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Linear optical realizations of Bell state measurement (BSM) on two single-photon qubits succeed
with probability ps no higher than 0.5. However pre-detection quadrature squeezing, i.e., quan-
tum noise limited phase sensitive amplification, in the usual linear-optical BSM circuit, can yield
ps ≈ 0.643. The ability to achieve ps > 0.5 has been found to be critical in resource-efficient realiza-
tions of linear optical quantum computing and all-photonic quantum repeaters. Yet, the aforesaid
value of ps > 0.5 is not known to be the maximum achievable using squeezing, thereby leaving it
open whether close-to-100% efficient BSM might be achievable using squeezing as a resource. In
this paper, we report new insights on why squeezing-enhanced BSM achieves ps > 0.5. Using this,
we show that the previously-reported ps ≈ 0.643 at single-mode squeezing strength r = 0.6585—for
unambiguous state discrimination (USD) of all four Bell states—is an experimentally unachievable
point result, which drops to ps ≈ 0.59 with the slightest change in r. We however show that
squeezing-induced boosting of ps with USD operation is still possible over a continuous range of r,
with an experimentally achievable maximum occurring at r = 0.5774, achieving ps ≈ 0.596. Finally,
deviating from USD operation, we explore a trade-space between ps, the probability with which
the BSM circuit declares a “success”, versus the probability of error pe, the probability of an input
Bell state being erroneously identified given the circuit declares a success. Since quantum error
correction could correct for some pe > 0, this tradeoff may enable better quantum repeater designs
by potentially increasing the entanglement generation rates with ps exceeding what is possible with
traditionally-studied USD operation of BSMs.

I. INTRODUCTION

In the so-called dual-rail photonic qubit basis, the
logical qubits |0〉 and |1〉 are realized by one photon
in one of two orthogonal modes (while the other mode
is in vacuum). Two common physical realizations are:
(1) one photon in one of two orthogonal polarization
modes (of a single spatio-temporal mode), i.e., |0〉 = |1〉H
and |1〉 = |1〉V; and (2) one photon in one of two or-
thogonal spatial modes (of the same polarization), i.e.,
|0〉 = |10〉 and |1〉 = |01〉. In this paper we will consider
the latter form of the dual-rail photonic qubit basis.

The four Bell states form a complete orthonormal basis
for two qubits. Each is a maximally entangled state of
two qubits, representing 1 ebit of shared entanglement.
Equations (1) are the four 2-qubit 4-mode Bell states in
the dual rail encoding, where the mode pairs 1&2 and
3&4 each represent one qubit.

|ψ+〉 =
1√
2

(|1001〉+ |0110〉) (1a)

|ψ−〉 =
1√
2

(|1001〉 − |0110〉) (1b)

|φ+〉 =
1√
2

(|1010〉+ |0101〉) (1c)

|φ−〉 =
1√
2

(|1010〉 − |0101〉) (1d)

Projecting a pair of qubits onto the Bell basis is an im-
portant primitive in quantum computation and commu-
nication. This two-qubit projective measurement is often
termed the Bell basis measurement, or the Bell state mea-

surement (BSM). Uses of BSMs include quantum tele-
portation [1, 2], entanglement swapping [3], dense cod-
ing [4], quantum repeaters [5, 6], and fault-tolerant quan-
tum computing [2, 7].

It has been long known that if the optical circuit used
to realize a BSM on two dual rail qubits is restricted to
using passive linear optical elements (beamsplitters and
phase shifters), the BSM can succeed with at most 50%
success probability [8]. This probabilistic nature of the
linear optical BSM has arguably been the primary bottle-
neck in realizing scalable all-photonic quantum comput-
ing [7, 9] and other all-photonic quantum information
processing, such as all-photonic quantum repeaters for
long-distance entanglement distribution [10, 11], where
an entangled cluster state of several photons in a ‘code
state’ mimics the action of a quantum memory by pro-
viding error correction against photon loss.

A. Boosted Bell State Measurements

The success probability (ps) of a BSM circuit is the
probability with which it can unambiguously identify a
randomly assigned Bell state presented to the circuit
as input. When restricted to passive linear optics and
no ancillary states, one cannot achieve ps > 50% [8].
However it was recently shown that including pre-
detection quadrature squeezing and photon number re-
solving (PNR) detection (along with linear optics) can
boost (increase) ps to ∼ 64.3% [12]. Further, it was also
recently found that the addition of unentangled single-
photon ancillae and PNR detection (along with linear
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optics) can boost ps to up to 78.125% [13]. The addition
of arbitrarily large entangled ancillae and PNR detection
(along with linear optics) can boost ps to 100% [14].

Any quantum measurement on a set of n linear opti-
cal qubits can be realized by a suitable 2n-mode quan-
tum unitary transformation followed by ideal PNR de-
tectors. A universal set of optical transformations is
one from which one can draw elements to build an arbi-
trary unitary transformation on any set of optical modes.
One example of a universal set comprises the follow-
ing subsets: (1) passive linear optical elements (cir-
cuits involving beam splitters and phase shifters) and
on-off detectors [15], (2) squeezing (realized, e.g., us-
ing an optical parametrical amplifier (OPA) built using
a χ(2) non-linear-optical material), and (3) PNR detec-
tors. The most general multi-mode Gaussian transforma-
tion is one that can be built by drawing elements from
subsets (1) and (2) [16]. Adding any one non-Gaussian
element—which can be either (a) a non-Gaussian non-
linear transformation such as the Kerr or cubic phase,
(b) a non-Gaussian ancilla state such as single photons
or cat states or (c) a non-Gaussian measurement such as
PNR detection—to the set of Gaussian transformations
makes it a universal set [17]. The linear optical circuit for
BSM that achieves ps = 50% (shown in Fig. 1) involves
elements only from the subset (1) above. In fact, one
cannot exceed this success probability with a 2n-mode
circuit comprised of elements drawn from (1) alone [8].

