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We present a framework for the realization of dissipative evolutions of spin-boson models, including multi-
photon exchange dynamics, as well as nonlinear transition rates. Our approach is based on the implementation
of a generalized version of a dissipative linear quantum Rabi model. The latter comprises a linearly coupled
spin-boson term, spin rotations, and standard dissipators. We provide numerical simulations of illustrative cases
supporting the good performance of our method. Our work allows for the simulation of a large class of funda-
mentally different quantum models where the effect of distinct dissipative processes can be easily investigated.

I. INTRODUCTION

The interaction between a bosonic mode and a two-level
system is one of the most fundamental models in quantum
physics and, consequently, is of significant relevance in sev-
eral branches of modern science such as quantum informa-
tion [1] and light-matter interaction theory [2]. Here, the Rabi
model [3, 4] and its simplified but quantized version known
as the Jaynes-Cummings model (JCM) [5] play a prominent
role. The quantum Rabi model (QRM) describes the coherent
exchange of excitations between a spin and a bosonic mode,
and despite its simplicity displays a rich variety of physical
phenomena. As a matter of fact, during the last decade this
model has attracted great interest from different research ar-
eas [6, 7]. The diversity of physical phenomena encompassed
in this model and its scientific relevance are embodied by the
paradigmatic Rabi oscillations (or simply continuous revivals
of quantum populations), its integrability [8], the emergence
of distinct behavior in the ultra-strong [9–12] and deep-strong
coupling regimes [13], and by the existence of quantum phase
transitions in a suitable parameter limit [14–17].

The QRM can be achieved in a variety of quantum plat-
forms, being realizable in trapped ions [18, 19], circuit-
QED [20–23], cold atoms [24], spin-mechanical systems [25]
and integrated optics [26]. However, the disparate ways in
which a spin and a bosonic mode can interact goes certainly
beyond the realm of the QRM. In this respect, one can find
models possessing multiphoton exchange dynamics [27–31]
and/or nonlinear transition rates [32–34], which may unveil
novel and interesting phenomena. Remarkably, while a QRM
can typically be well experimentally realized, the implemen-
tation of other interaction mechanism such as those involving
spin-boson nonlinear terms remains a challenging task.

From a different perspective, models comprising n-boson
excitation-exchange processes with a spin degree of freedom
have been theoretically studied mainly in their n = 2 form,
i.e. in the so-called two-photon QRM (2QRM) [29–31]. The
2QRM is of particular interest for preparing non-classical
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states of light [27, 28], while its solvability has been also stud-
ied [35–38]. In addition, it is worth mentioning that systems
comprising both one- and two-boson exchange terms can be as
well of interest [39–41], even for the simulation of relativis-
tic effects [42]. Furthermore, these multiphoton models can
be classified as either linear or nonlinear, that is, depending
on whether their spin-boson coupling changes with the Fock
occupation number [43].

It is also worth mentioning that the interaction of a single
spin with a large number (typically infinite) of harmonic os-
cillators [44], has served as a test-bed to scrutinize aspects
of quantum dissipation due to the presence of an environ-
ment. As a microscopic description of such dissipative ef-
fects is often very demanding (if not unfeasible) [45], it is
customary to rely on a phenomenological description of the
system-environment interaction based on a Lindbladian open-
system framework [45]. However, it is still possible to map
a spin interacting with an infinite number of environmental
harmonic oscillators into a generalized QRM, whose interac-
tion with the environment is now mediated only through the
bosonic mode [46–50]. As recently proved in [51], under cer-
tain cases such method establishes an equivalence between
non-Markovian dynamics of a spin immersed in a structured
environment and a standard Markovian dynamics of a spin
coherently coupled to a harmonic oscillator (see Refs. [51]
and [52] for the required conditions for an exact equivalence
and for a recent review on non-Markovian dynamics of open
quantum systems, respectively). Moreover, it is worth stress-
ing that Markovian dissipation may yield a dissipative phase
transition in the QRM [53] as well as a rich phenomenology
when considering a large collection of spins [54–59]. In short,
studying and exploring the dynamics of a generalized QRM
undergoing dissipation, even when it is of a Lindblad form, al-
lows for the inspection of more complicated models and their
interaction with uncontrolled degrees of freedom that form the
environment.

Recently, it has been shown that a spin-boson model (for
the case of having a single bosonic mode) comprising n-boson
exchange terms can be realized only by having standard one-
boson exchange terms plus spin rotations [60]. In this man-
ner, a model comprising only linear spin-boson couplings (a
generalized QRM) allows to explore the fundamentally dif-
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ferent physics of its multiphoton counterparts, such as that of
a two- or three-photon QRM (2QRM) and (3QRM), respec-
tively, without the need of implementing these experimentally
challenging n-boson interaction terms that lead to multipho-
ton exchange. Our work goes beyond such previous results by
i) showing how standard dissipation translates into simulated
multiphoton spin-boson models, leading to nontrivial dissipa-
tors; ii) how nonlinear spin-boson models, as defined in [32–
34] i.e. those that emerge beyond the Lamb-Dicke regime,
can be directly accessed with only linear interactions. We thus
propose a novel strategy for the simulation of nonlinear mod-
els. Moreover, as realizing a generalized QRM can be well
attained in different platforms, we open new ways for the sim-
ulation of such nonlinear models in platforms that are relevant
for quantum information processing — such as microwave-
driven ions [61] or circuit-QED [62, 63] — but that are un-
suited for the direct achievement of the desired nonlinearities.

Our theoretical framework unveils a deep connection
among such multiphoton and nonlinear models, which might
have potential applications in quantum simulation and infor-
mation processing, as well as in the inspection of the impact
of dissipative processes in quantum optical processes.

The remainder of this article is organized as follows. In
Sec. II we present the general theory, explaining the steps re-
quired to establish the approximate relation among the men-
tioned dissipative models. In Sec. III we illustrate our theo-
retical apparatus by discussing specific cases in which a linear
spin-boson model with typical dissipative processes realizes
a nonlinear multi-boson model with transformed jump opera-
tors. We exemplify how such dissipative models can be real-
ized to a very good approximation by simply using a gener-
alized QRM, and validate our predictions by performing de-
tailed numerical simulations, as shown in Sec. III C. Finally,
in Sec. IV we draw our conclusions and discuss possible ad-
ditional directions of investigation.

II. THEORETICAL FRAMEWORK

The starting point of our theoretical framework consists in
the consideration of a two-level system, described by the usual
spin-1/2 Pauli matrices ~σ = (σx, σy, σz) subject to rotations,
coupled to a bosonic mode, in turn described by means of
the annihilation and creation operators a and a†. The total
Hamiltonian of the system can be written as

HG = Hspin +Hboson +Hint, (1)

where the first and second terms comprise operators acting
solely on the spin and the mode, respectively, thus reading
(we assume units such that ~ = 1 throughout the paper)

Hspin =
δ0
2
σx +

nd∑
j=0

Ωj
2
{cos ∆jt σz + sin ∆jt σy} , (2)

Hboson = νa†a. (3)

The third term corresponds to the spin-boson interaction. In
particular, we assume that Hint contains only linear spin-

boson exchange terms. Without loss of generality, such in-
teraction term can be written as

Hint = i
ην

2
σx(a− a†), (4)

where η is a real and dimensionless parameter, and the fre-
quencies ∆j and δ0 are related as ∆j = δj − δ0. Finally,
nd is the total number of different drivings with amplitude
Ωj applied to the spin. Note that ∆0 = 0 by definition so
that the first term in the sum simply provides the free en-
ergy term Ω0σz/2. For nd = 0 (or Ωj>0 = 0), HG reduces
thus to a standard spin system with frequency splitting Ω0 and
bias parameter δ0, while the frequency of the bosonic mode
is given by ν (see Fig. 1(a) for a schematic representation).
Indeed, if δj = 0 ∀j, the previous model takes a more rec-
ognizable form, namely that of a standard QRM. Therefore,
the Hamiltonian HG corresponds to a generalization of such
model, including spin drivings. It is worth mentioning that
the dimensionless parameter η gives account for the coupling
regime: while for 0 . |η|/2 . 0.1 counter-rotating terms
may be neglected, for 0.1 . |η|/2 . 1 and |η|/2 & 1 one
finds the so-called ultra-strong [9–12] and deep-strong cou-
pling regimes [13], respectively (cf. Ref. [64] for a spectral
classification of these regimes in the standard QRM). Note
that we have not included the so-called A2 term in HG which
may have a considerable impact in a cavity QED realization of
HG [65–67]. However, as we do not consider here a specific
setup, we neglect such term while we refer to Appendix A for
a discussion on this issue.

