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We report an experimental study of dynamics of the metastable 3P2 state of bosonic ytterbium
atoms in an optical lattice. The dissipative Bose-Hubbard system with on-site two-body atom loss
is realized via its intrinsic strong inelastic collision of the metastable 3P2 atoms. We investigate the
atom loss behavior with the unit-filling Mott insulator as the initial state and find that the atom
loss is suppressed by the strong correlation between atoms, which is attributed to both the on-site
interaction and the inelastic loss. Also, as we decrease the potential depth of the lattice, we observe
the growth of the phase coherence and find its suppression owing to the dissipation.

In recent years, much attention has been paid to novel
behaviors of cold atoms with dissipation [1–3]. With in-
troducing several types of dissipation, the influence of the
dissipation on the quantum systems has been revealed.
For example, one-body particle loss was realized by ap-
plying an electron beam [4–6] and using photon scatter-
ing process [7, 8]. Three-body loss was implemented by
controlling the strength of three-body recombination by
Feshbach resonance [9]. Two-body loss process was re-
alized by Feshbach molecules [10, 11]. Recently, the en-
gineering of two-body loss in a controllable manner with
the photo-association technique allows for the systematic
investigation of the effect of the dissipaiton on the quan-
tum phase transition [12].
Different from these rather artificial ways in introduc-

ing dissipation, a system of two-electron atoms naturally
realizes the dissipative system due to the intrinsic strong
inelastic collision in the metastable 3P2 state [13–16] and
the 3P0 state [14, 17–19]. However, we have encountered
the dilemma that this intrinsic strong inelastic collision
also prevents previous attempts to create a Bose-Einstein
condensate (BEC) and a superfluid (SF) in an optical
lattice in the metastable state. Nevertheless, we have an
interesting possibility of the quantum many-body physics
taking advantage of the metastable state. For example,
various kinds of the quantum computing platform us-
ing the metastable states for storing and controlling the
quantum state are proposed [20–26]. With the interac-
tion between the 1S0 state and the 3P0 state, two-orbital
Hubbard system is investigated [27–30]. In the presence
of the dissipation, observation of a novel quantum state
is recently reported in the loss behavior of a system of the
3P0 state of fermionic ytterbium isotope, consistent with
the generation of a highly entangled Dicke state [31].
In the present Rapid Communication, we report an ex-

perimental study of dynamics of the dissipative 3P2 state
of bosonic ytterbium atoms 174Yb in an optical lattice.
To overcome the difficulty of making BEC in the dis-
sipative metastable state, first we create a BEC in the
ground state 1S0 and form a unit-filling Mott insulator
(MI) in the three-dimensional (3D) optical lattice. Then
we coherently transfer the MI in the 1S0 state into the

3P2 state, resulting in the successful formation of the MI
in the dissipative 3P2 state. With this MI as an initial
state, we investigate the stability of the system and find
that the atom loss is suppressed by the strong correla-
tion, which is attributed to both the on-site interaction
and the inelastic loss. Also, this novel scheme of the ini-
tial state preparation enables us to observe the growth
of the phase coherence as we decrease the lattice depth,
otherwise impossible to create, and we quantitatively re-
veal that the formation of a sizable phase coherence is
suppressed by the dissipation.
The bosonic atoms in the 3P2 state in the optical lattice

can be regarded as the dissipative Bose-Hubbard system
described by a master equation in Lindblad form [32]:

dρ̂

dt
= −

i

h̄
[Ĥ, ρ̂] + L(ρ̂), (1)

where Ĥ is the Bose-Hubbard Hamiltonian
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and L(ρ̂) represents the dissipation due to the inelastic
collision between two atoms in the 3P2 state
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†
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(3)
Uee, J, and Γee represent the on-site interaction, the tun-
neling amplitude, and the inelastic collision rate, respec-
tively. ǫj is the confining potential of the site j and µ
is the chemical potential. Index e (g) denotes 3P2 (1S0)
state. âj is the annihilation operator of the 3P2 state

atoms at a site j and n̂j = â†jâj . 〈j, k〉 represents nearest-
neighboring pairs of lattice sites. We note that there ex-
ists the one-body loss process due to the photon scatter-
ing and the spontaneous emission, the loss rate of which
is 1 ∼ 2 order of magnitude smaller than the two-body
loss rate.
For the full characterization of the system, it is nec-

essary to measure the strength of the on-site interaction
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between the 3P2 state atoms. This has never been done
because of the difficulty associated with the rapid loss
of atoms in the 3P2 state due to the large inelastic col-
lision. We determine the scattering length by establish-
ing a new spectroscopic technique with double-excitation
process by utilizing the inelastic loss property.