Since optical elements from (1), (2) and (3) above form
a universal set, a BSM circuit must exist that uses lin-
ear optics, squeezing, and PNR detectors that achieves
ps = 100%. The boosted BSM circuit proposed by Zaidi
and van Loock [12] that achieves ps ≈ 64.3% employs ex-
actly those elements (linear optics, squeezing, and PNR
detectors). This circuit is shown in Fig. 2. The universal-
ity of the elements used in realizing this circuit, and the
practical realizability of inline squeezing and PNR detec-
tion [18] are the reasons we will study boosted BSM using
pre-detection squeezing in further detail, in this paper.

B. Main results

The main results of this paper are summarized below.

1. We review the squeezing-boosted BSM circuit in
Ref. [12] and provide a deeper understanding and
intuition for why it boosts ps beyond the 50% limit
of linear optics without ancillae.

2. We show that the ps ≈ 64.3% result of [12] is actu-
ally a point result achievable with a pre-detection
squeezing of exactly 5.719 dB (squeezing parame-
ter, r = 0.6585) in all four squeezers in the circuit in
Fig. 2. If the applied squeezing in any of the squeez-
ers is even infinitesimally lower or higher than that,
ps drops (discontinuously) to a lower value, but it
stays strictly higher than 50% (see Fig. 3).

3. We evaluate the effect of finite photon number res-
olution in the PNR detectors. We find that: (1) at
least 3-photon resolving detectors are needed to get
any boost of ps above 50%, specifically ps ≈ 0.54
being achievable with 3-photon resolving PNR de-
tectors and 3 dB of squeezing (r ≈ 0.35); (2)
Most of the non-discontinuous boost in ps possi-
ble from pre-detection squeezing, ≈ 59%, can be
obtained with 7-photon resolving PNR detectors
(e.g., recently-demonstrated transition edge sensor
(TES) detectors by NIST [18]).

4. In all of the existing research on boosted linear op-
tic BSMs [8, 12–14], the definition of success of a
BSM is based on the so-called unambiguous state
discrimination (USD) framework, where one de-
mands that when one of the four Bell states is pre-
sented to the BSM circuit at random, if the circuit
does produce a result identifying the input as one of
the four Bell states, it is 100% certain that partic-
ular Bell state was input. With probability 1− ps,
it produces an “I don’t know” (erasure) outcome.

With imperfect (sub-unity detection efficiency,
non-zero dark click rate) PNR detectors, even the
BSM circuits in Refs. [8, 12–14] will not produce
a USD outcome and cannot be analyzed as such.
Further, in certain applications, it may be advanta-
geous to trade a higher ‘success’ probability ps, the
probability the circuit produces some non-erasure
result, with a non-zero ‘error’ probability (pe), the
probability that the produced measurement result
is incorrect (for USD, pe = 0).

In this paper we study the performance of pre-
detection-squeezing boosted BSM in such a non-
USD, probabilistic state discrimination (PSD)
framework, and work out the trade-space between
ps and pe. We also incorporate non-ideal (sub-unity
efficiency) PNR detection into this analysis.

II. PASSIVE LINEAR OPTICS

FIG. 1: The optical circuit that identifies a randomly input
Bell state |ζ〉 ∈ {|ψ+〉, |ψ−〉, |φ+〉, |φ−〉} with success proba-
bility ps = 0.5. With probability 1 − ps = 0.5, it produces
an erasure (“I don’t know”) outcome. This is an example of
unambiguous state discrimination (USD).

The four Bell states (1) are mutually orthogonal quan-
tum states, and hence perfectly and deterministically dis-
tinguishable by an appropriate quantum measurement.



However, if all four modes of a (randomly) presented Bell
state are detected using on-off detectors or PNR detec-
tors, the Bell states are perfectly indistinguishable. This
is because none of the four possible photon number detec-
tion patterns (N1, N2, N3, N4) ∈ {1001, 0110, 1010, 0101}
can uniquely identify the input Bell state, where Ni is the
number of photons detected in mode i. The four 4-mode
product number states {|1001〉, |0110〉, |1010〉, |0101〉} are
each present in two Bell states. So the observation of a
given number state does not uniquely identify a partic-
ular Bell state. Therefore the USD BSM success proba-
bility achieved by direct PNR detection is ps = 0%.

However the use of beam splitters prior to detecting
the four modes, as shown in Fig. 1 can improve ps to the
50% limit achievable with passive linear optics [8]. In
this paper we will define a ‘beam splitter’ to always refer
to the following 50-50 beam splitter (2):

(
a′k
†

a′l
†

)
=

1√
2

(
1 i
i 1

)(
a†k
a†l

)
. (2)

Mixing modes 1&3 and 2&4 of the input Bell state on two
beam splitters as shown in Fig. 1, produces the following
output states:

|ψ′+〉 =
i√
2

(|1100〉+ |0011〉), (3a)

|ψ′−〉 =
1√
2

(|1001〉 − |0110〉), (3b)

|φ′+〉 =
i

2
(|2000〉+ |0020〉+ |0200〉+ |0002〉), (3c)

|φ′−〉 =
i

2
(|2000〉+ |0020〉 − |0200〉 − |0002〉). (3d)

The four output states in (3) are still mutually orthog-
onal and perfectly distinguishable as were the original
input Bell states, since the two beamsplitters comprise
a unitary (and hence reversible) transformation. How-
ever, with on-off detection or PNR detection on these
output states, ps = 0.5. In order to see why, note that
|ψ′+〉 and |ψ′−〉 are completely distinguishable with pho-
ton detection, while |φ′+〉 and |φ′−〉 remain wholly indis-
tinguishable. Therefore, if one of the four Bell states
is presented randomly (i.e., each with probability 1/4),
the circuit in Fig. 1 will unambiguously identify the input
state with average probability 50%. This circuit provides
the framework for all subsequent boosted BSM circuits we
will examine in this paper.