In addition, we consider that the system undergoes dissipa-
tion due to the interaction with an environment [45], whose
dynamics can be cast into the master equation

ρ̇G = −i [HG, ρG] + L[ρG], (5)

where L[·] describes the non-unitary (dissipative) part of the
dynamics. Moreover, we will assume that the superoperator
L[·] can be written in a diagonal Lindbladian form [45]

L[ρG]=
∑
k

γkDk[ρG]=
∑
k

γk

(
FkρGF

†
k−

1

2

[
F †kFk, ρG

]
+

)
,

(6)

where [·, ·]+ stands for an anti-commutator and Fk denotes the
kth jump operator with rate γk and dissipator Dk[·].

Our main goal now is to bring HG into the form of a model
that involves multiphoton exchanges, i.e. a model contain-
ing interaction terms akin to σ±an or σ±a†n , denoted here
by Hn. To achieve such goal we first transform HG into
Ha by moving to a rotating frame. In particular, we de-
fine Ha = Ha,0 + Ha,1 with Ha,0 = −δ0σx/2 such that
HG ≡ HI

a,1, i.e.,Ha,1 in the interaction picture ofHa,0. Then
we perform a unitary transformation of the resulting Hamilto-
nian, T †(iη/2)HaT (iη/2), with T (α) a spin-dependent dis-
placement operator. In the spin basis, we have

T (α) =
1√
2

(
D†(α) D(α)
−D†(α) D(α)

)
, (7)
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FIG. 1. Sketch of the scheme for the simulation of nonlinear, mul-
tiphoton and dissipative spin-boson models. In panel (a) a lin-
early coupled spin-boson system (a generalized quantum Rabi model
with spin-bias δ0, spin drivings with amplitude Ωj>0 and frequency
∆j>0) with Hamiltonian HG [cf. Eq. (1)] undergoes dissipation
characterized by the rates γk and the jump operators Fk. This al-
lows us to simulate a nonlinear n-boson spin-boson model under-
going dissipation described by the F̃k’s operators. In panel (b)
the Hamiltonian is Hn [cf. Eq. (15)], which comprises interaction
terms such as σ+an + H.c. and/or σ+(a†)n + H.c.. In addition,
the transition rates may strongly depend on the Fock-state label m
through a function fn(m) whose behavior is shown in panel (c)
for different cases [cf. Sec. II and Eq. (20)]. Note that we show
fn(m) = 〈m| fn(a†a) |m〉, rescaled by fn(0), for various choices
of n and η. While fn(m) ≈ fn(0) for small values of η and m,
fn(m) significantly depends on m for larger values of η, so that
Eq. (14) is not longer well approximated by Eq. (15), and thus, a
correct description requires its nonlinear counterpart, as described
in II A.

where D(α) = eαa
†−α∗a is the displacement operator of am-

plitude α [2]. Finally, we move to an additional interaction
picture with respect to Hb,0 = (ν − ν̃)a†a − ω̃σz/2. Note
that the transformation T (α) has been proposed in Ref. [68]
to attain a fast trapped-ion implementation of the quantum
Rabi model. In order to ease the notation, in the following
we will use T ≡ T (iη/2), unless otherwise specified, as well
as Ux ≡ Ux(t, t0) = T e−i

∫ t
t0
dsHx(s) to denote the time-

evolution propagator of the Hamiltonian Hx (T accounts for
time ordering), while the superscript I stands for operators in
the interaction picture.

As mentioned above, we start by moving to a rotating
frame with respect to Ha,0 = −δ0σx/2, such that HG ≡
HI
a,1 ≡ U

†
a,0(Ha −Ha,0)Ua,0, or equivalently, Ha = Ha,0 +

Ua,0HGU
†
a,0. While Hboson and Hint commute with Ua,0,

the time-dependent terms in Hspin do not. Recalling that

∆j = δj − δ0, the transformed Hamiltonian Ha becomes

Ha = νa†a+ i
ην

2
σx(a− a†) (8)

+
1

2

nd∑
j=0

Ωj [cos δjt σz + sin δjt σy] , (9)

while the whole master equation becomes

ρ̇a = −iUa,0 [HG +Ha,0, ρG]U†a,0 + Ua,0L[ρG]U†a,0

= −i[Ha, ρa] + Ua,0L[U†a,0ρaUa,0]U†a,0. (10)

We now perform a unitary transformation using the operator
T in Eq. (7) with displacement amplitude α = iη/2, such that

Hb ≡ T †(iη/2)HaT (iη/2)

= νa†a+
1

2

nd∑
j=0

Ωj

[
σ+eiη(a+a

†)e−iδjt + H.c.
]
. (11)

Note that the previous Hamiltonian is similar to the one of an
optically-trapped ion after performing the rotating-wave ap-
proximation and written in the rotating frame with respect to
the free energy term of its internal degree of freedom, driven
by nd classical radiation fields with amplitude Ωj [69]. The
dynamics in this new frame follows from

T †ρ̇aT =− iT † [Ha, ρa]T

+ T †Ua,0L[U†a,0ρaUa,0]U†a,0T. (12)

As ρb = T †ρaT , using the definition given in Eq. (11), we get

ρ̇b = −i [Hb, ρb] + T †Ua,0L[U†a,0TρbT
†Ua,0]U†a,0T. (13)

It is worth noting that the transformation HG → Hb is uni-
tary, and so is the one taking ρG into ρb. Finally, from the
Hamiltonian Hb given in Eq. (11) one can attain the desired
multi-boson and spin couplings by moving to a suitable inter-
action picture. Indeed, defining Hb,0 = (ν − ν̃)a†a− ω̃σz/2,
HI
b,1 (with Hb,1 = Hb −Hb,0) takes the following form

HI
b,1 ≡ U

†
b,0Hb,1Ub,0 = ν̃a†a+

ω̃

2
σz

+

nd∑
j=0

Ωj
2

[
σ+e−i(ω̃+δj)teiη(a(t)+a

†(t)) + H.c.
]
, (14)

where a(t) = ae−i(ν−ν̃)t. By requiring the Lamb-Dicke con-
dition η

√
〈(a+ a†)2〉�1, one can expand the exponential

term into power series, so that interaction terms like σ+an

or σ+(a†)n with n ≥ 1 become resonant when selecting
δj = δ±n ≡ ±n(ν̃−ν)− ω̃, while any other term will be rotat-
ing at frequency proportional to ν̃−ν. The previous condition
is commonly known as Lamb-Dicke regime in the context of
trapped ions [69], while selecting frequencies δ±n corresponds
to driving red- and blue-sideband processes. We will therefore
refer to Lamb-Dicke regime to indicate such condition. For
small amplitudes, Ωj � ν, one may neglect fast-oscillating
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terms by performing a rotating-wave approximation, i.e., pre-
serving only those terms which are resonant. In this man-
ner, we bring HI

b,1 into the form of a spin-boson model with
multi-boson interaction terms, denoted here by Hn, so that
HI
b,1 ≈ Hn. Note however that the particular expression of

Hn depends on the number nd of distinct drivings and their
respective frequency δj . The most general expression of the
multi-boson model Hn within the Lamb-Dicke regime is

Hn =ν̃a†a+
ω̃

2
σz +

∑
m∈B

[
g̃me

iφmσ+(a†)m + H.c.
]

+
∑
n∈R

[
g̃ne

iφnσ+an + H.c.
]
, (15)

where the sets R and B encompass all the terms for which
δj = δ+n and δj = δ−m, respectively. We have set φn = nπ/2
and g̃n = ηnΩj,n/(2 n!), where Ωj,n denotes the amplitude
of the driving with frequency δj = δ±n . From Eq. (15) we
can see that, for a single term δ0 = δ+n (δ−n ) with nd = 0,
the resulting Hamiltonian becomes that of an n-boson (anti-
)JCM. If an additional driving is introduced, one can bias the
weights between rotating and counter-rotating terms in an n-
photon QRM. Interestingly, by suitably adjusting the param-
eters ν̃ and ω̃, different coupling regimes of these models are
accessible, from weak (ν̃, ω̃ � g̃n) to deep-strong coupling
(ν̃ . g̃n). The latter regime however entails that longer evolu-
tion times under HG are required to simulated Hn, as ν̃ � ν.

We would like to draw the attention to the HamiltonianHn,
which encompasses different models displaying fundamen-
tally different physics. In Sec. III we will analyze particu-
lar examples in which Hn reduces to the forms of well-known
models such as JCM, one-photon and two-photon QRMs [29–
31, 35–37].

