an en-
coding of ij in the computational basis bibj , that is, given

by the binary vector expansion bi = (b
(i)
0 , b

(i)
1 , ..., b

(i)
nq−1)

for the nq qubit register encoding each oscillator mode.
Each of the composite matrix elements can be factorized
into the tensor product of single qubit matrix elements

as ij =
⊗

l b
(i)
l b

(j)
l . The four possibilities for the l-th

component can be expressed as

00l →
I + Zl

2
, 01l →

Xl + iYl
2

,

10l →
Xl − iYl

2
, 11l →

I− Zl
2

, (15)

where Xl, Yl, Zl refer to the Pauli operators acting on
the lth qubit. Examples of this matrix element encod-
ing for the case of a cutoff nmax = 7 can be seen in

ref. [17], Eqs. (23) and (24). In our quantum simulations
we cutoff the local Fock spaces at nmax = 3 with the
binary encoding bi ⇔ i mapping the truncated space as
{00, 01, 10, 11} ⇔ {0, 1, 2, 3}.

The choice of cutoff (or field discretization) is not only
a source for algorithmic error (see Fig. 2 for this de-
pendence) but it also dictates the circuit complexity, by
controlling the number of variational parameters, ansatz
depth, and other characteristics of the quantum program.
Without error correction physical errors also accumulate
rapidly and additional computations are required to im-
prove the accuracy of the results. The trade-off between
algorithmic error and physical hardware errors is an open
field of study, but an optimal implementation resulting in
low algorithmic and physical errors ostensibly exists for
each algorithm [18, 19]. Therefore, the maximum cutoff
– which determines the size of the quantum algorithm
– for which accurate results are attainable is a suitable
metric across NISQ devices.

As discussed in Sec. II A, the counter and interaction
terms appearing in HI make the total Hamiltonian non-
trivial. Defining q(k) = 1√

2

[
a(k) + a†(k)

]
, we can write

the discretized interaction Hamiltonian for L = 2 as

HI =
λ

48

[
q4(0)

ω2(0)
+

6q2(0)q2(π)

ω(0)ω(π)
+
q4(π)

ω2(π)

]
+
δm
2

[
q2(0)

ω(0)
+
q2(π)

ω(π)

]
(16)

Note that q2(k) = 1
2

[
a2(k) + (a†(k))2 + 2n(k) + 1

]
so

that, aside from the diagonal number operator, HI only
connects occupation levels differing by±2. Since Eq. (16)
involves the sum over products of even powers of q(k)
there exists a global Z2 × Z2 symmetry decoupling the
system into 4 distinct parity sectors. That is, the global
parity sectors are constructed by the tensor product of
local even/odd parity sectors. We take advantage of this
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symmetry and decouple the ground and first excited state
subspaces. That is, the ground (excited) state belongs
to the {+,+}({−,+}) parity block. Parity blocking the
space allows us to represent each local mode with a single
qubit, which now either encodes the even {0, 2} or odd
{1, 3} subspaces.

B. Quantum Program

We parametrize the hardware’s configuration space
with a pair of state preparation circuits (ansatze). The
product instruction set is simply a pair of local rotations;

Up = RY0(θ0)RY1(θ1) where RYi(θ) ≡ e−i
θ
2Yi is the famil-

iar rotation generated by the Pauli-Y operator on the ith
qubit. Up is used to span the real amplitude tensor prod-
uct subspace. With real coefficients sufficing to describe
the eigenstates of the real symmetric parent Hamilto-
nian (Eq. (2)). Of course, the system’s eigenstates are
not product states, but require entanglement. Adding a
pair of controlled not (CNOT) gates we write the entan-
gled ansatz Ue = C0RY1

(θ2)Up, where CiRσµj (θ) denotes

a controlled rotation of θ about the σµj -axis contingent on
the state of the ith qubit. For our minimal construction,
the true eigenstates lie within the manifold spanned by
Ue. We implement CiRYj (θ) on hardware by expressing it

as RYj (
θ
2 )CiXjRYj (

−θ
2 )CiXj [20], with i (j) denoting the

control (target) CNOT qubits. Given that the energy dif-
ference between the optimal product and entangled states
is small, about 1%, the potential for the entangled ansatz
to improve the renormalized mass depends strongly on
the amount of noise, which is dominated by CNOT gates
in our experiment. We must therefore employ error mit-
igation protocols within the classical component of our
hybrid computation.