III. PRE-DETECTION SQUEEZING

FIG. 2: An optical circuit which can identify unambiguously a
randomly input Bell state |ζ〉 ∈ {|ψ+〉, |ψ−〉, |φ+〉, |φ−〉} with
ps > 50%. S(ξ) represents a single-mode squeezer (e.g., an
OPA), where ξ = 1

2
eiφtanhr is the degree of squeezing.

Zaidi and van Loock’s BSM circuit functions by ap-
plying pre-detection single-mode quadrature squeezing to
each of the four output modes of the standard ps = 50%
BSM circuit [12], as shown in Figure 2. The action of
single-mode squeezing S(ξ), a unitary (hence, reversible)
operation, on the number state |n〉 is given by [19]:

S(ξ)|n〉 =

(
1

cosh(2r)

)n+1/2

(n!)
1/2

(4a)

[n
2 ]∑
j=0

(−ξ∗)j (cosh(2r))
2j

(n− 2j)!j!

∞∑
k=0

ξk [(n− 2j + 2k)!]
1/2

k!
|n− 2j + 2k〉

ξ ≡ 1

2
eiφtanh r (4b)

dB = −10 log10

(
e−2r

)
(4c)

Assuming identical squeezing intensity r and rotation
φ = 0 for each mode, the output states of the circuit in
Fig. 2 for the four input Bell states are given in Eqs. (5).
Note that these double-primed transformed Bell states
are squeezing applied on the single-primed transformed
states (3) at the output of the standard linear-optical
BSM circuit in Fig. 1. Appendix B goes into greater
detail about why we choose r and φ to be the same for
all four modes.

Let us note from Eq. (4) that squeezing is a par-
ity conserving operation, which maps a number state
|n〉 to an infinite superposition of all number states
of like parity, i.e., if n is odd (resp., even), S(ξ)|n〉
is a superposition of all odd (resp., even) number
states. Additionally, let us define the parity of a set
of modes in a product number state as the list of par-
ities of the number of photons in each of those modes.
For example, the parities of the (four-mode) number
state components in |ψ′+〉 are (odd, odd, even, even) and
(even, even, odd, odd), whereas the parity of the number
state components in |ψ′−〉 are (odd, even, even, odd) and
(even, odd, odd, even).
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|ψ′′+(r)〉 =
i (sech r)

4

√
2

|1100〉+
i (sech r)

4

√
2

|0011〉+
i (sech r)

4
tanh r

2
|0211〉+

i (sech r)
4

tanh r

2
|2011〉 (5a)

+
i (sech r)

4
tanh r

2
|1120〉+

i (sech r)
4

tanh r

2
|1102〉+

i (sech r)
4

(tanh r)
2

2
|1122〉+ . . .

|ψ′′−(r)〉 =
(sech r)

4

√
2
|0110〉 − (sech r)

4

√
2
|1001〉+

(sech r)
4

tanh r

2
|0112〉+

(sech r)
4

tanh r

2
|2110〉 (5b)

− (sech r)
4

tanh r

2
|1021〉 − (sech r)

4
tanh r

2
|1201〉+

(sech r)
4

(tanh r)
2

2
√

2
|2112〉+ . . .

|φ′′+(r)〉 = −i
√

2 (sech r)
2

tanh r|0000〉 − i (sech r)
4

(cosh(2r)− 2)

2
|2000〉 − i (sech r)

4
(cosh(2r)− 2)

2
|0200〉 (5c)

− i (sech r)
4

(cosh(2r)− 2)

2
|0020〉 − i (sech r)

4
(cosh(2r)− 2)

2
|0002〉+ . . .

|φ′′−(r)〉 =
i (sech r)

4

2
|2000〉 − i (sech r)

4

2
|0200〉+

i (sech r)
4

2
|0020〉 − i (sech r)

4

2
|0002〉 (5d)

+
i (sech r)

4
tanh r√

2
|2020〉 − i (sech r)

4
tanh r√

2
|0202〉+

i (sech r)
4

(tanh r)
2

4
|2220〉+ . . .

Since single-mode squeezing on a number state is par-
ity preserving, squeezing on a set of modes in a product
number state is also parity preserving (by our definition
of parity of a set of modes). Therefore, squeezing has no
effect on the distinguishability of number states products
that have unique parity. For example, the parities of the
states of |ψ′+〉 and |ψ′−〉 remain unchanged after applying
squeezing, and hence |ψ′′+〉 and |ψ′′−〉 remain perfectly dis-
tinguishable by PNR detection on all four modes regard-
less of the amount of squeezing applied. However number
states with like parity signatures, such as those of |φ′+〉
and |φ′−〉, the parity of all the number states within which
is (even, even, even, even), are mapped to an overlapping
set of number states, each with (even, even, even, even)
parity.