We start with a preparation of the MI state of the
1S0 atoms with singly- and doubly-occupied sites at the
lattice depth of V0 = 18 ER for the 1S0 state. Here,
ER = h2/(2mλ2

L) is a recoil energy, where m is the
mass of the 174Yb atom, h is the Planck’s constant and
λL = 532 nm is the wavelength of the lattice beam. Be-
cause the polarizability of the 3P2 state for the 532 nm
lattice beam is different from that of the 1S0 state, the
lattice depth depends on the atomic state, which is taken
into account in the determination of the lattice depth and
the calculation of the interaction (see Supplementary ma-
terial).

We then excite a single 1S0 state atom in the doubly-
occupied sites into the 3P2 state by adiabatic rapid pas-
sage (ARP) with a frequency-swept pulse with a 507 nm
laser under a bias magnetic field of 200 mG. We perform
the experiment with the atoms in the magnetic sublevel
of mJ = −2. The atoms in the singly-occupied sites are
not excited because of the well-separated resonance fre-
quencies between the singly- and doubly-occupied sites
due to the interaction (see Fig. 1 (c)). Subsequently,
we apply the second excitation pulse with a variable fre-
quency. If the second pulse successfully excites a re-
maining 1S0 state atom in the doubly-occupied sites,
two 3P2 state atoms occupy the same site, resulting in
the strong atom loss due to the inelastic collision with
the rate Γee (Fig. 1 (a)). In the optical lattice, Γee is
determined by the inelastic collision coefficient βee and
the confinement of the lattice potential through the re-
lation Γee = βee

∫

|w(r)|4dr, where w(r) is the Wannier
function of the lowest band. βee is expected to a half
of the inelastic collision coefficient with a thermal gas
βthermal
ee = 5.1(6)× 10−11cm3/s [16, 33].

For the detection, atoms in the 3P2 state are repumped
back to the 1S0 state using repumping lasers of 770 nm
and 649 nm which are resonant to the 3P2−

3S1 and
3P0−

3S1 transitions, respectively. The 3P2 atoms absorbing
a 770 nm photon is excited to the 3S1 state. Then the
3S1 atoms decay into the 3PJ states (J = 0, 1, 2). The
atoms which decay to the 3P1 state return to the 1S0

state emitting 556 nm photon. The atoms which decay
to the 3P0 and 3P2 state are again excited to the 3S1

state absorbing 649 nm and 770 nm photon, respectively.
The repumped 1S0 atoms are recaptured by a magneto-
optical trap (MOT) with the 1S0 −

1P1 transition. The
fluorescence from the MOT is detected by an electron-
multiplying charge-coupled-device camera.

Figure 1 (b) shows the spectrum of the above-
mentioned double-excitation spectroscopy. We observe
a large dip around +10 kHz detuning from the 1S0−

3P2

FIG. 1. (Color online). (a) Schematic of the double-excitation
spectroscopy. The on-site interaction strength manifests itself
in the shift of the excitation frequency at the doubly-occupied
sites, which differs from the excitation frequency of the atoms
at the singly-occupied site. (b) The spectrum of the double-
excitation spectroscopy. The dashed line represents the fluo-
rescence count measured after the first excitation, which cor-
responds to the atoms excited by the first pulse. The hor-
izontal axis represents the detuning of the second-excitation
pulse frequency from the transition of the atoms in the singly-
occupied sites. The resonance observed in the negative detun-
ing corresponds the de-excitation from the 1S0 + 3P2 state to
the 1S0 + 1S0 state and peak around +35 kHz represents the
excitation for the blue-sideband. (c) The spectrum of the
single-excitation spectroscopy for comparison.

transition of the singly-occupied atoms, which does not
have the counterpart in the spectrum of the low-intensity
single pulse spectroscopy (Fig. 1 (c)). We determine the
interaction shifts as (Uee − Ueg)/h = +10.7(3) kHz and
(Ueg − Ugg)/h = −9.70(5) kHz. From these results and
the known scattering length agg = +104.9(1.5)a0 [34],
we obtain aeg = −201.5(1.5)a0 and aee = +110(8)a0,
where a0 is the Bohr radius. This means that the on-
site interaction between the 3P2 atoms is repulsive and
comparable to the dissipation strength: the dimension-
less dissipation strength is h̄Γee/Uee = 0.94(13), which
does not depend on the lattice depth. We note that the
on-site interaction which can be measured is intrinsically
affected by the coupling to the environment [35].

