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We numerically study spin transport and spin-density profiles after a local quench in a clean one-
dimensional spin-chain with long-range interactions, decaying as a power-law, r−α with distance.
We find two distinct regimes of transport: for α < 1/2, spin excitations relax instantaneously in the
thermodynamic limit, and for α > 1/2, spin transport combines both diffusive and superdiffusive
features. We show that while for α > 3/2 the spin diffusion coefficient is finite, transport in the
system is never strictly diffusive, contrary to corresponding classical systems.

Introduction.—Be it gravity, electromagnetic force or
dipole-dipole interactions, power-law interactions are
ubiquitous. While sufficiently dense mobile charges are
able to screen the interaction and effectively truncate its
range, in many cases long-range interactions are impor-
tant. A few of the notable examples in conventional con-
densed matter systems are nuclear spins [1], dipole-dipole
interactions of vibrational modes [2–4], Frenkel excitons
[5], nitrogen vacancy centers in diamond [6–10] and po-
larons [11]. Long range interactions are also common in
atomic and molecular systems, where interaction can be
dipolar [12–17], van der Waals like [12, 18], or even of
variable range [19–22].

It was rigorously established by Lieb and Robinson
that generic correlations in quantum system with short-
range interactions propagate within a linear “light-cone”,
t/v = x, with a finite velocity [23]. Outside this
“light-cone” correlations are exponentially suppressed
[23]. Specifically this implies that transport in local
quantum systems cannot be faster than ballistic.

For systems with long-range interactions the result of
Lieb and Robinson doesn’t hold, but was later general-
ized by Hastings and Koma, who showed that for α > 1,
the causal region in such systems becomes at most log-
arithmic, t ∼ log x [24]. This result was subsequently
improved to an algebraic “light-cone”, t ∼ rδ for α > 2
and 0 < δ < 1 [25]. A Hastings-Koma type bound was
also obtained for α < 1 after a proper rescaling of time
[26]. While the spreading of generic correlations was nu-
merically studied in a number of studies [27–35], much
less is known about transport in long-range interacting
systems. Some information can be gained from quadratic
fermionic models with long-range hopping [36, 37], how-
ever these systems are integrable and can thus show non-
generic features. The results of Ref. [25] suggest that
transport in long-range systems is at most superdiffusive
for α > 2, but leaves a number of important questions
open: (a) Is there an α above which diffusion is recovered,
similarly to the situation for classical Lévy flights? [38]
(b) Is there an α, below which mean-field like dynamical
behavior takes place?

In this work we address these questions by studying
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Figure 1. A cartoon describing the nature of transport in
one-dimensional interacting systems, with an interaction de-
creasing as r−α with the distance. For 0 < α < 1 the energy
of the system is superextensive, resulting in the failure of con-
ventional thermodynamics. For 0 < α < 1/2, dynamics cor-
responds to dynamics of the infinite-range (α→ 0) mean-field
model in the limit of L→∞. For α > 1/2 transport combines
diffusive and superdiffusive features, with a finite diffusion co-
efficient for α > 3/2 and

〈
x2q
〉

(t) ∼ tq for q < α− 1/2.

spin-transport using the time-dependent variational prin-
ciple in the manifold of matrix product states (TDVP-
MPS) [39–42]. The main outcome of our study can be
read from the cartoon in Fig. 1.

TDVP-MPS belongs to the family of matrix product
states (MPS) methods [43], and thus allows to study
long spin chains (chains up to L = 1201 were consid-
ered here), way beyond what is accessible using exact di-
agonalization. The main advantage of this method over
the conventional time-evolving block decimation (TEBD)
or time-dependent density matrix renormalization group
(tDMRG) approaches for time-evolution [44–46] is that
the evolution is unitary by construction, and the method
explicitly conserves a number of macroscopic quantities,
such as the total energy, total magnetization and total
number of particles [39–42]. Moreover unlike TEBD and
tDMRG the method can be directly applied for long-
range interacting systems. While the method is numer-
ically exact in the limit of large bond dimension (which
sets the number of variational parameters), it is lim-
ited by the growth of entanglement entropy with time
[43]. For a fixed bond dimension, the equations of mo-
tion of TDVP-MPS can be derived from a classical non-
quadratic Lagrangian in the space of variational param-
eters [40, 47]. These equations are typically chaotic and
yield diffusive transport. Based on this observation as
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Figure 2. Upper panels. Spin excitation profiles as a func-
tion of time for two representative α. The dashed black lines
correspond to results obtained in the α → ∞. Darker tones
represent longer times. Lower panels. Logarithmic derivative
of the spin excitation profiles. The dashed black lines are
guides to the eye for 2α. L = 201, χ = 256 .