Finally, after moving to a rotating frame with respect
to Hb,0 and performing the rotating wave approximation,
Eq. (13) becomes

ρ̇n = −i[Hn, ρn] + L̃[ρn], (16)

where now the transformed dissipative part is

L̃[·] = ΓL[Γ† · Γ]Γ† with Γ = U†b,0T
†Ua,0. (17)

Hence Γ is a unitary transformation that approximately
maps the model HG into Hn. Recall that Ub,0 =

e−i(t−t0)((ν−ν̃)a
†a−ω̃σz/2), T ≡ T (iη/2) as given in Eq. (7)

and Ua,0 = ei(t−t0)δ0σx/2 with t0 the initial time. As a con-
sequence, the structure of L[ρG] (Eq. (6)) is preserved, al-
though with the replacement Fk → F̃k = ΓFkΓ†. The new
jump operators F̃k are, in general, time-dependent operators.
Hence, although the transformed master equation resembles a
Lindbladian one, the dynamics in general does not represent a
semigroup [70].

Nevertheless, the dynamics of an initial state ρG(t0) evolv-
ing under Eq. (5) approximately corresponds to the dynamics
of ρn(t0) = Γ†ρG(t0)Γ following Eq. (16), where the specific
form of Hn crucially depends on the frequencies δj , ampli-
tudes Ωj and number of terms nd. We remark that the simu-
lation of Hn starting from HG holds to a very good approxi-
mation provided the previous conditions are satisfied, i.e., that

HI
b,1 can be well approximated by Hn, thus

ρn(t) ≈ ΓρG(t)Γ†. (18)

In other words, how well state ρn(t) can be realized from
ρG(t) depends solely on how well the conditions for the ap-
plication of the rotating wave approximation, which allows to
neglect of fast-oscillating terms in Eq. (14), are met. Eq. (18)
is the main result of the theoretical framework illustrated in
this Section.

A. Going beyond the Lamb-Dicke regime

If the Lamb-Dicke condition η
√
〈(a+ a†)2〉�1 is not sat-

isfied, the exponential term in Eq. (14) can not be expanded
as carried out previously to achieve Eq. (15). It is however
still possible to write down a Hamiltonian after a suitable ro-
tating wave approximation (beyond the Lamb-Dicke regime),
resulting in nonlinear spin-boson terms [32–34, 71, 72]. In
this regime, the Hamiltonian HI

b,1 is better approximated by
the nonlinear counterpart of Hn, i.e.

HI
b,1 ≈ Hn,η = ν̃a†a+

ω̃

2
σz

+
∑
m∈B

Ωj,m
2

[
σ+(a†)nfm(a†a) + H.c.

]
+
∑
n∈R

Ωj,n
2

[
σ+fn(a†a)an + H.c.

]
, (19)

where we have introduced the operator fn(a†a)

fn(a†a) = e−η
2/2

∞∑
l=0

(iη)2l+n

l!(l + n)!
(a†)lal. (20)

We stress that, although the previous model in Eq. (19) cer-
tainly contains a nonlinear spin-boson coupling (for n > 1),
there is yet another source of nonlinearity originated from the
function fn(a†a). Indeed, the transition rates between states
|e,m〉 and |g,m+ n〉 are effectively reduced depending on
the value of fn(a†a), and thus on that of η, which can vary
significantly for varying Fock number [cf. Fig. 1(c)] [34].
For a single term, that is in a nonlinear JCM, such feature
hinders the appearance of the hallmark of the standard JCM,
namely, collapses and revivals of quantum population. More-
over, fn(a†a) may vanish for a certain Fock state, thus ex-
hibiting a blockade of the propagation of quantum amplitudes
across the Hilbert space [71]. Although we will refer to non-
linear models whenever fn(a†a) has been taken into account,
for the sake of clarity we indicate it by introducing a subscript
η to the Hamiltonian [as in Eq. (19)].

If one however finds itself within the Lamb-Dicke regime,
then the previous Hamiltonian takes the form given in
Eq. (15), i.e., Hn,η ≈ Hn since fn(a†a) becomes constant
(see Fig. 1(c)). Note that for η

√
〈(a+ a†)2〉 � 1, we

have fn(a†a) ≈ (iη)n/n! which, together with the ampli-
tude Ωj,n/2, leads to the coupling given in Eq. (15), g̃neiφn .
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Beyond their mathematical interest, these models display a
number of interesting features with potential application in
bosonic mode cooling [73] or in dissipative state prepara-
tion of Fock states and nonlinear coherent states [33, 71, 74].
We will come back to these models in Sec. III, in particular
in III B 3 where we provide numerical simulations to illustrate
their simulation using HG.

III. EXAMPLES AND NUMERICAL RESULTS

In this Section we provide specific examples of the theo-
retical framework presented in Sec. II. We start by showing
how typical jump operators transform under the map Γ [cf.
Eq. (17)]. Then, in III B, we show different examples of how
the state satisfying Eq. (16) can be obtained from ρG obeying
Eq. (5), supported by numerical simulations and computing
state fidelities between the ideal ρn(t) and its reconstructed
version from ρG(t).

A. Transformed jump operators

As we have explained in Sec. II, the jump operators Fk af-
fecting the Hamiltonian HG map into F̃k = ΓFkΓ†. In the
following we show the transformation for customary jump op-
erators in quantum optics, namely, σz , σ± as well as a, a†

and a†a, which correspond to spin dephasing, spontaneous
emission and absorption, boson leakage and heating, and bo-
son dephasing, respectively [45]. In addition, we comment on
what would be required to engineer a desired dissipative pro-
cess F̃k. One can calculate easily the transformed jump op-
erators as explained in Sec. II, i.e., F̃k = ΓFkΓ† where Γ =

U†b,0T
†Ua,0, Ua,0 = eitδ0σx/2, Ub,0 = e−it((ν−ν̃)a

†a−ω̃σz/2)

with t0 = 0, and T ≡ T (iη/2) as defined in Eq. (7). As
an example, in Appendix B we provide the full derivation of
the transformation of F into F̃ for spontaneous emission and
absorption.

It is worth mentioning that, as reported in Ref. [75], consid-
ering independent decoherence processes acting either on the
spin or on the bosonic mode may become a crude approxima-
tion as their coupling enters in the ultra-strong regime [i.e. for
η/2 & 0.1, cf. Eq. (4)]. It is then convenient to move to a suit-
able dressed basis, where the relevant degrees of freedom are
mixed up, and where one can adequately describe distinct dis-
sipative processes [75]. However, even in the ultra-strong cou-
pling regime the differences in the steady-state populations
between both approaches are small, in the order of 10−2 for〈
a†a
〉

[75]. Thus, considering independent channels of dissi-
pation may be considered as a reasonable approximation even
for η/2 & 0.1. Although a dressed basis treatment lies outside
the scope of this work, we provide a discussion in Appendix C
on how the results vary when this is considered instead.

Spin dephasing.— The jump operator associated with spin
dephasing reads Fsd = σz , whose rate is given by γsd. One
thus obtains

ΓσzΓ
† = D(t)e−it(δ0+ω̃)σ+ + H.c., (21)

with the time-dependent displacement operator D(t) ≡
D
(
iηei(ν−ν̃)t

)
= eiη(a(t)+a

†(t)). Introducing the previous
expression in the dissipator, we find

D̃sd[ρ] =− ρ+D(t)σ+ρσ−D†(t) +D†(t)σ−ρσ+D(t)

+
(
D(t)σ+ρσ+D(t)e−2it(δ0+ω̃) + H.c.

)
. (22)

We thus observe that spin dephasing produces decoherence
in the transformed frame by mixing spin and bosonic de-
grees of freedom. Indeed, neglecting fast oscillating terms,
the previous dissipator contains in general nonlinear jump op-
erators of the form σ±an, σ±(a†)n and σ±(a†)nan at order
ηn. We highlight that, although Eq. (21) may seem to indicate
that the dissipative terms σ+an or σ−(a†)n can be tuned by
properly adjusting the frequency δ0 (as carried out to attain
Eq. (15)), a correct description demands taking into account
all the resonant terms appearing in Eq. (22) and not only those
in Eq. (15). However, within the Lamb-Dicke regime, it is
still possible to approximate D̃sd[ρ] by a simple expression.
Indeed, for γsd � ν, one may consider only the zero-order
term in η, so that

D̃sd[ρ] ≈ σxρσx − ρ = Dσx
[ρ]. (23)

As the Lamb-Dicke condition breaks down, the previous ap-
proximation no longer holds, thus demanding the inclusion of
the terms of Eq. (22). We refer to Appendix D for numer-
ical results in which nonlinear jump operators are crucial to
correctly reproduce the targeted dissipative dynamics.

Spontaneous emission and absorption.— The jump opera-
tors associated to spontaneous emission and absorption pro-
cesses at rates γse and γsa are Fse = σ− and Fsa = σ+,
respectively. Their transformed forms is [cf. Appendix B for
the derivation of such expressions]

Γσ±Γ† =
1

2

(
−σz ±D(t)e−it(δ0+ω̃)σ+ ∓H.c.