Even though |φ′+〉 and |φ′−〉 were completely indis-
tinguishable by PNR detection, some distinguishability
emerges between the post-squeezed states |φ′′+〉 and |φ′′−〉.
There are two distinct ways in which such distinguisha-
bility comes about:

1. For all values of r, certain new number states,
e.g., {|0000〉, |2002〉, |0220〉, etc.}, appear in |φ′′+〉
but not in |φ′′−〉, and vice versa. The detection of
one of these states by PNR detection thus boosts ps
beyond 50%, while maintaining USD distinguisha-
bility. The probability of occurrence of these dis-
tinguishing states, and thus the boost in ps, is a
function of r (see Fig. 3).

2. For certain discrete values of r, one or more
of the states {|2000〉, |0200〉, |0020〉, |0002〉, etc.},
which |φ′′+〉 and |φ′′−〉 are both comprised of, inter-
fere completely destructively for |φ′′+〉 but not for
|φ′′−〉, or vice versa. This produces additional USD
distinguishability. However, this happens only for
certain singular values of r and thus produces dis-
continuous boosts to ps (see the two black dots in
Fig. 3).

We performed a numerical calculation of the average
distinguishability between the four Bell states, the details
of which are given in Subappendix A 3. The result, a plot
of BSM success probability ps as a function of squeezing
intensity r (squeezing phase φ = 0) is shown in Fig. 3.

Ref. [12] reported the measurement success peak at
r = 0.6585 (5.719 dB of squeezing), where ps = 64.3%.
This peak occurs when cosh(2r)− 2 = 0, causing the
|2000〉, |0200〉, |0020〉, and |0002〉 number states to de-
structively interfere within |φ′′+〉, making them unique to
|φ′′−〉. This adds an additional 4.94% success probability.
There are infinitely many such discontinuous peaks in ps
at different values of r but this particular peak is the only
one worth considering, as it occurs at the lowest r, has
the highest relative increase in ps, and has the highest
absolute ps of any such peak.

Unfortunately these peaks only exist for infinitesimally
thin slices of r. They are discontinuous jumps in success
probability and are not reasonable targets for USD mea-
surements, as any uncertainty in r will cause the number
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FIG. 3: Bell measurement success probability (ps) vs. squeez-
ing intensity (r) for a squeezed Bell measurement circuit.

states in question to become indistinguishable with PNR
detection. Further attention will be given to these peaks
later, when considering PSD measurements.

However, despite those discontinuous peaks, what is
interesting is that along the entire continuous portion of
the ps vs. r curve in Fig. 3, for every value of r, USD
BSM is possible at ps > 50%. This contribution to the
continuous boost in ps comes from the squeezed number
states that are perfectly distinguishable for all values of r.
Considering only these universally distinguishable states
we find a maximum success probability of ps = 59.6% at
r = 0.5774 (5.015 dB of squeezing).

A. Finite Photon Number Resolution

Squeezing a number state produces an infinite sum (su-
perposition) of number states with arbitrarily large pho-
ton numbers. However existing state of the art PNR
detectors, the so-called transition edge sensor (TES) de-
tectors, cannot efficiently resolve number states with
more than 7 photons [18]. Using such detectors in the
squeezing-boosted BSM circuit will truncate the number
states beyond a certain number, which should be taken
into consideration when evaluating the success probabil-
ity. Figure 4 shows the ps curves for a squeezed BSM cir-
cuit with PNR detectors limited to a maximum photon
number resolution (nmax) of 12 or fewer photons. These
curves are compared to the ps curve with arbitrarily high
photon number resolution.

Reasonably sized arrays of on-off detectors can be used
to emulate the performance of PNR detectors for small
photon numbers [20], which could be a more experimen-
tally accessible realization of PNR detection than TES
detectors for most laboratories. However in practice even
small arrays of on-off detectors greatly increase the num-
ber of photon number states. The computational re-
sources required to characterize such systems increase ex-
ponentially with array size. We believe such an analysis
may not be infeasible, but is beyond our reach given the

computational resources at our disposal.

FIG. 4: Bell measurement success probability (ps) vs. squeez-
ing intensity (r) for a pre-detection-squeezed BSM circuit,
and with PNR detectors with maximum number resolution
nmax ∈ {1, 2, . . . , 12}. The case of nmax = ∞ from Fig. 3 is
also shown for comparison (top black curve).

PNR detectors limited to nmax = 7 show a (discontin-
uous) success probability peak ps = 61.3% at r = 0.6585
(5.719 dB of squeezing) and a continuous maxima of
ps = 58.9% at r = 0.496 (4.311 dB of squeezing).

B. Probabilistic State Discrimination

So far we have limited our analysis to unambiguous
state discrimination (USD), where one demands that
when one of the four Bell states is presented to the BSM
circuit at random, if the circuit does produce a result
identifying the input as one of the four Bell states, it is
100% certain that particular Bell state was input. In this
USD analysis, we had the BSM circuit announce a deter-
mination for an input Bell state only for those detected
number states which occur uniquely in the output state
for exactly one Bell state, whether for a single value of r
or for all r. This limited us to the regime where our prob-
ability of erroneous state identification (pe) is 0. Here
we will expand our performance evaluation to include
number states which occur in multiple Bell states, allow-
ing pe > 0 to produce a higher success probability (ps).
Certain applications may benefit from operating in this
regime, where an outer layer of quantum error correction
may correct for some errors, but gain from a higher rate
of success.

