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Platform motion poses significant challenges to high-precision optical time and frequency 
transfer. We give a detailed description of these challenges and their solutions in comb-based 
optical two-way time and frequency transfer (O-TWTFT). Specifically, we discuss the 
breakdown in reciprocity due to relativity and due to asynchronous sampling, the impact of 
optical and electrical dispersion, and velocity-dependent transceiver calibration. We present a 
detailed derivation of the equations governing comb-based O-TWTFT in the presence of motion. 
We describe the implementation of real-time signal processing algorithms based on these 
equations and demonstrate active synchronization of two sites over turbulent air paths to below a 
femtosecond time deviation despite effective velocities of ±25 m/s, which is the maximum 
achievable with our physical setup. With the implementation of the time transfer equation 
derived here, we find no velocity-dependent bias between the synchronized clocks to within at 
two-sigma statistical uncertainty of 330 attoseconds.   
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I. Introduction 

Frequency-comb-based optical two-way time-frequency transfer (O-TWTFT) has progressed 

rapidly in the last few years from a straightforward frequency comparison using a large lab 

system [1], to real-time synchronization with a potentially fieldable system [2], to generation of 

coherent microwaves at remote sites [3], and to operation over a strongly turbulent 12-km 

path [4]. Nevertheless, compared to mature, deployed fiber-based approaches [5–15], O-TWTFT 

is still at an early stage.   Indeed, Refs. [1–4] all demonstrate operation over links with a slowly 

varying time-of-flight, whose fluctuations are exclusively due to turbulence or minute platform 

vibrations.  However, free-space networks will have to cope with motion between the clock sites, 

which is a complication avoided in fiber-optic networks.  At motion of 30 m/s, e.g that of a car 

driving on a highway, these systems would suffer errors in the tens of picoseconds -- a 

performance degradation of ten thousand or more. Multiple velocity-dependent effects, some 

fundamental and some implementation specific, cause these errors, and must be understood and 

accounted for at the femtosecond level.  In order to return to femtosecond-level synchronization 

despite significant motion, a new implementation of O-TWTFT is required where all the 

available information is used to address the various effects. 

Here, we derive the basic equations for comb-based O-TWTFT that compensates for motion. 

We present our hardware implementation and demonstrate femtosecond time synchronization 

between two clock sites. Since a mobile optical clock was unavailable, we introduce motion by 

rapidly changing the path length between clocks.  The velocity-dependent effects, with the 

exception of time dilation [16], are similar to a moving clock. We find no velocity-dependent 

degradation of time synchronization to within a two-sigma uncertainty of 330 attoseconds, and 

correspondingly, no degradation of frequency syntonization down to 2x10-18 in fractional 
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frequency uncertainty (modified Allan deviation). This paper is closely related to the work 

summarized in Ref. [17] and serves to more closely examine the effects of motion and their 

solutions, and to analyze the possibility of residual bias.  

 Figure 1 illustrates the two configurations used here to implement and test O-TWTFT with a 

rapidly changing path length between Sites A and B.  We insert a moving retroreflector in the 

path either mounted on a traveling rail or on a quadcopter.  The latter geometry mimics that 

expected for an intermediate passive air-borne platform connecting two fixed sites, except for 

motion transverse to the link.  In order to verify that we have achieved synchronization at the 

femtosecond-level in time (and 10-18 in fractional frequency), we use a folded link as in previous 

work to allow for a direct out-of-loop time comparison between sites [2]. We emphasize that all 

communication and timing signals associated with the O-TWTFT traverse only the long free-

space link. 

 

Figure 1: Experimental setup to evaluate comb-based O-TWTFT with motion.  (a) A multi-
passed moving retroreflector is located adjacent to clock B to simulate clock B motion with 
effective closing velocity, V.  (b) A quadcopter-mounted-retroreflector is flown approximately 
equidistant from sites A and B.  
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Our goal is to compare the time (and therefore frequency) between the two remote clocks 

located at site A and B. Furthermore, we implement that time comparison in real-time such that 

the results can be used to actively synchronize, or phase lock, the clock at site B to the one at site 

A. This paper discusses the full system required for such time synchronization between clocks in 

the presence of motion.  It is worth emphasizing that a frequency comparison between sites is 

considerably simpler and may be sufficient for some applications. Its implementation represents 

a subset of the system described here.  