well as the conservation properties of TDVP-MPS it was
argued that the method could potentially recover correct
hydrodynamic behavior also for a relatively small bond
dimension [47], a result which was challenged in Ref. [48].
We note in passing that this line of thought is not appli-
cable for long-range systems, where diffusive transport
is not expected a-priori, and the entire hydrodynamic
approach is questionable. Therefore here we strictly use
TDVP-MPS as a numerically exact method.

Model.—We study a one-dimensional spin-chain of
length L, given by the Hamiltonian Ĥ = Ĥloc+Ĥlr where

Ĥloc =

L−1∑
i=1

(
Ŝxi Ŝ

x
i+1 + Ŝyi Ŝ

y
i+1

)
+

L−2∑
i=1

(
Ŝxi Ŝ

x
i+2 + Ŝyi Ŝ

y
i+2

)
,

(1)
is the local part and,

Ĥlr =
L−1∑
i=1

L∑
j>i+1

1

(j − i− 1)
α

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j

)
, (2)

includes power-law decaying long-range interactions and
Ŝxi and Ŝyi are spin-1/2 operators. The Hamiltonian con-
serves the total magnetization, and thus supports energy
and spin transport. We introduce a next-nearest neigh-
bor term in order to break integrability in the limit of
α→∞. In this limit the Hamiltonian reduces to the XX
ladder, which has diffusive spin transport [48–51].

Method.—To assess spin transport in the system we
numerically compute the two-point spin-spin correlation

function at infinite temperature,

Cx (t) =
4

2L
Tr
(
ŜzL/2+x (t) ŜzL/2 (0)

)
, (3)

which corresponds to the time-dependent profile of a local
excitation at the center of the chain performed at t = 0.
We choose to work at infinite temperature, since such
a state corresponds to a typical initial state [52], which
increases the generality of our results. The excitation
profile is obtained by propagating the operators, Ŝzi (t) ,
under the Heisenberg evolution and accessible timescales
are limited by the growth of entanglement entropy. Using
the cyclic property of the trace Cx (t) can be written as,

Cx (t) =
4

2L
Tr

(
ŜzL/2+x

(
− t

2

)
ŜzL/2

(
t

2

))
, (4)

which allows us to reach twice as large times [53]. Since
we work with an approximately translationally invari-
ant system (we use open boundary conditions), in prac-
tice, we propagate only one operator at the center of
the lattice, because operators which are far enough from
the boundaries of the chain can be obtained approxi-
mately by a simple translation (see Appendix B). To
mitigate the boundary effects introduced by this approx-
imation we show Cx (t) only for the central L/2 sites of
the chain. If not stated otherwise, we use spin-chains
of length L = 201, which is sufficient to have finite size
effects under control for most ranges of the interaction.

To propagate the operators we use the time-dependent
variational principle (TDVP), which yields a locally op-
timal (in time) evolution of the wavefunction on some
variational manifold. It amounts to solving a tangent-
space projected Schrödinger equation [42],

d

dt

∣∣∣Ô (t)
〉

= −iPMĤ
∣∣∣Ô (t)

〉
, (5)

where PM is the tangent space projector to the varia-

tional manifold M and
∣∣∣Ô (t)

〉
is a vectorization of a

general operator Ô (t). We use the matrix product oper-
ator (MPO) representation of the operator,

Ô (A) =
∑

{σi},{σ′i}
A
σ1σ
′
1

1 . . . A
σNσ

′
N

N |σ1 . . . σn〉 〈σ′1 . . . σ′n| ,

(6)

where σi = ±1/2 correspond to the states of a spin at site

i and A
σiσ
′
i

i ∈ Cχi−1×χi are complex matrices where χi
is the bond-dimension of the matrix (χ0 = χN = 1) [43].
An exact representation of a general operator requires the
bond dimension to grow exponentially with system size
L. Therefore truncating the maximal bond-dimension
to a fixed value introduces an approximation, but allows
to keep the MPO representation tractable. We use a
family of fixed finite bond-dimension MPOs to param-
eterize the variational manifold, M. Numerically exact
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Figure 3. Left panel. Spin excitation profiles at t = 2.0 and
various α. Darker tones represent larger α-s. The black dots
represent a Gaussian fit. Right panel. Logarithmic derivative
of the spin excitation profiles. The dashed black lines are
guides to the eye for 2α. L = 201, χ = 256.