)
. (24)

Hence, these processes lead into spin dephasing in the
transformed picture, as well as mixed decoherence on the
spin and bosonic degree of freedom, as D(t)e−it(δ0+ω̃)σ+

comprises nonlinear operators of the form anσ+ and
(a†)nσ+. Furthermore, we can already notice that if
F = σx, its transformed form becomes particularly sim-
ple, ΓσxΓ† = −σz , while for σy a more intricate expres-
sion is attained, ΓσyΓ† = Re[eiη(a(t)+a

†(t))e−it(δ0+ω̃)]σy +

Im[eiη(a(t)+a
†(t))e−it(δ0+ω̃)]σx. As in the case of spin de-

phasing, provided that γse,sa � ν, it is possible to approxi-
mate Eq. (24) within the Lamb-Dicke regime as

D̃se,sa[ρ] ≈ 1

4
(Dsd[ρ] +Dse[ρ] +Dsa[ρ]) . (25)

In Appendix D we provide numerical results when the pre-
vious approximation does not hold and higher-order terms in
Eq. (24) become crucial to correctly reproduce the targeted
dissipative dynamics.

Boson leakage, heating and dephasing.— The transformed
jump operators for these boson dissipative processes, with
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rates γbl, γbh and γbd, respectively, read

ΓaΓ† = ae−it(ν−ν̃) − iη
2
σz, (26)

Γa†Γ† = a†eit(ν−ν̃) + i
η

2
σz, (27)

Γa†aΓ† = a†a+ σz
η

2

(
ia−it(ν−ν̃) + H.c.

)
, (28)

up to constant factors. Therefore, provided |ν − ν̃| � ηγbl,bh
so that terms like σzρa† can be neglected, boson leakage and
heating remain in the transformed frame Hn without modify-
ing their rate γbl,bh, and add spin dephasing at the reduced rate
γbl,bhη

2/4. In particular, for boson leakage, the transformed
dissipator reads

D̃bl[ρ] = aρa† − 1

2

[
a†a, ρ

]
+

+
η2

4
(σzρσz − ρ)

+
η

2

(
ia(t)ρσz − iσzρa†(t)

)
(29)

≈ Dbl[ρ] +
η2

4
Dsd[ρ]. (30)

Analogous considerations hold for boson heating. Similarly,
boson dephasing leads approximately into

D̃bd[ρ] ≈ Dbd[ρ] +
η2

4
Daσz

[ρ] +
η2

4
Da†σz

[ρ], (31)

and thus, while boson dephasing remains in the simulated
model, it also produced decoherence mixing spin and boson
degrees of freedom, with dissipators characterized by jump
operators aσz and a†σz .

Engineered channel of dissipation.— Besides the custom-
ary dissipation processes, let us consider the situation in which
a specific dissipative channel with jump operator F̃ is ad-
dressed. The simulation of F̃ requires thus Γ†F̃Γ to be im-
plemented in L[ρG] [cf. Eq. (5)]. For the sake of clarity, we
provide an example which we will exploit later on: if one aims
to simulate spontaneous emission, F̃ = σ−, a dissipative pro-
cess with F = 1

2D(iη)(σz − iσy) needs to be included in
L[ρG] (see Appendix B for its derivation). Note that, although
the resulting processes Γ†F̃Γ may be challenging for their ex-
perimental implementation, one may still resort to approxima-
tions depending on the precise parameters, as aforementioned.

B. Examples of the theory: simulating Hn from HG

In order to show the versatility and richness of the effects
encompassed by the framewrok described in Sec. II, we spe-
cialize the general procedure to simulate a few interesting sce-
narios.

1. n-boson JCM: Hn → HnJCM

Let us first consider a simple case in which nd = 0 with
δ0 = n(ν̃ − ν) − ω̃. In this case, our starting Hamiltonian

FIG. 2. The dynamics induced by the nJCM embodied by the Hamil-
tonian HnJCM in Eq. (33) is depicted by lines and compared to their
simulation through HG (shown by the points) as given in III B 1. In
the plots reported in the left column we have taken n = 1, while
n = 2 has been used for the right column. In panels (a) and (b) [(c)
and (d)] we show the evolution of 〈σz〉 [

〈
a†a

〉
],t while in (e) and

(f) we plot the infidelity, 1 − F (ρnJCM(t),ΓρG(t)Γ†) that quanti-
fies the quality of the simulation obtained starting from ρG(t). The
initial state |ψ(0)〉nJCM = |0〉 |e〉 evolves under HnJCM without
dissipation (solid red), and with dissipators corresponding to the
transformed boson leakage (dashed blue) and spin dephasing (dot-
ted green). The parameters used in the simulations are ω̃ = nν̃,
g̃1 = ν̃/2, g̃2 = ν̃/10, Ω0 = ν/100, ν̃ = ν/2000, γbl = ν̃/2 and
γsd = ν̃/40.

becomes time independent and takes the form of a generalized
QRM

HG = νa†a+
δ0
2
σx +

Ω0

2
σz + i

ην

2
σx(a− a†), (32)

where the bias parameter δ0 breaks explicitly the Z2 sym-
metry. Although HG above is in general nonintegrable, for
δ0 = kν (k ∈ Z), the model retrieves the integrability of
the standard QRM [8]. The dynamics in this system obeys a
master equation in Lindblad form, as introduced in Eqs. (5)
and (6). Interestingly, applying the map, this Hamiltonian
approximately corresponds to an n-boson JCM (that is, Hn

adopts the form of HnJCM)

HnJCM =ν̃a†a+
ω̃

2
σz + g̃n

[
eiφnσ+an + H.c.

]
(33)

with g̃n = Ω0η
n/(2 n!) and φn = nπ/2 [cf. Eq. (15)]. The

forms taken by the initial state in each frame are related as
ρnJCM(t0) = T †ρG(t0)T , while the state ρnJCM(t0) evolves
according to a master equation whose jump operators are in
general time dependent.

The Hamiltonian HnJCM results from the use of the rotat-
ing wave approximation, which requires both Ω0 � ν and
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the Lamb-Dicke condition. Therefore, in order to realize an
interacting nJCM (g̃n ∼ ν̃), the parameters need to fullfill
ω̃, ν̃ � ν. In turn, this results in δ0 ≈ −ν, which means that
the integrability of the generalized QRM HG in Eq. (32) is
only weakly broken [8]. It is worth mentioning that, by taking
δ0 = −n(ν̃ − ν)− ω̃, one would attain an n-boson anti-JCM,
an interaction term of the form σ−an + H.c., as illustrated in
Eq. (15). In Fig. 2 we show the numerical results for a one-
and two-boson JCM, including distinct channels for dissipa-
tion, to illustrate the good performance of simulating these
models from a simple HG (see III C for further details).

2. n-boson QRM Hn → HnQRM

In this case, the Hamiltonian HG contains two different
time-dependent terms with amplitude Ω1 and frequencies
∆1 = δ1 − δ0 with δ0,1 = ±n(ν̃ − ν)− ω̃ [cf. Eq. (2)]. After
a suitable transformation, one obtains an n-photon QRM as

HnQRM = ν̃a†a+
ω̃

2
σz

+ g̃n
[
eiφnσ+ + e−iφnσ−

]
⊗
[
an + (a†)n

]
, (34)

that is, Hn adopts the form of HnQRM. This model holds pro-
vided that Ω0 = Ω1, while the parameters g̃n and φn are the
same as the ones given for the nJCM and general Hn model.
It is worth mentioning that, in general, one can simulate an
anisotropic nQRM by simply tuning different amplitudes Ω0

and Ω1 in HG. The n-boson version of the quantum Rabi
model (nQRM) has been mainly studied in its two-boson form
(n = 2), which is of importance in describing second-order
processes in different quantum optics setups. The Hamilto-
nian H2QRM displays a remarkable feature: at g̃2 = ν̃/2
and above a certain excitation energy, the eigenstates become
those of a free particle and the spectrum turns into a contin-
uum band [29, 30, 35]. Furthermore, upon the spectral col-
lapse at g̃2 = ν̃/2, the Hamiltonian becomes unbounded from
below for g̃2 > ν̃/2. For any nQRM with n ≥ 3 the Hamilto-
nianHnQRM is unbounded both from below and above for any
non-zero coupling g̃n>2 6= 0 [76]. We would like to remark
that this allows to attain a strongly coupled QRM without the
need of increasing the coupling in the original HG, i.e., from
a weakly coupled spin-boson system. A similar result has
been proposed in [20], although following a different strategy
where ultra-strong and deep-strong coupling is achieved after
a suitable interaction picture. In Fig. 3 we show numerical
results considering n = 1 in different coupling regimes, and
n = 2 with g̃2 < ν̃/2. The parameters are detailed in III C.
The simulation of the unitary dynamics for n = 3 (3QRM)
has been shown in Ref. [60].