The paper is organized as follows. Section II provides an overview of simplified two-way 

time-frequency equations governing comb-based O-TWTFT and a discussion of the five 

potential velocity-dependent biases. Section III describes the comb-based O-TWTFT in more 

detail. It begins with an overview of the physical system.  It then derives the complete set of 

equations to compute the clock offset between the sites without systematic bias in the presence 

of motion. Finally, it discusses the hardware implementation of this system. Section IV describes 

the testbed of Figure 1 in more detail. Section V then presents experimental results from these 

testbeds.  Section VI discusses scaling to higher velocities than those achievable with our 

experimental testbeds. Finally, section VII concludes. We consider here only the effects of 

closing velocity between the two sites. There are potential turbulence-related systematics due to 

transverse velocity between the two sites, but these are expected to be minimal [18,19] as borne 

out by a recent experiment [20].  

II. A Simplified Model for Optical Two-Way Time-Frequency 

Transfer and Velocity-Dependent Biases  
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The actual implementation involves the coherent exchange of frequency comb pulse trains 

followed by linear optical sampling to determine the pulse arrival times with sub-femtosecond 

precision. However, in this section, we discuss two-way time transfer in terms of the exchange of 

a pair of directly-detected pulses for several reasons. First, it is a useful starting point for the 

more complex actual system. Second, it is relatively straightforward to understand the five basic 

velocity-dependent effects in this standard picture before addressing them in the context of 

comb-based O-TWTFT. Third, the communication-based O-TWTFT, which is a critical 

subsystem of the overall synchronization, closely follows this basic prescription. 

II.A Overview of Main Velocity-Dependent Effects 

First, consider the two-way exchange of an optical pulse pair between two fixed sites.  In the 

simplest picture, we measure the departure time, TAA, of the pulse from site A against the site A 

timebase and the arrival time, TAB, of the same pulse at site B against the site B timebase.  It 

must be that AB AA A B ABT T T t→= + − Δ , where ABtΔ  is the slowly-varying clock offset between site 

A and B’s timebases and A BT L c→ =  is the time-of-flight from A to B with L  the potentially 

time-varying path length and c  the speed of light across the path.  We similarly send a pulse 

from site B to site A to generate TBB, and BA BB B A ABT T T t→= + + Δ  where B AT L c→ =  is the time-

of-flight from B to A.  For a constant distance L, a simple linear combination provides the well-

known basic two-way formula [21–23], 

 [ ] [ ]AB AA AB BB BA A B B A cal
1 1
2 2

t T T T T T T T→ →Δ = − − + + − + Δ   (1) 

Where calTΔ   is some calibration constant for time offsets in the transceivers.  For a fully 

reciprocal link, i.e. A B B AT T→ →≡ , the second term is exactly zero and the explicit time-of-flight 
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dependence vanishes.  However, if the time-of-flight difference, [ ]A B B AT T→ →− , is non-zero, i.e. 

non-reciprocal,  but the link is falsely assumed to be reciprocal, this non-reciprocity introduces a 

systematic bias in ABtΔ . With motion, such non-reciprocity arises from two effects: 

asynchronous sampling of the two-way signals and relativistic non-reciprocity.  

In addition to these two effects, motion will lead to potential velocity-dependent biases in 

ABtΔ  for three other reasons. First, the Doppler shifts on the received signals can introduce a 

systematic velocity dependence in the measured arrival times, ABT  and BAT . Second, calTΔ  is 

velocity dependent as the multiple transceiver paths carry optical signals which are both 

unshifted, if local, or Doppler shifted, if remote. Third, motion complicates the resolution of 

timing ambiguities associated with the use of periodic waveforms, such as the pulses of a 

frequency comb. Table I quantifies the potential magnitude of the different effects that are 

described in more detail below. 