We call this operational regime probabilistic state dis-
crimination (PSD), and define the following probabilities:

• ps + pe: probability that the BSM circuit declares
a ‘success’ in identifying the input Bell state.

• 1− (ps + pe): erasure probability; BSM circuit de-
clares an “I don’t know” outcome.

• α ≡ ps/(ps + pe): measurement confidence; condi-
tioned on the event that the BSM circuit declares
a success, α is the probability that the input Bell
state was indeed correctly identified.
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ps and pe will be taken to be averaged over the cho-
sen input Bell state (each of the four assumed to occur
equally likely) and over all PNR detection outcomes. We
will now analyze the (ps, pe) tradeoff, obtained by appro-
priately post-processing the PNR detector outputs.

When a number state occurs in multiple output states,
instead of rejecting that outcome as erasure, we can use
the relative probabilities of its occurrence in each Bell
state to decide which Bell state to guess as been in-
put. For instance at r = 0.6 the state |2000〉 occurs in
|φ′′+(0.6)〉 and |φ′′−(0.6)〉 with net probabilities 0.230% and
6.41% respectively. Therefore if we detect a (2, 0, 0, 0)
click pattern on the PNR detectors, we can decide with
∼ 96.5% certainty that the |φ−〉 Bell state was the BSM
circuit’s input. This increases the success probability (ps)
of our BSM circuit by 1.54% when compared with USD
operation at r = 0.6, while introducing a 0.0561% chance
of an erroneous measurement (pe).

Considering different subsets of these multiply-
occurring number states as valid outcomes, as discussed
above, will yield different ps/pe ratios. For our analysis
we set a maximum allowable pe and then include that
subset of duplicate number states which provides an op-
timal ps enhancement for that pe, while still considering
all other duplicate number states as erasure.

The process for calculating ps and identifying optimal
subsets of duplicate number states for a given pe is de-
tailed in Subappendix A 4.

Figure 5 plots ps vs. r for PSD operation, assuming
lossless (unity detection efficiency) PNR detectors with
nmax = 7 number resolution, for a range of error proba-
bilities pe. Note that the discontinuous jumps and gaps in
ps in these plots are not a result of numerical imprecision
or algorithmic error. Finite number resolution restricts
the number states of interest to a finite set, which is then
further restricted to a smaller optimal set by limiting pe
(see Subappendix A 4 for details). This set of interest
typically exhibits continuous change in ps as pe and r
change, but at certain values of r what constitutes the
optimal set of number states of interest changes, resulting
in discontinuous jumps of ps.

PSD operation gives us access to the previously dis-
continuous ps boost at r = 0.6585 (5.719 dB of squeez-
ing) from Ref. [12] discussed earlier, with very small pe.
This is an encouraging result, indicating that Zaidi’s and
van Loock’s work on USD boosted BSM [12] is exper-
imentally achievable for near-USD operation; i.e., PSD
with very small permitted errors. When higher pe is
allowed however, our analysis shows that the squeez-
ing amount r at which the maximum ps occurs is closer
to that which maximizes ps for USD operation over the
continuous regime (rather than where the discontinuous
maximum occurs). In other words, r = 0.6585 (5.719 dB
of squeezing) ceases to be the optimal squeezing as the
allowed pe is raised.

FIG. 5: Bell measurement success probability (ps) vs. squeez-
ing amplitude (r), with respect to error probability (pe), for
a pre-detection-squeezed BSM circuit, and with PNR detec-
tors restricted to a maximum number resolution nmax =
7. The black dots represent the results of USD measure-
ments with pe = 0. Error probability (pe) is restricted to
[0%,10%], [0%,1%], [0%,0.1%], and [0%,0.01%] in the top, sec-
ond from top, second from bottom, and bottom plots respec-
tively.
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C. Measurement Confidence

Determining the effectiveness of a quantum error cor-
rection code to correct for an error introduced by a PSD
BSM in some application, will require us to know the suc-
cess (resp. failure) probability conditioned on the BSM
circuit declaring a success. We call this conditional suc-
cess probability the measurement confidence:

α =
ps

ps + pe
. (6)

With this in mind we take the data presented in Fig-
ure 5 and neglect r, instead analyzing ps with respect to
measurement confidence (α), in Figure 6. Here we see
that each value of α corresponds to a spectrum of points
with varied ps and pe, all with the same ratio ps/(ps+pe)
and therefore equivalent when viewed through the lens
of quantum error correction, but with different success
probabilities.

FIG. 6: Bell measurement success probability (ps) vs. mea-
surement confidence (α), with respect to error probability
(pe), for a squeezed Bell measurement circuit, measured with
PNR detectors restricted a PNR of nmax = 7. The black dots
represent the results of USD measurements with pe = 0.

From this plot we can obtain a curve showing the max-
imum success probability obtainable for a given measure-
ment confidence. This curve is plotted in Figure 7 for a
variety of PNR limited detectors, including the current
state-of-the-art limit of nmax = 7. For nmax = 7 we find a
maximum ps of 85.8% with α = 0.889, which is produced
by r = 0.500 (4.343 dB of squeezing). For nmax =∞ we
find a maximum ps of ∼ 89.5% with α ≈ 0.90, which is
produced by r = 0.500 (4.343 dB of squeezing).

FIG. 7: Maximum Bell measurement success probability (ps)
vs. measurement confidence (α) for a squeezed Bell measure-
ment circuit, shown for PNR detectors with PNR limited to
nmax ∈ [1, 12]. Each curve terminates at the maximum possi-
ble PSD ps which can be obtained for a given nmax.