3. Beyond Lamb-Dicke: nonlinear n-boson anti-JCM
Hn,η → HnaJCM,η

As discussed in Sec. II A, the theoretical framework that we
have presented can be exploited even beyond the Lamb-Dicke

regime. Here we consider a nonlinear n-boson anti-JCM,
whose nonlinear interaction terms have been already intro-
duced in Eq. (19). Then, considering δ0 = −n(ν̃−ν)− ω̃ and
nd = 0, the Hamiltonian Hn,η takes the form of HnaJCM,η ,
which reads

HnaJCM,η =
ω̃

2
σz + ν̃a†a

+
Ω0

2

[
σ+(a†)nfn(a†a) + H.c.

]
. (35)

Again, we remark that although the previous models are cer-
tainly nonlinear in the sense that they involve n-boson and
spin interaction terms, we make use here of the term nonlin-
ear (subscript η) to indicates that the transition rates between
|e,m〉 and |g,m+ n〉 become nonlinear, and differ funda-
mentally from those of the standard (linear) one [34]. The
transition rates involve the function fn(a†a) that can signif-
icantly modify these rates (see Eqs. (19) and (20), as well
as Fig. 1((c)). Here we keep the convention used in pre-
vious works where these models have been dubbed nonlin-
ear although comprising linear, i.e. one-boson, spin-boson
exchange interaction terms [33, 34, 71]. According to our
theory, this nonlinear model can be indeed realized from a
linear and time-independent Hamiltonian, Eq. (32). In or-
der to observe a significant effect of the nonlinearity stem-
ming from the latter one needs however a large η parameter
and/or bosonic population. The departure from the Lamb-
Dicke regime, in which fn(a†a) ≈ e−η

2/2(iη)n/n!, can be
essentially captured by plotting 〈m| fn(a†a) |m〉 as a function
of the Fock state m and for different values of η. In Fig. 1(c)
we plot 〈m| fn(a†a) |m〉 for n = 0 and 1 and two values of η,
namely η = 0.05 and 0.75, which illustrate the considerable
modification of the transition rates for the latter case. Indeed,
one can find η such that fn(a†a) |k〉 ≈ 0, and so the tran-
sition between states |e, k〉 ↔ |g, k + n〉 is suppressed in a
HnJCM,η . See Ref. [71] for further a discussion and potential
applications regarding this nonlinearity.

The nonlinear n-boson JCM HnJCM,η can thus be real-
ized only by having access to a generalized QRM, with a
Hamiltonian of the form of HG given in Eq. (32), with δ0 =
n(ν̃ − ν) − ω̃. Interestingly, nonlinear effects (as plotted in
Fig. 1(c)) will become significant as HG enters in the ultra-
strong coupling regime, i.e. η/2 & 0.1. In a straightfor-
ward manner, one can realize different nonlinear models from
a generalized quantum Rabi model in the ultra-strong cou-
pling regime, such as a nonlinear nQRM [71]. Note that for
latter case one will proceed as explained in III B 2, adding a
spin driving into HG and with a larger η value such that ones
goes beyond the Lamb-Dicke condition. In Figs. 4 and 5 we
plot the results of the dynamics under H1aJCM,η and its re-
constructed version using HG. See III C for further details
regarding parameters and dissipative processes.

C. Numerical results

In the following we present numerical results supporting
the theoretical framework, specialized to the cases discussed
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FIG. 3. Dynamics of a nQRM, HnQRM (see Eq. (34)) for n =
1 (left) and n = 2 (right column), depicted by lines and their
simulation using HG (points) as described in III B 2. In panels
(a) and (b) ((c) and (d)) we show the evolution of the expecta-
tion value 〈σz〉 (

〈
a†a

〉
), while in (e) and (f) we plot the infidelity,

1 − F (ρnQRM(t),ΓρG(t)Γ†) between the targeted state and its
simulated counterpart. For the 1QRM (left column) we choose a
pure initial state |ψ(0)〉1QRM = |α = 1/2〉 |e〉 where |α〉 repre-
sents a coherent state, while for the 2QRM the initial state reads
ρ2QRM(0) = ρthb (0.25) ⊗ |+〉 〈+| where ρthb (

〈
a†a

〉
) is a thermal

state with
〈
a†a

〉
average number of bosons. Different styles corre-

spond to distinct coupling constants (left) or dissipation rates (right),
as indicated in panels (e) and (f), respectively. The parameters are
ν̃ = ν/5000 and Ω = ν/100, while γbl = 2γsd = ν̃/50 and ω̃ = 0
(1QRM) and g̃2 = ν̃/10 with ω̃ = 2ν̃ (2QRM). See III C for further
details.

previously, namely, where HG allows for the realization of
HnJCM, HnQRM and HnJCM,η with distinct dissipative pro-
cesses.

We start showing that the dynamics of an nJCM [Eq. (33)]
undergoing dissipative processes can be realized simply using
a generalized QRM, whose form has been given in Eq. (32).
In Fig. 2 we present numerical results of the simulation of
the dynamics of a one- and two-boson JCM using HG with-
out dissipation, boson leakage and spin dephasing. The
transformed dissipators for spin dephasing and boson leak-
age have been approximated as in Eqs. (23) and (30), re-
spectively, as explained in III A. The parameters used for
the simulations presented in Fig. 2 were ω̃ = ν̃ = g̃1/2
(1JCM) and ω̃ = 2ν̃ = g̃2/10 (2JCM), while Ω0 = ν/100
and ν̃ = ν/2000 which corresponds to η = 0.05 (1JCM)
and η = 0.14 (2JCM), while the initial state considered for
HnJCM is |ψ(0)〉nJCM = |0〉 |e〉. Hence, the initial state in
the frame of HG reads |ψ(0)〉G = T † |0〉 |e〉. The dissipation
rates are γbl = ν̃/2 and γsd = ν̃/40. Note that, the approxi-
mation D̃sd[ρ] ≈ Dσx

[ρ] does not work well in the 2JCM due
to the larger value of the parameter η, as indicated by a larger

FIG. 4. Dissipative dynamics towards the steady state in (a) HG

and (b) H1aJCM,η (see Eq. (33)), where HG is such that allows for
the realization of the nonlinear 1JCM (see III B 3), where ω̃ = ν̃ =
Ω0f1(0)/4 (which would be equivalent to g̃1 = ν̃/2 for H1aJCM)
and ν̃ = 10−3ν with η = 0.8. The initial state ρG(0) = ρthb (0.75)⊗
|g〉 〈g| for HG evolves under boson damping with rate γbl = ν̃/2
for (a), and its transformed form for (b) (Eq. (30)) . The insets show
the short-time dynamics. The panel (c) shows the time evolution
of the purity for ρG(t) (solid) and ρ1aJCM,η (dashed) while in (d)
we plot the infidelity between ΓρG(t)Γ† and ρ1aJCM (dahsed lines)
and ρ1aJCM,η (solid lines) for different rates, which for the latter
may drop below our numerical precision 10−5. See III C for further
details and a discussion.

infidelity in the latter case. Therefore, our theory allows us
to reproduce the dynamics of these models in different dissi-
pative and coupling regimes to a very good approximation, as
demonstrated by the low infidelities [cf. Fig. 2, panels (e) and
(f)].

In the following, we consider the case where HG allows
us to simulate a dissipative n-boson quantum Rabi model,
nQRM, whose Hamiltonian has been introduced in Eq. (34).
We emphasize again that our starting point consists in a
weakly coupled linear QRM, which allows strongly coupled
spin-boson systems with n-boson exchange terms. In Fig. 3
we present numerical results in which a H1QRM is simulated
in different regimes, even in the deep-strong coupling [13]
where HG features a small coupling constant to bosonic fre-
quency ratio 0.025 (since η = 0.05 to attain g̃1/ν̃ = 5/4).
The parameters of the simulated 1QRM are ω̃ = 0 with
coupling g̃1/ν̃ = 1/4, 3/4 and 5/4, while ν = 5 × 103ν̃
and Ω0 = Ω1 = 50ν̃. The considered dissipative chan-
nels in L[ρG] are boson leakage and spin dephasing with
rates γbl = 2γsd = ν̃/50, while the chosen initial state is
|ψ(0)〉1QRM = |α = 1/2〉 |e〉 where |α〉 = D(α) |0〉 denotes
a coherent state, whose mean boson population amounts to
|α|2. Notice that, as η and the boson population are small,
the approximation D̃sd[ρ] ≈ Dσx