As the basic property of the dissipative quantum
many-body system, we first study the stability of the
unit-filling MI state in the presence of the two-body dis-
sipation. Here, we measure the loss rate which varies as
a function of the lattice depth because J , Uee, and Γee

depend on the lattice depth.

We first prepare the unit-filling MI state of the 3P2

state in almost the same manner as in the double-
excitation spectroscopy, except that the lower atom num-
ber is loaded so that the doubly-occupied sites are not
created. After ramping up the lattice, we excite the
atoms to the 3P2 state by the ARP. The remaining 1S0

atoms are blasted by applying 399 nm resonant light.
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FIG. 2. (Color online). (a) Time dependence of the remaining
3P2 atoms at V = 19ER. The solid line shows a fit of Eq.
(4) to the experimental data. (b) Two-body loss rate as a
function of the lattice depth. The solid line shows a fit of
Eq. (5) to the experimental data and the dashed line is the
tunneling rate for comparison. (c) Pair correlation function

g(2) calculated from the data in the loss rate measurement.
The solid line represents the theoretical calculation with βee

obtained from the data in (b). The lattice depths are adjusted
for the 3P2 state.

The atom number in the 3P2 state N(t) decreases as

Ṅ(t) = −
n0κ

N(0)
N(t)2 − ξN(t), (4)

where κ is the two-body loss rate and ξ is the one-body
loss rate. n0 is the initial filling factor estimated by the
ARP excitation efficiency, which is typically 90 %. The
one-body loss is mainly induced by the photon scattering
with the 3P2 −

3S1 transition at 770 nm due to the 532
nm lattice beam, the rate γsc of which depends on the
intensity of the lattice beam. The spontaneous emission
rate is γsp = 67(7) mHz [36]. The one-body loss rate is
given by ξ = γsc+γsp, which is calculated up to ∼0.3 Hz.
Figure 2 (a) shows the typical decay of the atom num-

ber of the 3P2 state. By fitting Eq. (4) to the data
with the calculated one-body loss rate ξ, we extract the
two-body loss rate κ (see Fig. 2 (b)). The loss rate κ
is suppressed compared to the tunneling rate 6J/h̄ (see
Fig. 2 (b)), which näıvely characterizes the time scale of
the creation of the double occupancy. In the sufficiently
deep lattice, κ can be suppressed to the order of Hz.
This suppression is attributed to the formation of the

strong correlation. When the tunneling is much smaller
than the other energy scales (J ≪ h̄Γee, Uee), κ is given
by [10, 37]

κ =
16z(J/h̄)2

Γee

[

1 +

(

2Uee

h̄Γee

)2
]−1

. (5)

Here, z = 6 is the coordination number. We fit Eq. (5)
to the data with the fitting parameter of βee. The best-fit
value is βee = 2.5(6)× 10−11 cm3/s, which is well agree
with the half of βthermal

ee = 5.1(6)× 10−11cm3/s [16, 33].
The correlation is characterized by the pair correla-

tion function g(2) ≡ 〈n̂j(n̂j − 1)〉/〈n̂j〉
2, which can be

estimated from the experimental result according to the

FIG. 3. (Color online). (a) Schematic of the selective exci-
tation using a superlattice. The potential difference between
the A and B layers created by the long lattice allows us to
excite the atoms only in the A layer. (b) Time dependence
of the atom number in the A layer (white circle) and B layer
(black circle) at V0 = (19.0, 19.0, 19.9)ER for the 3P2 state.
We note that the difference of the transfer efficiency between
the A and B layers causes the remaining imbalance for longer
times. The inset shows the initial 0.1 sec data of the atom
number in the B layer and the fitting of the exponential func-
tion. Note that we also observe the slow decrease of the atom
number due to the two-body loss at later time that the pop-
ulation imbalance is already reduced.

relation g(2) = κ/Γee [10, 37]. Figure 2 (c) shows that
g(2) is much smaller than 1, which means strong anti-
bunching correlation, namely, the creation of the dou-
ble occupation is strongly suppressed. Since g(2) =
4zJ2/[(h̄Γee/2)