IV. DETECTOR LOSS

FIG. 8: Pre-detection quadrature squeezing Bell measure-
ment setup with detector loss represented as pre-detection
beam splitters.

Detector loss is an important impediment in any re-
alistic optical system, especially in quantum information
processing applications. Detector losses can be modeled
as beam splitters with transmission η prior to an ideal
detection, where the reflected photons in the beam split-
ters are ‘lost’, and hence cannot be used to discriminate
between number states. The process of calculating ps for
the BSM circuit with lossy detectors, shown in Fig. 8, is
detailed in Subappendix A 5.

We assume the splitting ratios of all the beam split-
ters in the BSM circuit to be ideal (i.e., exactly 50-50),
and furthermore assume all beam splitters to be lossless
(i.e., total input photon number equals the total output
photon number). This is because modern beam split-
ters can be engineered to have extremely low losses, and
also because any losses in the beam splitters themselves
can be subsumed into detector losses for the purposes of
performance evaluation.

The nmax = 7 transition edge sensing (TES) detec-
tors previously cited were experimentally determined to
have system device efficiencies (η) between 98% and
100%, which includes fiber coupling losses [18]. With
this value in mind, we evaluated the maximum success
probability (ps) obtainable for a given measurement con-
fidence (α), as in Figure 7, for η ∈ [0.9, 1] with PNR



8

FIG. 9: Maximum Bell measurement success probability (ps) vs. measurement confidence (α) for a squeezed Bell measurement
circuit, shown for lossy PNR detectors with PNR limited to nmax = [1, 9] with efficiency η ∈ [0.90, 1]. The black lines represent
the success probabilities for lossless detectors shown in Figure 7.

of nmax ∈ [1, 9], shown in Figure 9. For example, PNR
detectors with nmax = 7 and η = 0.98 yield a maxi-
mum ps of 83.3% with α = 0.858, which is achieved at
r = 0.480 (4.169 dB of squeezing).

A full lossy analysis of squeezing-boosted BSMs with
PNR nmax ≥ 10 could not be performed due to compu-
tational limitations.

V. DISCUSSION AND CONCLUSION

Injection of ancillary single photons or pre-detection
quadrature squeezing can boost the success probability ps
of linear optical Bell state measurement (BSM) to above
the 50% limit. The ability to achieve ps > 0.5 has been
found to be critical in resource-efficient realizations of lin-
ear optical quantum computing and all-photonic quan-
tum repeaters [9]. Yet, neither of the aforesaid values
of ps > 0.5 are known to be the maximum achievable
using single-photon ancillae and/or squeezing, thereby
leaving it open whether ps → 1 might be achievable using
these resources. An affirmative conclusion of this open
question will not surprise us, given squeezing, linear op-
tics, and photon number resolving (PNR) detection are
in principle universal resources in quantum optics [17].

We re-analyzed previous research predicting a maxi-

mum success probability, ps ≈ 64.3% for unambiguous-
state discrimination (USD) based BSM on linear-optical
qubits, employing pre-detection quadrature squeez-
ing [12]. We showed that the above is a point result, and
impossible to achieve experimentally since a small vari-
ation in the squeezing amplitude r drops the USD suc-
cess probability to about 59%. We showed that, rather
unexpectedly, across a large range of squeezing, boost-
ing the BSM success probability above the linear-optic
limit of 50% is possible while maintaining USD opera-
tion, but that this (experimentally achievable) maximum
success rate is significantly lower, 59.6%, achievable with
r = 0.5774 (∼ 5 dB of squeezing).

We then considered a probabilistic state discrimination
(PSD) framework where we sacrifice pure USD operation,
by allowing for a probability of error pe conditioned on
a “success” being declared (which happens with proba-
bility ps + pe). We find that with a small allowed pe the
64.3% success probability result of Ref. [12] is achievable
over a substantial range of r.

For PSD measurements, we defined measurement con-
fidence α = ps/(ps + pe) as the probability of correct
decision conditioned on a “success” being declared. We
found that PSD operation with significantly high error
rates (e.g., pe ∼ 0.1) can achieve success rates as high
as 89.5% with a measurement confidence of α ≈ 0.89,
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using ∼ 5 dB of pre-detection squeezing, and PNR de-
tectors with 7 photon resolution. With photon number
resolution and detector inefficiencies possible with the
current state of the art transition edge sensor (TES)
detectors [18], the maximum achievable success rate,
ps ≈ 83.3% with a measurement confidence, α ≈ 0.858.

It has recently been shown that arbitrarily large clus-
ter states for all-photonic universal quantum computa-
tion can be produced with a supply of 3-photon GHZ
states, and a Bell state measurement device with success
probability ps exceeding a threshold of ≈ 0.59 (with USD
operation). This used ideas from percolation theory [9].
Detector losses within the usual Bell-state measurement
(BSM) circuits are considered heralded losses since they
can be subsumed within ps, and maintain USD operation.
A complete analysis of percolation-based direct genera-
tion of universal photonic cluster states with unheralded
losses (for example, photon losses after the creation of the
cluster) has not yet been done, leaving open an impor-
tant question of whether fault tolerant cluster state quan-
tum computing with ballistic cluster creation is possible
with probabilistic boosted BSMs and unheralded pho-
ton losses. Fault tolerant universal cluster model quan-
tum computing is known to be possible with single qubit
measurements with conditional probabilities of error be-
low 0.75% (i.e., measurement confidence above 0.9925),
where the error model includes preparation, gate, storage
and measurement errors [21].