[ρ] is expected to hold. As
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FIG. 5. Dissipative preparation of a Fock state via H1aJCM,η and
spontaneous emission, |ψ〉ss1aJCM,η = |ms〉 |g〉, which also cor-
responds to a pure state in the HG counterpart but of the form
|ψ〉ssG = D(iη/2) |ms〉 |+〉. In panel (a) we show the dynamics
towards the steady state of ρ1aJCM,η (solid lines) and its simulation
from ρG (points), starting from |ψ(0)〉1aJCM,η = |0〉 |g〉 and with
ω̃ = ν̃ = Ω0f1(0) (which would be equivalent to g̃1 = 2ν̃ for
H1aJCM) and γse = 4ν̃. For η ≈ 0.64, f1(ms = 8) vanishes, so
that the state |ms = 8〉 |g〉 becomes steady, see panel (b). Panels (c)
and (d) show the evolution of the purity (green), fidelity with respect
to its steady and pure state ρss (red) for ρ1aJCM,η (lines) and ρG
(points), and the infidelity between ρ1aJCM,η(t) and ΓρG(t)Γ†.

shown in Fig. 3 (a) and (c), as one increases the coupling g̃1/ν̃
one retrieves the main hallmark of the deep-strong coupling
regime, namely, the structured collapses and revivals [13],
which are damped here due to the dissipation. Although the
agreement between the simulated dynamics and the targeted
one is reasonably good [F & 0.9 or 0.99, depending on the
case, cf. Fig. 3 (e)], we stress that tweaking the parameters
may enhance further the attained fidelities.

In addition to the simulation of a 1QRM, we show that
one can obtain good fidelities even for the realization of
a 2QRM. For that, we select an initial state ρ2QRM(0) =
ρthb (

〈
a†a
〉
) ⊗ ρs where ρthb (

〈
a†a
〉
) stands for a thermal state

with average boson population
〈
a†a
〉
, such that ρthb (n) =∑

k=0 n
k(n+ 1)−k−1 |k〉 〈k|. For the results plotted in Fig. 3

we have considered ρthb (0.25) while ρs = |+〉 〈+| where
|±〉 = 1/

√
2(|e〉 ± |g〉). The parameters of the 2QRM are

ω̃ = 2ν̃ and a coupling constant g̃2 = ν̃/10, while for HG we
selected ν = 5 × 103ν̃ = 100Ω0,1, which leads to η ≈ 0.09.
As in the previous cases, we consider boson losses and spin
dephasing, where the latter can be still approximated as in
Eq. (23). The dynamics of this model is well reproduced in
different cases, as shown in Fig. 3 (b), (d) and (f). Note that,
when boson losses dominate the dynamics, the state ρ2QRM(t)
is pushed to the vacuum, |0〉 〈0| ⊗ |g〉 〈g|, which becomes a
the steady state. The attainment of steady states upon differ-

ent dissipative processes (and the correct functioning of their
simulation) will be further inspected in the following, and il-
lustrated in Figs. 4 and 5.

As commented in Sec. II A and, for the specific case of the
simulation of HnaJCM,η , in Sec. III B 3, a generalized QRM
allows for the implementation of nonlinear, yet with n-boson
exchange interactions, (anti-)JCMs. The main feature of this
class of models is the strong dependence of transition rates be-
tween the states |e,m〉 ↔ |g,m+ n〉 for different |m〉 Fock
states [cf. Fig. 1 (c) and Sec. II A]. We illustrate the realization
of a H1aJCM,η in Fig. 4, where the a steady state is achieved
within the simulated evolution time. We take as initial state
ρG(0) = ρthb (0.75) ⊗ ρs with ρs = |g〉 〈g|, η = 0.8 and
boson leakage with different rates, while the parameters are
ω̃ = ν̃ = Ω0f1(0)/4. We stress however that for such a large
η value, and thus large coupling constant in HG, considering
independent channels of dissipation may be not longer a good
approximation, and thus one may have to resort to a dressed-
basis description of the dissipation (see Appendix C). Never-
theless, the difference in population may exhibit deviations in
the order of 10−2 for the computed observables [75]. In addi-
tion, note that the previous coupling constant would be equiv-
alent to having g̃1 = ν̃/2 in a standard H1aJCM. As shown
in Fig. 4(a) and (b), the steady state in HG is accompanied by
its transformed version in H1aJCM,η . As the states ρG(t) and
ρ1aJCM,η are related through a unitary transformation, the pu-
rity Tr[ρ2(t)] is expected to be equal if the simulation of this
model works correctly. As we observe in Fig. 4(c), this in-
deed the case to a very good approximation. Note that for
γbl = ν̃/2, the state ρG tends to a pure, yet steady, state, and
so does ρ1aJCM,η . As a matter of fact, as the dissipative dy-
namics for HnaJCM,η brings the states towards the its steady
and pure state ρssnAJCM,η = |0〉 〈0| |e〉 〈e|, it is easy to see that
ρssG = |α = −iη/2〉 |−〉 〈−| 〈α = −iη/2| is also pure, where
|α = −iη/2〉 = D(−iη/2) |0〉 is a coherent state containing
|α|2 = η2/4 boson excitations. Finally, we comment that, due
to the large coupling in HG (η = 0.8), the Lamb-Dicke con-
dition breaks down and thus H1aJCM becomes a poor approx-
imation of HI

b,1 (Eq. (14)). In Fig. 4(d) we show the infidelity
between ΓρG(t)Γ† and the realized state ρ1aJCM,η(t) (solid
lines) and ρ1aJCM(t) (dashed lines) for the same parameters.
The significant difference among the fidelities, and the very
low values for 1 − F (ρ1aJCM,η(t),ΓρG(t)Γ†) . 10−4, pin-
points the correctness of the theory and the good realization
of this nonlinear anti-Jaynes-Cummings model.

Finally, we provide a further example regarding the re-
alization of a nonlinear anti-Jaynes-Cummings model when
its nonlinearity is crucial, and thus H1aJCM,η differs funda-
mentally from its linear counterpart, H1aJCM. For that we
consider that spontaneous emission F̃ = σ− can be imple-
mented in L[ρn], which corresponds to a dissipation chan-
nel with F = 1

2D(iη)(σz − iσy) in L[ρG] [cf. Ref. III A
and Appendix B for its derivation]. As recently shown in
Ref. [71], it is thuspossible to tune η such that fn(ms) = 0
for a certain Fock state |ms〉, and thus, spontaneous emis-
sion aids preparation of that precise Fock state, |ms〉 |g〉,
since the transition to |ms + n〉 |e〉 is blocked. The nu-
merical results regarding this situation are plotted in Fig. 5,
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where the initial state |ψ(0)〉1aJCM,η = |0〉 |g〉 evolves to-
wards |ψ〉ss1aJCM,η = |ms〉 |g〉 with η = 0.639 such that
f1(ms = 8) = 0 [Fig. 5 (b)], and with parameters ω̃ =
ν̃ = Ω0f1(0) and dissipation rate γse = 4ν̃. It is worth high-
lighting that the condition ν̃ = Ω0f1(0) would correspond to
ν̃ = 2g̃1 in the standard H1aJCM. The dissipative prepara-
tion of the Fock state can be thus simulated by HG, where in-
stead |ψ〉ssG = D(iη/2) |ms〉 |+〉. As in the previous case, the
purity Tr[ρ2(t)] matches for both states and the high fidelity,
F (ρ1aJCM,η(t),ΓρG(t)Γ†) & 0.999 [Fig. 5 (c) and (d)] indi-
cate the good agreement between these models, where the pa-
rameters of HG are ν = 103ν̃ and Ω0 ≈ ν/130. In addition,
we include in Fig. 5(c) the fidelity between the evolved state
ρG(t) and the steady state |ψ〉ssG , as well as ρ1aJCM,η(t) and
|ψ〉ss1aJCM,η , which evolves from 0 to 1 in a time t ≈ 40π/ν̃.

IV. CONCLUSIONS

We have shown how the dynamics of a dissipative quan-
tum system comprising simultaneous exchanges of n-boson
excitations with a spin can be realized exploiting a system in-
volving only linear spin-boson coupling and simple spin ro-
tations, i.e. without having access to the required n-boson
interacting terms. Moreover, we have demonstrate that spin-
boson models with further nonlinear effects, such as the de-
pendence of transition rates between Fock states on the ac-
tual Fock state number, can be accessed only by bringing a
linear QRM into the ultra-strong coupling regime and with a
spin bias. Indeed, the simulation of these nonlinear and multi-
photon spin-boson models can be realized in distinct regimes,
ranging from weak to deep-strong coupling regimes. These
models include the well-known (anti-)JCMs and QRMs, both
with and without nonlinearities, as well as the so-called two-
boson QRM, among others. The developed theoretical frame-
work not only unveils a deep connection between these mod-
els, but also offers the possibility for the simulation of nonlin-
ear models previously constrained mainly to optical trapped-
ion setups [34, 71] and of multi-boson spin-boson interaction
terms in platforms where those are otherwise unattainable,
i.e., without relying on the developed theory.