2+U2
ee] from Eq. (5), the reduction of the

g(2) is attributed to both of the on-site elastic interaction
Uee and the inelastic loss h̄Γee. In our experimental pa-
rameter of h̄Γee/Uee = 0.94(13), the inelastic interaction
contributes to the formation of the correlation in addi-
tion to the elastic interaction, although the strength of
the inelastic collision does not achieve the quantum Zeno
region as the previous experiments [10–12] in which κ
decrease as the strength of the dissipation increases.
In order to confirm that the suppression of the doubly-

occupied sites is not due to the reduction of the tunnel-
ing amplitude itself but due to the correlation effect as
a result of the occupation of the atoms in the nearest
neighboring site, we observe the tunneling dynamics from
the initial state in which there is no atom in the nearest
neighboring sites along one direction. After preparing
the MI state with the 1S0 atoms, we form the optical su-
perlattice by adding the long lattice with 1064 nm laser
along the x axis with the relative phase between two lat-
tice beam adjusted to make potential difference between
A and B layers, which separates the excitation frequency
(Fig. 3 (a)). We selectively excite the atoms to the 3P2

state only in the A layer with ARP and blast the remain-
ing 1S0 atoms. Then we remove the additional lattice and
monitor the atom number. The detection is also selec-
tively performed with the coherent transfer to the 1S0

state using ARP. We observe fast decrease of the atom
number in the A layer and increase of the atom number
in the B layer (Fig. 3 (b)), which indicates the tunneling
of the atoms along the x axis. We simply describe the
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FIG. 4. (Color online). (a) Absorption images of the atoms.
The images are taken with different final lattice depths. (b)
Temporal change of the atom number during the ramp-down
sequence, which is normalized by the initial atom number at
the lattice depth of V0 = 20 ER. (c) Visibility of the in-
terference peak of the images and (d) width of the density
distribution. The width is the full width half maximum ob-
tained by the Gaussian fitting. In these plots, the blue square
and the red circle correspond to the data for the 1S0 state
and the 3P2 state, respectively. The yellow triangle indicates
the data for the 3P2 state after eliminating the effect of the
momentum kick.

tunneling behavior as follows:

ṄA(t) = −RNA(t) +RNB(t),

ṄB(t) = RNA(t)−RNB(t). (6)

Here, NA (B) is the atom number in the A (B) lay-
ers, and R represents the tunneling rate between the
A and B layers. With the initial condition that all
atoms are placed in the A layer, Eq. (6) yields NB(t) =
[1− exp (−2Rt)]N0/2, where N0 is the initial atom num-
ber. We fit this function to the initial 0.1 sec data of the
atom number in the B layer, as shown in the inset of Fig.
3 (b). From the fitting, we obtain the tunneling rate of
R = 42(6) Hz, which is much larger than the observed κ
in the case of the unit-filling MI (see Fig. 2 (b)) and is
consistent with the relaxation time scale 4J/h = 50 Hz
discussed in Ref [38].
We also investigate the effect of the dissipation on the

quantum phase transition from the MI to the SF state.
We first prepare the unit-filling MI of the 3P2 state in the
same manner as the preparation of the initial state of the
loss rate measurement. The lattice depth is V0 = 20 ER

for the 3P2 state. Then we ramp down the lattice, in
which the lattice ramp-down speed is −2 ER/ms. The
atom number and the momentum distribution during the
ramp-down dynamics are obtained from the density dis-
tribution of the time-of-flight (TOF) absorption image.
After ramping down the lattice to the final lattice depth,
we suddenly turn off all the trap and take the image af-
ter 6-ms expansion of the atom cloud (Fig. 4 (a)). The

atoms in the 3P2 state are repumped back to the 1S0

state 1 ms before taking the absorption image. For com-
parison, we observe the atoms in the dissipationless 1S0

state. We compare the two results as a function of the
lattice depths because the scattering lengths aee and agg
are almost the same within the error: aee/agg = 1.05(7).
The lattice depth is adjusted for each state.

Without dissipation (the 1S0 state), around V0 ∼
10 ER we observe the transition from a MI with a broad
distribution to the SF with a clear interference pattern
characterizing the presence of the phase coherence, which
is consistent with the theoretical value of the critical lat-
tice depth of V0 = 11.29(16) ER. On the other hand,
the atom distribution of the dissipative 3P2 state is mod-
ified. Although we still observe the anisotropic interfer-
ence pattern in the shallow lattice region, the interference
pattern is unclear.

For the quantitative analysis, we evaluate the atom
number, the visibility of the interference peaks, and the
width of the atom distribution obtained by the TOF
images (Fig. 4 (b-d)). For the 3P2 system, the num-
ber of atoms starts to decrease around V0 = 10 ER.
This significant atom loss reflects the start point of the
melting of the MI, which creates the double occupa-
tion. The visibility of the interference peaks is defined
as v = (Nmax − Nmin)/(Nmax + Nmin) [39], where Nmax

is the sum of the atom number in the regions of first-
order interference peaks, and Nmin is that in the regions
at the same distance from the central peak along the di-
agonals. In both cases, v increases with the ramp-down
of the lattice. This increase in the 3P2 state is more mod-
erate compared to that in the 1S0 state (Fig. 4 (c)). In
addition, the narrowing of the width of the density dis-
tribution is also more moderate in the case of the 3P2

state (Fig. 4 (d)). These results suggest that the growth
of the phase coherence is suppressed by the intrinsic on-
site two-body dissipation. Similar behavior is observed in
the previous experiment [12], where the two-body loss is
artificially introduced using the photo-association tech-
nique and the effect of the dissipation on the coherence
and the phase transition is disucussed both in theory and
experiment.