Our PSD analysis of boosted BSMs can form a start-
ing point of an analysis to see if there is an operational
point in the ps-vs.-pe trade-space where both the per-
colation condition for long-range connectivity on a sub-
graph of the Rausendorf-Harrington lattice and the error
threshold for single-qubit measurements for fault toler-
ant operation are satisfied simultaneously. We leave this
open for future work. The gate errors in the Rausendorf-
Harrington construction for fault tolerant cluster state
quantum computing does not quite translate to BSM er-
ror rates (the latter translates to a control-phase two-
qubit measurement). However, just to serve as an illus-
tration, in Figure 10 we show the maximum success prob-
abilities obtainable within a measurement confidence of
0.9925 and above. From this figure it appears that
squeezing-boosted BSM devices and PNR detectors with
nmax ≥ 7 might suffice to realize all-photonic universal
quantum computation, with 3-photon GHZ states as the
initial resource.

Similarly, we believe that our PSD analysis of boosted
BSMs can form a starting point of an analysis of a rate-
vs.-distance calculation for quantum repeaters based on
entanglement sources, mode multiplexing and BSMs [22].
The objective of such an analysis would be to see if there

is an optimal operational point in the ps-vs.-pe trade-
space where the rate-vs.-loss exponent is minimized, lead-
ing to the best possible entanglement generation rate at
a given distance, when in-line squeezing is used within
the BSMs. We leave this for future work as well.

FIG. 10: Maximum Bell measurement success probability (ps)
vs. measurement confidence (α) for a squeezed Bell measure-
ment circuit, shown for lossy PNR detectors with PNR limited
to nmax = [7, 9] with efficiency η ∈ [0.90, 1].
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Appendix A: Numerically Computing Bell
Measurement Success Probabilities

1. State Construction

The first step in evaluating the success probability of
a Bell measurement system is constructing the modified
Bell states the system outputs onto its detectors. To do
so we used a simple replacement algorithm for creation
operators, derived from (2), where the action of a beam-
splitter on modes j&k is performed as shown in (A1).

a†j →
1√
2

(
ia′
†
j + a′

†
k

)
(A1a)

a†k →
1√
2

(
a′
†
j + ia′

†
k

)
(A1b)

For a system which involves quadrature squeezing,
this replacement algorithm is complicated by the infi-
nite quantity of number states produced by a squeezing
operation. When numerically constructing a squeezed
state we must used a truncated version of the squeez-
ing operation (4) which does not make use of an infinite
series. We show such a truncated squeezing operation
below in (A2), where the infinite series is truncated by
the maximum number state |kmax〉.

S(ξ)
(
a†i

)n
→

(
1

cosh 2r

)n+1/2

n! (A2a)

[n
2 ]∑
j=0

(−ξ∗)j (cosh 2r)
2j

(n− 2j)!j!

kmax∑
k=0

ξk

k!

(
a′
†
i

)n−2j+2k

ξ ≡ 1

2
eiφtanh r (A2b)

dB = −10 log10

(
e−2r

)
(A2c)

Systems with finite PNR nmax can be exactly evalu-
ated, as truncation is already implied by their finite PNR
detectors. Setting kmax = 1

2 (nmax − n+ 2j) ensures that
all of the states within the detection threshold, and only
those states, will be evaluated. (Note that j is the sum-
mation index of the outer sum within which

∑
k is con-

tained).
To approximate arbitrary photon number discrimina-

tion we set nmax such that the probability sum of each
modified Bell state exceeds 0.999 for r ≤ 0.70 and 0.995
for 0.70 < r ≤ 0.90. This threshold can be achieved by
nmax = 13. In our calculations nmax = 13 is used to
model nmax =∞.

(Note that as r increases more probability gets shifted
into larger number states, requiring a higher value of
nmax to fully capture the effects of squeezing).

With this we can produce a finite list of number states
and their amplitudes for each modified Bell state, as

shown in Table I, where each Bell state is scaled by the
square root of its relative probability. (For an equal dis-
tribution of Bell states, each state has a 1

4 probability of
occurrence).

2. Separating Number States

Now that we have a finite list of number states for
each modified Bell state, the next step is to arrange the
number states by multiplicity with which they occur in
parent Bell states, as shown in Table II. Number states
which occur in only one Bell state go to a unique number
states list. Number states which occur in multiple Bell
states go to a duplicate number states list. (Note: this
is the most computationally intensive step of computing
Bell measurement efficiencies.)

3. USD Measurements

To find the USD success probability of a Bell mea-
surement system all one has to do is sum together the
modulus squares of all the coefficient terms in the unique
number states list.

4. PSD Measurements

To begin an analysis of PSD success probability we
must first note two things. First, not all duplicate num-
ber states can provide a boost in Bell state discrimina-
tion. Number states which have equal probability in all
their parent Bell states have no marginal distinguishabil-
ity and must be excluded from our analysis. Second, de-
termination of which Bell state is the most probable par-
ent state for a given number state can vary with changes
to system parameters. Therefore any state selection rule
applied to number states must be applied on a case by
case basis for all parameter values being examined.

To identify an optimal family of duplicate number
states for a given error probability and for a given set
of parameters we first numerically evaluate the dupli-
cate number state amplitudes corresponding to each Bell
state for the given parameters. We then transform the
scaled duplicate number state amplitudes to probabili-
ties. Next we identify the total probability for each du-
plicate number state, over all parent Bell states, and the
largest probability provided by an individual Bell state.
These two values can be used to compute the expected
ps and pe increases for making Bell state decisions based
on a given duplicate number state.