 
Figure 2: (a) Fundamental relativistic breakdown in reciprocity.  Pulses launched simultaneously 
from static clock A and moving clock B in site A’s reference frame experience a non-reciprocal 
time-of-flight with A B B AT T→ →≠ .  (b) Breakdown in reciprocity due to asynchronous sampling.  



 

7 

Pulses launched at different times (asynchronously) from static clock A and moving clock B 
(again relative to Site A’s reference frame), e.g. at 0t =  and at asynct t= Δ , experience different 
time-of-flights. 
 
 
 

II.B Fundamental Relativistic Breakdown in Reciprocity 

First consider the scenario in Fig. 2a where each site emits its pulse at exactly the same time 

in site A’s reference frame while site B is moving away from site A.  Despite the simultaneous 

emission time, the time-of-flight for the two directions is not equal, i.e. A B B AT T→ →≠ , and their 

difference is A B B A
2T T LV c→ →− =  to first order in V.  Here, V is the closing velocity of site B 

with respect to the fixed site A and L is the instantaneous clock separation. For modest values of 

L = 4 km and V = 25 m/s, the non-reciprocal time-of-flight is 1 ps, which would cause a 

corresponding 1-ps error in ABtΔ  if uncorrected.  However, with an appropriate velocity estimate, 

we can correctly include the non-reciprocal time-of-flight in Eqn. (1).  

The scenarios of Fig. 2 show a moving clock B; however, in the experimental testbeds here, 

the two clocks are co-located in the same inertial reference frame with a moving intermediate 

platform.  If the moving platform is adjacent to clock B, i.e. the situation of Fig. 1a, this testbed 

mimics that of a moving clock with the exception of the presence of time dilation.  (If the 

moving platform is half-way between the clocks A and B, i.e. the situation of Fig. 1b, this testbed 

mimics two stationary clocks linked by a moving repeater.)  If one of the clocks were moving, 

unlike the situation here, we must include the effects of time dilation  [24].  Even at the terrestrial 

velocities considered here of ~25 m/s, the time dilation corresponds a fractional frequency shift 

of 5×10-15, far greater than the frequency syntonization between clocks achieved here of ~10-18. 

However, this effect is easily calculated in real time; the comb-based O-TWTFT returns the 
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instantaneous velocity with an uncertainty of 20 μm/s (at 1-second averaging time), from which 

the Lorentz factor of 221 1 v c−  is found to below ~10-18 precision.  For a network with 

syntonized (equal frequency) clocks, this correction can be applied, or not, as required by the 

application.  For full time synchronization, one must select a reference frame and apply the 

necessary Lorentz transformation.  An extensive treatment of the issue of time dilation and of 

other relativistic effects which arise for clocks at orbital velocities has been address in the 

literature [16]. For O-TWTFT this remains the subject of future work. 

II.C Breakdown in Reciprocity due to Asynchronous Sampling 

Now consider the scenario in Fig. 2b, where the timing signals from the two sites are 

launched asynchronously with a time offset async AB BA ABt T tT= + ΔΔ −  (as will invariably be the 

case in any real system).  With motion, this leads to a non-reciprocal time-of-flight of 

A B B A async /T T t V c→ → Δ− = .  For the comb-based O-TWTFT implemented here, the asynchronous 

sampling asynctΔ  ranges from 0 to 250 μs. Even at these low values and for  V = 25 m/s, the non-

reciprocal time-of-flight can reach 20 ps, which would cause a corresponding 20-ps error in ABtΔ  

if uncorrected. However, this systematic bias can be avoided by interpolation of the timing 

signals to a common measurement time or equivalently by including a correction factor in (1).  