Here we have assumed that one has control onto a system
described as a generalized QRM, i.e., spin and boson lin-
early coupled and with the ability of performing spin driv-
ings, and it is where the simulation of a nonlinear n-boson
spin-boson model is performed. The dissipative dynamics of
the generalized QRM is assumed to be well described by a
Lindblad term. In this manner, the jump operators then take
a transformed form in the simulated model, which in gen-
eral may become time dependent and involve also nonlinear
spin-boson terms, thus mixing both degrees of freedom. For
certain parameter regimes, however, distinct dissipative pro-
cesses can be well approximated by standard dissipative chan-
nels. We provide, in addition, a prescription of what jump op-
erators would be required to be implemented in the simulator
to achieve an arbitrary dissipative channel. We have then illus-
trated the presented theoretical framework by showing exam-
ples in which the dissipative dynamics of a generalized QRM

corresponds to that of different nonlinear models with custom-
ary decoherence processes, such as spin and boson dephasing,
spontaneous spin emission and absorption, and boson leak-
age and heating. The numerical simulations strongly support
the theoretical results, indicating that the simulation holds to
a very good approximation, as quantified in terms of the re-
sulting high fidelities, for paradigmatic examples as the JCM
and QRMs and their 2-boson counterparts. These include the
deep-strong coupling regime of the quantum Rabi model [13].
Moreover, we also illustrate the simulation a nonlinear anti-
JCM, whose main trait consists in the blockade of propagation
of quantum amplitudes along the Hilbert space [71].

Our results indicate that the dissipative dynamics of a gen-
eralized QRM approximately corresponds to different nonlin-
ear models upon a suitable transformation, both of the coher-
ent and dissipative part. Due to the ubiquity of a generalized
QRM in a variety of quantum platforms and its relevance in
different branches of modern science, our results might open
new avenues in the inspection of decoherence in different fun-
damental quantum systems and in their simulation.
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Appendix A: Impact of an A2-term in HG

As mentioned in the main text, our starting point con-
sists in considering a driven spin linearly coupled to a single
bosonic mode whose Hamiltonian HG is given in Eq. (1) and
Eqs. (2), (3) and (4). Although this description is wide since
it applies to different setups, one may have to introduce an ex-
tra term HA2 when dealing, for example, with a cavity QED
implementation as it can have a significant impact in the ul-
trastrong coupling regime [65–67]. Note that this term stems
from the potential vector of the cavity field. In the follow-
ing lines we provide a discussion on how the results presented
in the main text would be modified when this term is consid-
ered. In particular, when the A2 term is included, our starting
Hamiltonian becomes HG = Hspin +Hboson +Hint +HA2 ,
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where the latter term reads

HA2 = D(a+ a†)2. (A1)

Now, we consider an interaction Hint = ην/2σx(a + a†),
which results from a trivial rotation of a and a† in Eq. (4). The
previous Hamiltonian can be transformed back to the original
form, i.e., without an A2 term, by making a unitary transfor-
mation using the squeezing operator S[z] = ez/2((a

†)2−a2)

with z ∈ R. Then, calculating S†[z]HGS[z] one can find the
value zs that brings the previous expression into the form of
HG without HA2 . Indeed, for zs = −1/4 log(1 + 4D/ν) the
transformed Hamiltonian reads

S†[zs]HGS[zs] = Hspin +
η̃ν̃

2
σx(a+ a†)

+ ν̃e−2zsa†a− νe−zs sinh zs, (A2)

which is identical to the original Hamiltonian HG up to con-
stant values, see Eqs. (2), (3) and (4), with renormalized pa-
rameters, η̃ = ηe3zs and ν̃ = νe−2zs . Hence, one can follow
the rest of the theoretical derivation to find the nonlinear and
multi-boson models as explained in Sec. II. Note however that
the corresponding master equation describing the dynamics
for HG including the HA2 term may have to be transformed
too according to S[zs] · S†[zs].

Appendix B: Transformed jump operators for spontaneous
emission and absorption

As given in the main text, Eq. (24), the jump oper-
ator associated with spontaneous absorption (emission)
acting in the frame of HG, F = σ±, transforms into
the frame Hn as F̃ = ΓFΓ†, where Γ = U†b,0T

†Ua,0.
The time-evolution propagators are Ua,0 = eitδ0σx/2 and
Ub,0 = e−it((ν−ν̃)a

†a−ω̃σz) considering t0 = 0, and T =

2−1/2
[
D(α)(|e〉 〈g|+ |g〉 〈g|) +D†(α)(|e〉 〈e| − |g〉 〈e|)

]
given in Eq. (7). Thus, the transformed jump operator F̃ can
be calculated as follows. We first need

Ua,0 σ
±U†a,0 =

cos2 (δ0t/2)σ± + sin2 (δ0t/2)σ∓ ∓ i

2
sin(δ0t)σz, (B1)

and then, using the following expressions

T †σzT = D2(α)σ+ +D†2(α)σ− (B2)

T †σ±T =
1

2

[
−σz ±D2(α)σ+ ∓D†2(α)σ−

]
(B3)

we obtain

T †Ua,0 σ
+U†a,0T =− 1

2
σz +

1

2
D2(α)e−itδ0σ+

− 1

2
D†2(α)eitδ0σ−, (B4)

FIG. 6. Dissipative dynamics when D̃sd[ρ] (top) and D̃se[ρ] (bottom)
can not be approximated by the simple Eqs. (23), and (25), respec-
tively. In (a) we show the time evolution of

〈
a†a

〉
1JCM,η

(lines)

and its reconstruction using ρG (points), when D̃sd[ρ] is taken as in
Eq. (22) (solid lines) or approximated as in Eq. (23) (dashed lines),
for different parameters, namely η = 0.5 with γsd = γbl/2 = 5ν̃
(blue) and η = 0.4 and 0.8 with γsd = 2γbl = ν̃ (red and
green). The rest of the parameters are ω̃ = ν̃ = f1(0)Ω0/2 with
ν̃ = 10−2ν, and initial state |ψ(0)〉G = |0〉 |+〉. With the same for-
mat, in (b) we show the infidelity 1−F between the ρG and ρ1JCM,η

considering D̃sd[ρ] as in Eq. (22) or Eq. (23). The same is plotted
in the bottom panels, (c) and (d), but with D̃se[ρ] and γse instead of
D̃sd[ρ] and γsd and |ψ(0)〉G = |0〉 |e〉.

so that finally we arrive to

Γσ±Γ† = U†b,0T
†Ua,0 σ

±U†a,0TUb,0 = −1

2
σz

± 1

2
eit(ν−ν̃)a

†aD(2α)e−it(ν−ν̃)a
†ae−it(δ0+ω̃)σ+

∓ 1

2
eit(ν−ν̃)a

†aD†(2α)e−it(ν−ν̃)a
†aeit(δ0+ω̃)σ− (B5)

which for α = iη/2, D(iη) = eiη(a
†+a), and therefore

Γσ+Γ† =− 1

2
σz ±

1

2
eiη(a(t)+a

†(t))e−it(δ0+ω̃)σ±

∓ 1

2
e−iη(a(t)+a

†(t))eit(δ0+ω̃)σ− (B6)

with a(t) = ae−it(ν−ν̃). The previous expression corresponds
to the Eq. (24) given in the main text.

In a straightforward manner, for F̃ = σ− the corresponding
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jump operator in the frame of HG follows from F = Γ†F̃Γ,

Γ†F̃Γ = U†a,0TUb,0σ
−U†b,0T

†Ua,0 (B7)

= e−itω̃U†a,0Tσ
−T †Ua,0 (B8)

=
1

2
D(2α)e−itω̃U†a,0 [σz − iσy]Ua,0 (B9)

=
1

2
D(2α)e−it(ω̃+δ0) [σz − iσy] . (B10)

Since e−it(ω̃+δ0) is just a global phase, it can be dropped out,
so a dissipative channel F = 1

2D(iη) [σz − iσy] in HG leads
to spontaneous emission in Hn.