results are achieved by convergence with respect to the
bond-dimension (in this work we used bond-dimension
of up to 512, see Appendix A). The evolution of (5) is
performed using a second-order Trotter decomposition
with time-steps from 0.005 to 0.1. The Hamiltonian
is approximated as a sum of exponentials and a short-
ranged correction, which can be efficiently represented
as an MPO. The number of exponentials is chosen such
that the resulting couplings do not differ by more than
2% from the exact couplings for any pair of sites [54].
We note in passing that since the evolution is unitary
in the enlarged vector space of the vectorized operators,
the method explicitly conserves the norm of the opera-

tor,
〈
Ô (t)

∣∣∣ Ô (t)
〉
≡ Tr Ô† (t) Ô (t) = Tr Ô†Ô, but not

its trace, Tr Ô (t).

Results.—Figure 2 shows the spin excitation profile,
Cx (t), for short times and two values of α = 1 and 2.5.
Since the excitation profile is symmetric with respect to
the center of the lattice in the following figures we only
show its right side (x > 0). For α = 2.5, and small dis-
tances from the initial excitation, the profile resembles a
Gaussian and superimposes well with the α → ∞ pro-
file calculated at same time points. For larger distances
there is a crossover from a Gaussian form to a power-law
form, x−γ . For smaller α, the crossover is less pronounced
and there is no apparent region of Gaussian behavior (al-
though it might develop at later times). Since the accessi-
ble times in this work are short (t ≤ 4) due to fast growth
of entanglement entropy, it is pertinent to question what
our results imply on bulk transport? From Fig. 2 it is
apparent that the power-law tail appears already at very
short times, and its exponent γ seems to be independent
of time, as can be judged from convergence of the loga-
rithmic derivative, d logCx (t) /d log x, to the same value
of γ (see bottom panels of Fig. 2). This leads us to argue
that the long-range nature of the interactions speeds up
the approach to asymptotic transport and allows us to
observe at least some of its features.
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Figure 4. The power-law exponent, γ, of the power-law tail in
the spin excitation profiles obtained by averaging over the log-
arithmic derivative in Fig. 3 in different spatial regions. The
yellow (light) line is the exponent γ computed for the nonin-
teracting model in Eq. (7). The dashed black line corresponds
to γ = 2α.

In Fig. 3 we show the spin excitation profile at t = 2 for
all analyzed α. The power-law regime, x−γ , is visible for
all α and the exponent γ (α) is α dependent. To assess
this dependence we calculate the corresponding logarith-
mic derivative (see right panel of Fig. 3), which converges
to its asymptotic value, γ, at large distances. The log-
arithmic derivative becomes increasingly noisy at large
distances, x, (where Cx (t) < 10−8 ), due to decreasing
signal-to-noise ratio, which prohibits us to obtain an even
better convergence.

To assess the convergence of the results we have ex-
tracted γ by averaging the logarithmic derivative on var-
ious spatial intervals, and we note that γ converges to
the γ = 2α line. To further substantiate the power-law
tail of Cx (t) we compare our results to a noninteracting
long-range hopping model,

Ĥnonint =

L∑
i=1

L−1∑
x=1

1

xα
ĉ†i ĉi+x, (7)

where ĉ†i creates a spinless fermion at site i (for analyt-
ical results at the groundstate, see Refs. [36, 55, 56]).
The probability of a particle to hop for site i to site

i + x is P (x,∆t) =
∣∣∣〈i+ x

∣∣∣exp
(
−iĥ∆t

)∣∣∣ i〉∣∣∣2, where

ĥ is the single-particle Hamiltonian, yielding for small
∆t, P (x) ≈ h2i+x,i∆t

2 ∼ |x|−2α. This suggests γ = 2α ,
which we indeed observe numerically for α ≥ 1, see Fig.
4. Interestingly, the two models differ for α < 1, where
the interacting model continues to follow the γ = 2α line.