These success probability and error probability in-
creases are then stored as pairs in a list. We then or-
der the list by the ps to pe ratios of each number state,
greatest to least. Each number state is then evaluated
in order according to a simple algorithm. If its pe in-
crease plus the pe increases of all other number states
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TABLE I: List of scaled number states from system detailed in Section III, Figure 2

1
2
|ψ′′+(r)〉 1

2
|ψ′′−(r)〉 1

2
|φ′′+(r)〉 1

2
|φ′′−(r)〉

i(sech r)4

2
√
2
|1100〉 (sech r)4

2
√
2
|0110〉 − i√

2
(sech r)2 tanh r|0000〉 i(sech r)4

4
|2000〉

i(sech r)4

2
√
2
|0011〉 − (sech r)4

2
√
2
|1001〉 − i(sech r)4(cosh 2r−2)

4
|2000〉 − i(sech r)4

4
|0200〉

i(sech r)4tanh r
4

|0211〉 (sech r)4tanh r
4

|0112〉 − i(sech r)4(cosh 2r−2)
4

|0200〉 i(sech r)4

4
|0020〉

i(sech r)4tanh r
4

|2011〉 (sech r)4tanh r
4

|2110〉 − i(sech r)4(cosh 2r−2)
4

|0020〉 − i(sech r)4

4
|0002〉

...
...

...
...

TABLE II: List of scaled number states from system detailed in Section III, Figure 2, separated by uniqueness

Unique Number States List |n1, n2, n3, n4〉ξ Duplicate Number States List |n1, n2, n3, n4〉ξ
− i√

2
(sech r)2 tanh r|0000〉φ+ − i(sech r)4(cosh 2r−2)

2
|2000〉φ+ , i(sech r)4

4
|2000〉φ−

i(sech r)4

2
√
2
|1100〉ψ+ − i(sech r)4(cosh 2r−2)

2
|0200〉φ+ ,− i(sech r)4

4
|0200〉φ−

(sech r)4

2
√
2
|0110〉ψ− − i(sech r)4(cosh 2r−2)

2
|0020〉φ+ , i(sech r)4

4
|0020〉φ−

− (sech r)4

2
√
2
|1001〉ψ− − i(sech r)4(cosh 2r−2)

2
|0002〉φ+ ,− i(sech r)4

4
|0002〉φ−

...
...

thus far included is less than the maximum allowable pe,
the number state is included and its efficiency added to
the system’s total efficiency. If not, it is excluded. All
duplicate number states are evaluated in this manner.

(Note that this algorithm only provides an approxi-
mately optimal family of duplicate number states under
the condition that there exists a very large number of
duplicate number states with small pe and few if any du-
plicate number states have high pe. This condition is
satisfied for all systems analyzed in this paper, but can-
not be guaranteed for all systems in general).

5. Lossy Measurements

Lossy states are constructed exactly as above in Sub-
appendix A 1, using (A3) as the replacement algorithm
to model loss.

a†i →
√
η a′

†
i +

√
1− η l†i (A3)

However it must be noted that the introduction of
loss means that setting kmax = 1

2 (nmax − n + 2j) no
longer ensures all states within the detection threshold
are evaluated. Doing so excludes larger number states
∃ i s.t. ni > kmax which due to loss are detected as num-
ber states within the detection threshold ∀ i, ni ≤ kmax.
We compensate for this by setting nmax two higher than
its actual value during the state construction algorithm,
including the application of loss, and then deleting all
creation operators with powers greater than nmax before
evaluating probabilities.

Additionally, each Bell state may now have multiple
number states which can be detected as the same pho-

ton number pattern, for instance |1001〉 and l†2l
†
3|1001〉

are both detected as N1N2N3N4 = 1001. Probabilities
for photon number patterns are found by summing the
modulus squares of all number states with identical de-
tector patterns within a modified Bell state.

Appendix B: Non-Uniform and Phase-Shifted
Squeezing

Any numerical analysis of non-uniform quadrature
squeezing on Bell measurement systems, where it is not
true that r1 = r2 = r3 = r4, is complicated by the expo-
nential order of such calculations. With four separately
squeezed modes, a coarse scan over squeezing intensity
ri ∈ [0, 0.85] with twenty values fore each ri requires over
one hundred thousand simulation data. This is beyond
the scope of the computational capabilities our research
group has at its disposal, and we therefore cannot draw
any firm conclusions about the potential effects of asym-
metric mode squeezing.

However, we did perform a very coarse scan
of ri ∈ {0, 0.15, 0.30, 0.45, 0.60, 0.6585, 0.75} ∀ i, with
θi = 0 ∀ i. For the 2401 such points analyzed, there ex-
isted no datum with non-uniform squeezing parameters
which outperformed all uniformly squeezed data with a
shared squeezing parameter. With this in mind we con-
cluded that is unlikely for non-uniform squeezing inten-
sities to produce improvements over uniform squeezing
intensities, but we cannot provide conclusive numerical
evidence to back up this assertion.

Non-uniform squeezing phases present an even more
computationally intractable problem. Performing
enough computations to make even vague assumptions
about non-uniform squeezing phases proved too diffi-
cult to attempt, and we restricted ourselves to θi = 0 ∀ i
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to keep the computational complexity of the problem
manageable. We have no particular reason to believe
θi = 0 ∀ i is optimal. Exploring non-uniform squeezing
phases may provide improvements over our results and

could be a fruitful area of research for a research group
looking to analyze similar systems, particularly with an-
alytic approaches which may be less limited by the com-
putationally intractable nature of the problem.