Appendix C: Dressed-basis treatment of dissipation

As acknowledged in Ref. [75], the master equation con-
sidering independent channels of dissipation leads into non-
physical results as the coupling constant becomes comparable
to the bosonic frequency. Instead, one needs to describe dis-
sipation in the dressed basis of the spin-mode. In the case of
a time-independent HG =

∑
k Ek |k〉 〈k| where |k〉 denotes

here the kth eigenstate of the spin-boson system. Then, the
correct master equation at zero temperature involving spin de-
phasing and boson leakage results in

L[ρG] = DA[ρG] +
∑
j,k 6=j

γsd,jkDBjk
[ρG]

+
∑
j,k>j

γbl,jkDBjk
[ρG], (C1)

with the operators A =
∑
k

√
γsd(0) 〈k|σz |k〉 |k〉 〈k| and

Bjk = |j〉 〈k| with γsd,jk = γsd(Ek − Ej) |〈j|σz |k〉|2 and
γbl,jk = γbl(Ek −Ej)

∣∣〈j| (a+ a†) |k〉
∣∣2, where the rates are

now evaluated at different frequencies. Performing the trans-
formation described in Sec. II, one would find the correct mas-
ter equation describing the dynamics of the simulated multi-
boson and nonlinear models. In particular, one would have
to transform the operators A and Bjk as ΓAΓ† and ΓBjkΓ†.
Recall that since A and Bjk depend on the dressed-basis |k〉

of the spin and bosonic mode, they need to be computed nu-
merically.

Appendix D: Breakdown of Lamb-Dicke regime in dissipative
processes

In this part we provide additional numerical results to il-
lustrate that, under certain circumstances, some dissipative
processes, such as spin dephasing and spontaneous emission
and absorption cannot be approximated as D̃sd[ρ] ≈ D̃σx [ρ]
(Eqs. (23), and (25), respectively), as explained in the main
text. Indeed, when the Lamb-Dicke condition breaks down,
a correct description of dissipation demands the full trans-
formed dissipators as given in Eqs. (22) and (24). In order
to illustrate this, we choose HG such that it allows to realize
H1JCM,η , although the rates are taken to be much larger than
the frequencies ofH1JCM,η so that the dynamics is essentially
governed by D̃sd or D̃se. Note that we take H1JCM,η , which
together with the large dissipation rates, allows us to analyze
better how the approximations performed in the dissipative
part spoil the correct functioning of the correspondence be-
tween these models.

To inspect the effect of spin dephasing, we consider
|ψ(0)〉G = |0〉 |+〉 as initial state for HG evolving under the
presence of spin dephasing and boson losses, with rates γsd
and γbl. As we show in Fig. 6(a) and (b), approximating
D̃sd[ρ] ≈ Dσx

[ρ] fails to capture the correct equilibrium state
for η & 0.4. Indeed, upon taking into account the full D̃sd[ρ]
(Eq. (22)), the dynamics is correctly reproduced, as indicated
by the low infidelities obtained for the cases plotted in Fig. 6.
As expected, the crude approximation performed in Eq. (23)
breaks down as η increases, and thus resulting fidelities drop
significantly (e.g. F . 0.8 for η = 0.8).

In addition, we also provide results regarding the validity
of the Eq. (25). For we proceed as before, now choosing
|ψ(0)〉G = |0〉 |e〉 as initial state. As one can observe in
Fig. 6(c) and (d), the break down of the Lamb-Dicke condition
has a lesser impact in D̃se[ρ] for intermediate η values (0.4
or 0.5) compared to spin dephasing. However, for η = 0.8,
a correct functioning of the simulation crucially depends on
the inclusion of higher-order terms, such as anσ±, which are
present in Eq. (24).

[1] M. A. Nielsen and I. L. Chuang, Quantum computation and
quantum information (Cambridge University Press, Cambridge,
England, 2000).

[2] M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge
University Press, Cambridge, England, 1997).

[3] I. I. Rabi, Phys. Rev. 49, 324 (1936).
[4] I. I. Rabi, Phys. Rev. 51, 652 (1937).
[5] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).
[6] E. Solano, Physics 4, 68 (2011).
[7] D. Braak, Q.-H. Chen, M. T. Batchelor, and E. Solano, J. Phys.

A: Math. Theor. 49, 300301 (2016).
[8] D. Braak, Phys. Rev. Lett. 107, 100401 (2011).

[9] C. Ciuti, G. Bastard, and I. Carusotto, Phys. Rev. B 72, 115303
(2005).

[10] A. A. Anappara, S. De Liberato, A. Tredicucci, C. Ciuti, G. Bia-
siol, L. Sorba, and F. Beltram, Phys. Rev. B 79, 201303 (2009).

[11] P. Forn-Dı́az, J. J. Garcı́a-Ripoll, B. Peropadre, J.-L. Orgiazzi,
M. A. Yurtalan, R. Belyansky, C. M. Wilson, and A. Lupascu,
Nat. Phys. 13, 39 (2017).

[12] A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and
F. Nori, arXiv:1807.11636 (2018).

[13] J. Casanova, G. Romero, I. Lizuain, J. J. Garcı́a-Ripoll, and
E. Solano, Phys. Rev. Lett. 105, 263603 (2010).

[14] M.-J. Hwang, R. Puebla, and M. B. Plenio, Phys. Rev. Lett.

http://dx.doi.org/10.1103/PhysRev.49.324
http://dx.doi.org/10.1103/PhysRev.51.652
http://dx.doi.org/10.1109/PROC.1963.1664
https://physics.aps.org/articles/pdf/10.1103/Physics.4.68
http://stacks.iop.org/1751-8121/49/i=30/a=300301
http://stacks.iop.org/1751-8121/49/i=30/a=300301
http://dx.doi.org/10.1103/PhysRevLett.107.100401
http://dx.doi.org/10.1103/PhysRevB.72.115303
http://dx.doi.org/10.1103/PhysRevB.72.115303
http://dx.doi.org/ 10.1103/PhysRevB.79.201303
http://dx.doi.org/10.1038/nphys3905
https://arxiv.org/abs/1807.11636
http://dx.doi.org/10.1103/PhysRevLett.105.263603
http://dx.doi.org/10.1103/PhysRevLett.115.180404


13

115, 180404 (2015).
[15] R. Puebla, M.-J. Hwang, and M. B. Plenio, Phys. Rev. A 94,

023835 (2016).
[16] R. Puebla, M.-J. Hwang, J. Casanova, and M. B. Plenio, Phys.

Rev. Lett. 118, 073001 (2017).
[17] M. Liu, S. Chesi, Z.-J. Ying, X. Chen, H.-G. Luo, and H.-Q.

Lin, Phys. Rev. Lett. 119, 220601 (2017).
[18] J. S. Pedernales, I. Lizuain, S. Felicetti, G. Romero, L. Lamata,

and E. Solano, Sci. Rep. 5, 15472 (2015).
[19] D. Lv, S. An, Z. Liu, J.-N. Zhang, J. S. Pedernales, L. Lamata,

E. Solano, and K. Kim, Phys. Rev. X 8, 021027 (2018).
[20] D. Ballester, G. Romero, J. J. Garcı́a-Ripoll, F. Deppe, and

E. Solano, Phys. Rev. X 2, 021007 (2012).
[21] A. Mezzacapo, U. Las Heras, J. S. Pedernales, L. DiCarlo,

E. Solano, and L. Lamata, Sci. Rep. 4, 7482 (2014).
[22] N. K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel,

A. Brun, F. Luthi, D. J. Thoen, A. Endo, and L. DiCarlo, Nat.
Commun. 8, 1715 (2017).

[23] J. Braumüller, M. Marthaler, A. Schneider, A. Stehli,
H. Rotzinger, M. Weides, and A. V. Ustinov, Nat. Commun.
8, 779 (2017).

[24] P. Schneeweiss, A. Dareau, and C. Sayrin, Phys. Rev. A 98,
021801 (2018).

[25] M. Abdi, M.-J. Hwang, M. Aghtar, and M. B. Plenio, Phys.
Rev. Lett. 119, 233602 (2017).

[26] A. Crespi, S. Longhi, and R. Osellame, Phys. Rev. Lett. 108,
163601 (2012).

[27] M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and
S. Haroche, Phys. Rev. Lett. 59, 1899 (1987).

[28] A. H. Toor and M. S. Zubairy, Phys. Rev. A 45, 4951 (1992).
[29] S. Felicetti, J. S. Pedernales, I. L. Egusquiza, G. Romero,

L. Lamata, D. Braak, and E. Solano, Phys. Rev. A 92, 033817
(2015).

[30] L. Duan, Y.-F. Xie, D. Braak, and Q.-H. Chen, J. Phys. A:
Math. Theo. 49, 464002 (2016).

[31] R. Puebla, M.-J. Hwang, J. Casanova, and M. B. Plenio, Phys.
Rev. A 95, 063844 (2017).

[32] R. L. de Matos Filho and W. Vogel, Phys. Rev. A 50, R1988
(1994).

[33] R. L. de Matos Filho and W. Vogel, Phys. Rev. A 54, 4560
(1996).

[34] W. Vogel and R. L. de Matos Filho, Phys. Rev. A 52, 4214
(1995).
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