C. Error Mitigation

To increase the precision of the noisy quantum simu-
lator, error mitigating techniques must be applied to the
raw experimental data. We begin two-stage error miti-
gation by first correcting for readout (RO) errors using
a local (i.e. spatially uncorrelated) readout error model.
We do so by first determining the rates at which indi-
vidual qubits are flipped during RO with a set of pre-
processing circuits. To estimate the individual bitflip
rates each qubit (we map to qubits (0,1) and (0,11) for
the entangled and product circuits respectively) is pre-
pared in both computational basis states and immedi-
ately measured. The maximum likelihood estimates for
the ith qubit flipping from 0 to 1 (and vice versa) is de-
noted as pi(0|1)(pi(1|0)). Denoting the symmetric and
anti-symmetric combinations as p±i = p(0|1) ± p(1|0),

RO-corrected expectation values are approximated as

〈Z · · ·Z〉 =
∑

x∈counts
p(x)

∏
i∈supp(〈Z···Z〉)

[
(−1)xi − p−i

1− p+i

]
,

(17)
where supp(〈Z · · ·Z〉) refers to the operator support, i.e.,
the set of qubits Z · · ·Z acts upon. While such a model
may not capture correlation effects, this protocol scales
linearly with the simulator system size [21, 22].

While RO mitigation is sufficient for Up, we must fur-
ther mitigate the errors induced by the noisy CNOTs in
Ue. Recall that the variational principle ensures that en-
ergies estimated from variational methods upper bound
the true ground state which is the eigenvalue correspond-
ing lowest lying eigenvector, a pure state. On the other
hand, states produced by NISQ hardware are statistical
mixtures of many pure states. To deal with this issue we
employ an error mitigation scheme purifying our estima-
tor quantum state at each step of classical optimization.
First we independently measure the raw experimental
state along each element of the Pauli group P2 = σµ0 σ

ν
1

for µ, ν ∈ {I,X, Y, Z} writing ρ =
∑
p∈P2

cpp. We then

purify[23] the reference state by iterative updating the
density matrix as ρn+1 = 3ρ2− 2ρ3 until the state’s non-
idempotency, defined as N = Tr

[
ρ2 − ρ

]
, lies below a

threshold εN < 10−4.

D. Results and Discussion

Panel (a) of Fig. 7 shows the error corrected ground
(and first excited) state energy coming from the {+,+}
({−,+}) Hamiltonian parity blocks. In all simulations
we have chosen a bare mass of m2

0 = −1.5 with δm deter-
mined by Eq. 3. Panel (b) illustrates the mass gap cal-
culated by the difference ∆E = E1−E0. The low-energy
spectrum and gap are found to be in relatively close
agreement with theory, i.e. the mass gap lies within a
single standard deviation aside from the λ = 8.21 points.
The linear dependence of the spectral gap on the inter-
action coefficient is also qualitatively reproduced.

These results demonstrate that a modern quantum
computer can simulate the basic ingredients of a mass
renormalization for a simple QFT. While the entangled
ansatz only narrowly outperforms the product ansatz,
the path to more complex and accurate QFT simulations
is straightforward: higher cutoffs, with commensurately
reduced CNOT noise, would allow more accurate simula-
tions with larger lattice sizes. In general, more resources,
in the form of lower-noise two qubit gates, are needed to
go beyond L = 2. The number of qubits required is
L× log2 nmax. The complexity of the algorithm increases
with the cutoff nmax and the number of points L, as well
with the quantum circuit needed to generate an appro-
priate trial state.
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IV. CONCLUSION

In this work we have performed a first exploration of
the practical challenges associated with simulating an in-
teracting scalar QFT on a NISQ device. To do so, we
have developed a minimal construction and simulated it
with a hybrid classical-quantum program. In order to ob-
tain accurate results in the presence of noise, we strive to
balance algorithmic and device errors in our simulation
workflow. We find the entangled states slightly outper-
form, given a suitably robust error mitigation strategy,
the product circuit in terms of mass gap accuracy. How-
ever, the theoretical separation between the product and
entangled mass gaps was often larger than the observed
statistical errors, but this difference was not discernible
due to systematic device noise.

While more complex simulations, with larger cutoff or
a greater number of spatial sites, could be implemented
on today’s hardware, the results would likely not result in
the same levels of accuracy. This loss of accuracy would
be due to an increase in device noise, via a larger re-
quired circuit depth, which would mask any algorithmic
error reduction. However, the path to improving QFT
simulations on future hardware is clear: alleviating the
bottlenecks with improved two qubit gates would allow
one to increase both L and nmax while retaining or im-
proving the final accuracy. Further, for larger system
sizes alternative encodings, e.g., in a spatial basis, can
reduce the overall algorithm complexity.

Overall, hybrid algorithms are a viable means to sim-
ulate QFTs in the pre-fault-tolerant era and our results

delineate the simulable and non-simulable problem sizes,
mainly in terms of circuit complexity. In this sense, the
algorithm presented here benchmarks NISQ computers’
ability to accurately simulate QFTs. The results given
in terms of two different state preperation circuits point
directly to which hardware improvements will enable in-
creasingly complex (and accurate) algorithms. Future
studies should involve different encodings, larger lattice
sizes, alternative error mitigation strategies, and machine
learning techniques in order to scale hybrid programs to
meaningful scientific problems.
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