Many-times transport is characterized by considering
the time-dependence of the moments of the spin excita-
tion profile,

〈
x2q
〉

(t) =
1

2

L∑
x=0

x2qCx (t) . (8)

Specifically, the first nonvanishing moment (q = 1), also
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Figure 5. Left panels. Time-dependent diffusion constant
D (t) for α = 1.3 and 3 and three different system sizes, L =
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panels. Short-time relaxation of the central spin, C0 (t) for
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known as the mean-square displacement (MSD), is di-
rectly related to the the time-dependent diffusion coef-
ficient , D (t) = d

〈
x2
〉
/dt, which converges to the lin-

ear response diffusion coefficient for t → ∞ (see Ap-
pendix of Ref. [57]). Since we obtain that asymptotically
Cx (t) ∼ x−2α, all moments with q > α − 1/2 diverge in
the limit L→∞. In the left panels of Fig. 5 we demon-
strate this behavior for q = 1. While α = 1.3 shows a
divergence of D (t) with system size, for α = 3 the time-
dependent diffusion coefficient does not depend on the
system size, and approaches a plateau as a function of
time, indicative of diffusive transport,

〈
x2
〉
∼ Dt. This

is consistent with our observation that the central part of
the excitation profile is well described by the dynamics
of a local system (α→∞), which is diffusive [48–51].

We note that α = 1/2 plays a special role, since
for α < 1/2, Cx (t) ∼ x−2α becomes nonintegrable.
This is in a contradiction to the fact that

∑
x Cx (t) =∑

x Cx (0) = 1, which follows from the conservation of to-
tal magnetization. The resolution of this apparent para-
dox follows from the dependence of Cx (t) on the system
size for α < 1/2, which makes the entire excitation profile
(for any finite time) vanish in the limit L → ∞ [58–61].
The dependence of the excitation profile on the system
size for α < 1/2 can be eliminated by a proper rescal-
ing of time, t → tf (L) , where f (L) is some increasing
function of L. We have empirically found that taking

f (L) =
√

2H
(2α)
L/2 ≡

(
2
∑L/2
x=1 x

−2α
)1/2

(namely the `2-

norm of the long-range part) gives a perfect scaling col-
lapse (see right panels of Fig. 5) for α < 1[62]. In the
limit of large system sizes and for α < 1/2, this rescal-
ing corresponds to τ ∼ tL1/2−α and is consistent with
the analytically obtained rescaling for a classical model
[58, 61].

Summary.—Using a numerically exact method
(TDVP-MPS) we study infinite temperature spin trans-
port in a nonintegrable one-dimensional spin chain,
with interactions which decay as x−α with the distance.
While the method allows us to address chains far beyond
what is accessible using exact diagonalization, it is
inherently limited to short times due to fast growth of
entanglement entropy. Nevertheless, we show that the
long-range of the interactions allows to access some of
the asymptotic features of transport in our simulations.

We find two pronounced regimes in the dynamics of
a spin excitation. For α < 1/2, we find that the decay
of the excitation depends on the system size, such that

the relaxation time t0 ∝
(∑

k J
2
0k

)−1/2 ∼ Lα−1/2 (where

Jij ∼ |i− j|−α is the long-range part of the Hamilto-
nian), and goes to zero in the limit of L→∞. For finite
system sizes the spatial decay of the excitation profile is
Cx (t) ∼ x−2α.

For α > 1/2, there is a residual dependence of the ex-
citation profiles on the system size, which vanishes in the
L → ∞ limit. For short distances the spatial excitation
profiles are well described by the corresponding profiles
of a local system, which for generic systems are Gaussian,
corresponding to diffusive transport. For longer distances
the Gaussian form crosses-over to a power-law behav-
ior with an exponent, which approaches, Cx (t) ∼ x−2α.
The crossover is much more apparent for larger α, and is
barely visible for the smaller α. Our data is inconclusive
with respect to the existence of a critical αc > 1/2 be-
low which the crossover vanishes, since it is possible that
longer times are needed to observe the crossover for the
smaller α. The crossover point drifts to longer distances
for larger α and longer times, but we were not able to
determine its precise functional dependence.