II.D Delay-Doppler Coupling 

With motion, the light pulses suffer Doppler shifts. When combined with the system 

dispersion, this leads to a delay-Doppler coupling, which amounts to a systematic velocity-

dependent bias in the measured arrival times TAB and TBA. For our system, there are three distinct 

effects.  
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First, for an optical link with lumped dispersion, 2
pathβ , the systematic bias in arrival time is  

22 path
c V cπν β , where cν ~ 200 THz is the optical carrier. For our system, 2

pathβ  is between 0.1 

and 1 ps2, due to fiber-optic leads, telescope optics, and the air path.  This effect is then of order 

10 - 100 attoseconds for V = 25 m/s.  

Second, we make the choice of linear optical sampling between frequency comb pulse trains 

to achieve femtosecond precision in the measurement of the pulse arrival times.  While all 

implementations will contain a velocity-dependent bias at some level, this choice does come with 

an amplification of the timing bias due to dispersion.  The details of our approach are given in 

Section III with a brief overview provided here. In linear optical sampling, we heterodyne the 

incoming pulse train of repetition rate, fr ~ 200 MHz, against a local pulse train with an offset 

repetition rate, fr ± Δfr. The resulting heterodyne signal is a series of pulse bursts, or 

interferograms, in the rf domain that repeat at Δfr ~ 2 kHz.  The advantage of this approach is that 

any time shift in the incoming pulse train is amplified by a factor of 5~ 10rrf fΔ  in the timing 

of the rf-domain interferograms, thus enabling femtosecond timing precision. However, there is a 

penalty associated with this linear optical sampling -- the timing bias from the product of any 

Doppler shift and differential chirp, 2
CombsβΔ , between the heterodyned comb pulses is amplified 

by rrf fΔ . This delay-Doppler systematic is thus of order ( ) 22 bs
r

Com
r cf V cf πν βΔ Δ . (See 

Appendix A for a derivation.) For our parameters, without compensation 2
2  0.3 psCombsβΔ  and 

thus the resulting velocity-dependent bias can exceed 1 ps.   

To suppress these optical-dispersion effects to well below 1 fs, it is insufficient to use a 

simple linear correction based on the above equations and an estimate of  2
CombsβΔ  and 2

pathβ . 

Instead, we use a two-pronged approach. We first reduce the optical dispersion, 2
CombsβΔ  and 
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2
pathβ , through the addition of dispersion-compensating fibers. (This yields the value of

2
2  0.005 psCombsβΔ given in Table I.) Second, we adopt a technique from the RADAR 

community and find the effective arrival time of the received pulse from the peak of the cross-

ambiguity function between the measured and expected signal.  The cross-ambiguity function 

search efficiently removes any remaining dispersion to all orders, so that the hardware dispersion 

compensation does not have to be exact. 

The third delay-Doppler systematic occurs in the rf domain. The interferograms generated by 

the linear optical sampling are an rf pulse, described by an rf carrier and envelope.  Any optical 

Doppler shift is mapped directly to the rf carrier, leading to a timing bias in the rf domain of the 

interferograms of 22 RF
c V cπν β , where 2

RFβ  is the RF dispersion from photodetector responses, 

electrical filters, impedance mismatches etc. This timing bias can reach nanoseconds for large 

(10’s of MHz) Doppler shifts. However – and it is for this reason that we use linear optical 

sampling approach - the optical pulse arrival time is found by dividing the interferogram arrival 

time in the rf domain by a factor of /r rf fΔ   ~ 105 , which greatly suppresses any systematic 

bias. This is the inverse of the amplification factor described above. Nevertheless, we must apply 

a compensation filter, calculated during the system calibration, to the digitized rf signals to 

effectively set 2
RFβ close to zero and therefore achieve sub-femtosecond timing.  