We estimate the effect of the momentum kick in the
repumping process by the deconvolution analysis of the
atom distribution. Because the repumping laser is irra-
diated along the imaging axis, the effect of the recoil due
to the absorbing process of photon is not observed. On
the other hand, the expansion of the distribution of the
atoms due to the recoil of the photon emission is observed
because the direction of the photon emission is random
and isotropic. After repumping process, the repumped
1S0 state atoms expand in the accordance with the sum
of the original momentum and the recoil momentum ob-
tained by the photon emission. We estimate the width
of the expansion of the atom cloud with calculating the
average number of the emitted photons Nph through the
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TABLE I. Information of the repump transitions [36]. λ is

the wavelength of the transition, Γ(s) is the decay rate and
Nph is the average number of the photon emission though the
repumping process. The numerical simulation is performed
based on these parameters.

3S1 →
3P0

3S1 →
3P1

3S1 →
3P2

λ [nm] 649 680 770

Γ(s) [Hz] 9.6 ×106 2.7 ×107 3.7 ×107

Branching ratio 0.13 0.37 0.50

Nph 1.4 1.0 0.36

repumping process (Table I) with the assumption that
the repumping process is instantaneously finished. In the
numerical calculation, we obtain the momentum distri-
bution due to the recoil in the repumping process, which
is well approximated by the gaussian function with a half
width at half maximum of 1.2 h̄kL. Here, kL = 2π/λL is
the wave number of the lattice beam. After turning off all
the trap, the 3P2 atoms expands in 5 ms. Then the atoms
get the recoil momenta through the repumping process
and expand in 1 ms. We reconstruct the original atom
distribution by deconvoluting the recoil momentum dis-
tribution from the atom distribution obtained from the
TOF image, and estimate original visibility and width,
as shown in the yellow triangles in the Fig. 4 (c) and (d),
which shows that the effect on the TOF image is limited
and does not change the whole behavior of these values
qualitatively.

We note that, in the case of the 3P2 state, the forma-
tion of the interference pattern is still observed, which
suggests the the growth of the phase coherence in the
metastable state. Because of the strong inelastic colli-
sion, it is difficult to create the BEC in the metastable
state and load it into the optical lattice. On the other
hand, in our method with the slow ramp-down of the
lattice, we can load the metastable atoms into the shal-
low optical lattice with suppressing the inelastic collision
between atoms.

In conclusion, we have realized the dissipative Bose-
Hubbard system with the metastable 3P2 state of 174Yb
by first creating a MI state in the ground state and the
subsequent coherent transfer of the atoms into the 3P2

state, evading the large inelastic loss process in the state
preparation. We fully characterize the system by mea-
suring the scattering length between two 3P2 atoms by
developing the double-excitation method. In the 3D op-
tical lattice, we investigate the atom loss behavior with
the unit-filling MI as the initial state and find that the
atom loss is suppressed by the strong correlation between
atoms, which is attributed to both the on-site interaction
and the inelastic loss. Also, as we decrease the potential
depth of the lattice, we observe the growth of the phase
coherence and find that the formation of a sizable phase
coherence is suppressed by the dissipation.

It is expected that similar behaviors will be observed
with the 3P0 state of Yb [18, 19] and other two-electron
atomic species [13, 14, 17]. The strong suppression of
the inelastic collision between atoms in the metastable
state is beneficial to avoid unwanted losses in the ex-
periment for two-component many-body physics [30] and
the manipulation of the 3P2 atoms exploiting the mag-
netic dipole moment [20, 23]. Also, our system will be a
candidate for the investigation of the phase of the non-
Hermitian Bose-Hubbard system [40], which is realized
by combination with a quantum gas microscope to post-
select the events that no atomic losses occur. Our spec-
troscopic method for measuring the on-site interaction
enables one to search anisotropy-induced Feshbach reso-
nances [41] between the 3P2 atoms, which allows for the
control of the sign and the amplitude of the parameter
h̄Γee/Uee and systematic investigation of the effect of the
dissipation.
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