Due to the asymptotic power-law dependence of the ex-
citation profile, only moments

〈
x2q
〉

(t) with q < α− 1/2
exist (see Eq. 8). We find that for α > 3/2 the MSD,
which corresponds to q = 1, exists and is not system-size
dependent. Moreover it appears to increase linearly with
time, which we demonstrated by calculating its deriva-
tive. While this behavior corresponds to diffusion, the
dynamics is not truly diffusive for any α, due to the di-
vergence of higher moments. This is in stark contrast
to classical superdiffusive systems, such as Lévy flights,
where a critical α exists, above which diffusion is re-
stored. The nice agreement of the “core” of the excitation
profile with a Gaussian form, corresponding to diffusion,
leads us to speculate that all the existing moments have
a diffusive time-dependence, namely,

〈
x2q
〉

(t) ∼ tq, for

q < α − 1/2. While the functional dependence of
〈
x2q
〉

that we observe, could still be not asymptotic due to
the limited times of our numerical simulations, the di-
vergence of moments for q > α− 1/2 follows solely from
the power-law dependence of the tail of Cx (t), which
develops already at very early times and was motivated
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both analytically and numerically by considering a re-
lated noninteracting model. It is thus very likely that
the power-law tails exist also at asymptotic times.

In this work we consider one model, which is nonin-
tegrable for all α. While groundstate properties where
shown to be model dependent [30], such microscopic sen-
sitivity is not expected for sufficiently high temperatures,
where the system is sufficiently far from any ordered
quantum phase, and is not well described using quasipar-
ticles. We therefore expect our results, obtained in the
limit of infinite temperature, to hold for a broad family
of nonintegrable long-range models and any typical ini-
tial state. It would be interesting to extend our results
to higher dimensions.

BK acknowledges funding through the Edith & Eu-
gene Blout Fellowship. This work used the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation
Grant No. OCI-1053575.

Appendix A: Convergence Tests

Numerical exactness of the dynamics generated by
TDVP-MPS is obtained by converging with respect to
the bond-dimension, χ. In Figures 6 and 7, we provide
comparisons of calculations with bond-dimensions up to
χ = 512 for quantities of interest in this study. Evalu-
ating the spatial spin excitation profile in the tails be-
comes sensitive to numerical noise for small values of Cx
(smaller than 10−8) and is limited by a complex inter-
play of time-step errors and accumulation of numerical
round-off errors. Therefore, obtaining accurate tails of
Cx is harder for the large α, where Cx decreases faster
with the distance. α = 2.5 is the shortest-ranged sys-
tem for which it is possible to calculate a meaningful
tail of Cx. In contrast, the mean square displacement
is robust to the numerical noise in the far tails for the
system sizes and times considered here, and longer times
are accessible for larger α. The relaxation of the central
spin, C0(t), at short times is converged with a moderate
bond-dimension χ = 64, see Fig. 8.

Appendix B: Approximate evaluation of Cx (t)

Obtaining the correlation function,

Cx(t) =
1

2L
Tr ŜzL/2

(
− t

2

)
ŜzL/2+x

(
t

2

)
, (B1)

of a spin-chain of length L scales as O(L2), since for each
operator, a separate calculation has to be performed.
However, the scaling can be reduced to O(N) by mak-
ing use of the approximate translational invariance of the
Ŝzi (t). In the limit of large system and for sites i close
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Figure 6. Convergence of the spin excitation profile with
respect to bond-dimension, χ, at t = 2.0, L = 201 and
dt = 0.005.
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to the center, the correlation function can be evaluated
approximately using only ŜzL/2(t),

Cx (t) ≈ 1

2L
Tr ŜzL/2

(
− t

2

)
T xŜ

z
L/2

(
t

2

)
, (B2)

where the action of the translation operator T x is il-
lustrated in Fig. 9. It can be understood as relabeling
of the lattice sites i in a cyclically translated manner:
∀i ∈ [1, L] : i → (i + x) mod L. The trace in Eq. (B2)
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can be performed if the matrix product operator (MPO)
is expanded at both ends with virtual sites connected
containing identity operators and connected with a bond-
dimension of 1. There is no need to evaluate ŜzL/2

(
− t

2

)
,

since it is just the complex conjugate of ŜzL/2
(
t
2

)
. In

a vectorized notation the calculation of Cx (t) therefore

amounts to the calculation of
〈
ŜzL/2

(
t
2

)
|T x|ŜzL/2

(
t
2

)〉
.

The deviation between Cx(t) obtained from the explicit
propagation of all Ŝzx and Cx(t) calculated within this
approximation is negligible for the chain lengths we use
in this study, see Fig. 10. We have verified that the large
errors after site 40 are not related to a breakdown of the
approximate scheme, but occur due to the small signal-
to-noise ratio for very small Cx(t). For lattice sites close
to the end of the chain, the approximation is expected to
cause significant errors.
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