II.E Velocity-Dependent Transceiver Calibration 

In the simplest case, the calibration constant, calTΔ , in Eq. (1) reflects a time delay in the 

transceiver between the reference plane and the detection of the incoming pulses.  However, as 

will be evident in the next Section, each transceiver is far from a compact point and consists of a 

distributed set of optical components comprising optical oscillators, frequency combs, modulated 
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cw lasers, optical transceivers for detecting the arrival time of frequency comb pulses, and 

optical transceivers for the communication-based O-TWTFT.  Nevertheless, in the absence of 

significant Doppler shifts, as in Refs. [2–4], the calibration of this distributed system can still be 

lumped into a single overall time offset, calTΔ .  Here, with Doppler shifts, that is no longer the 

case and this calibration must be expanded to include a velocity-dependent contribution, 

( )cal cal cal/ VT T V c TΔ → Δ + Δ . The computation of these calibration terms requires in-depth probing 

of the various delays in the transceiver via an rf-domain optical time domain reflectometer 

(OTDR).  As indicated in Table I, the maximum potential velocity-dependent bias is estimated 

based on the total transceiver path length, Ltransceiver, as 2
transceiverVL c . 

Table I: Five main sources of bias in the clock offset due to the presence of motion.  The 
estimated biases represent the potential velocity-dependent error in the computation of the clock 
offset which could arise if the effects of motion are not properly accounted for.  In other words, 
this table reflects the level of suppression required for a given effect to achieve femtosecond 
synchronization.  These potential biases are calculated for values closely matching current 
system parameters: 30 m/sV = + , 4 kmL = , 200 MHzrf = , 2.2 kHzrfΔ = , 200 THzcν = , 

2
2 0.1 pspathβ , 2

2 5 nsRFβ , 2
20.005 psCombsβΔ , and transceiver ~10 mL . The symbols are 

defined in the text. 

Source Dependence 
Bias if uncorrected 

(ps) 

Fundamental 
Relativistic 
Breakdown in 
Reciprocity 

2

V L
c

 1 

Breakdown due to 
Asynchronous 
Sampling 

1
2 r

V
c fΔ

 20 

Delay-Doppler 
Coupling 2 2 22 path RF Combsr r

c
r r

f fV
c f f

πν β β β
⎛ ⎞Δ⎛ ⎞ + +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝
Δ

Δ ⎠
0.07* 

Velocity-
Dependent 
Transceiver 
Calibration 

transceiver2

V L
c

 0.003 
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Periodic Waveform 
Ambiguities 

1

rf
  5000** 

*Assuming the dispersion compensation discussed in Section III.C.1 
**Assuming an error of one pulse 

 

 

II.F Periodic Waveform Ambiguities 

In general, the use of a periodic waveform has the potential ambiguity risk of assigning the 

time-of-arrival to the wrong pulse.  With the comb-based OTWTFT, that risk is compounded by 

the use of three frequency combs that leads to three different integer pulse ambiguities. For the 

fixed terminal case, we can combine these three integer ambiguities into a single integer, which 

is then resolved by a coarser timing measurement from a parallel communication-channel O-

TWTFT.  With motion however, these integers enter the overall clock offset computation with 

different scale factors. (See Eqn. (20).)  Moreover, the combination of motion and turbulence-

induced signal fades means that the time-of-flight could change by more than the 5-ns ambiguity 

range between measurements. To counter these problems, the algorithm combines the 

communication-channel O-TWTFT and comb-based OTWFT data early in the processing.  

III. Comb-Based O-TWTFT System 

III.A System Overview 

The basic configuration of the comb-based O-TWTFT is shown in Fig. 3 and follows 

Ref. [2,3,25].   At each site, there is a clock (Fig. 3a), an optical transceiver for the comb-based 

timing, an optical transceiver for the coherent optical communication channel, and a real-time 

digital signal processing system comprised of a field programmable gate array (FPGA) and  
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digital signal processor (DSP) platform. As shown in Fig. 3a and as in Ref. [2], we construct our 

clock by phase-locking a frequency comb with repetition frequency, rf  ~ 200 MHz, to an ~ 195-

THz optical oscillator.  The time is then defined by the arrival of the labelled comb pulses at a 

given reference plane.  Here, we define site A as the master site and site B as the remote site, at 

which we apply feedback to synchronize it to the master site.  

 
Figure 3: (a) Definition of the “clock” or timescale at each site.  A self-referenced frequency 
comb is phase-locked to a cavity-stabilized laser at νcw ~ 195 THz.  The comb produces a phase 
coherent pulse train with repetition period, 1/  rf  ~ 5 ns and femtosecond pulse-to-pulse timing 
jitter.  A digital signal processor enables the labelling of each pulse, corresponding to the “ticks” 
of the clock. (b) Basic O-TWTFT configuration. Three heterodyne signals between the combs 
are measured at D1, D2 and D3.  At D4 and D5, the phase-modulated DFB laser signal is 
detected for the communications and coarse timing signals.  See text for additional details. PM: 
phase modulator; DFB: distributed feedback; light grey circles: 50:50 couplers; dark blue circles: 
wavelength division multiplexers (WDMs); D: photodetector 

As shown in Fig. 3, at each site A and B we place a “clock” comb, A and B respectively, that 

form the time base.  To accomplish the time-transfer, we also introduce a transfer comb X at site 

A with a repetition frequency offset by rfΔ  ~ 2 kHz.  Timing information is then exchanged 
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between sites via the two-way exchange of light from this comb X and comb B.  We achieve 

femtosecond-level detection of the arrival times of the transmitted pulses versus the local comb 

at each site through linear optical sampling  [2,26], or, in other words, by measuring the 

heterodyne signal between (i) the incoming remote comb B and transfer comb X at the master 

site A, i.e. at the photodetector labeled D1 in Fig. 3, and (ii) the incoming transfer comb X and 

remote comb B at the remote site B, i.e. at D2. In addition, we measure (iii) the heterodyne 

signal between the master comb A and transfer comb X at the master site A, i.e. at D3, to 

establish their relative timing. When combined, these three heterodyne comb signals provide 

relative time information between the two sites at the femtosecond level, if properly interpreted, 

but suffer from an ambiguity of ~ 5 ns (the separation of the comb pulses) as discussed in 

Section II.F.   

To remove this ambiguity, we operate an optical-communication-based TWTFT in parallel.  

We establish a coherent, single-mode optical communication link between sites by wavelength 

multiplexing a phase-modulated cw laser with the comb light and transmitting it via the same 

free-space optical terminal. This optical communication channel operates at 10 Mbps with 

Manchester coding and is described in detail in Ref. [27]. It serves two purposes. First, we use it 

to implement a communication-based TWTFT that provides the “coarse” time offset between 

sites with < 100 ps precision, which is more than sufficient to remove the 5-ns ambiguity from 

the heterodyne comb signals. Second, we use it to transmit the timing information recorded at the 

master site A to site B.    

Once the timing data are collected at the remote site B, which occurs every 1 ~ 0.5rfΔ ms, the 

data are processed in a digital signal processor, that implements the equations derived in the next 

section to compute the clock offset. When actively synchronized, this clock offset is fed into a 
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Kalman-filter whose output feeds a proportional integral controller to adjust the timing of the 

comb B pulse train (i.e. the clock at site B) for zero clock offset.   

We note that, for an experiment that requires only frequency comparison in post processing, 

much of this hardware is not required including: comb X, the coherent communication channel 

and associated communication-based OTWTF, the real-time digital signal processor, and the 

extensive transceiver calibration.  In that case, it is sufficient to simply exchange pulses from two 

offset combs, record their heterodyne signals, and process them offline. In implementing comb-

based O-TWTFT, it is therefore critical to identify the requirements of the overall system in 

terms of frequency or time and thus the minimum required setup.  

III.B Detailed Derivation of Time-Frequency Comparison/Synchronization 

Equations 
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Figure 4: Detailed schematic of master and remote sites.  WDM: wavelength division 
multiplexer, ADC: Analog-to-Digital Converter, FSO: free-space optical terminal, white ovals: 
fiber couplers, D: photodetector, black dots: injection sites for transceiver calibration via OTDR, 
grey shading: one example set of delays (see Section III.B.3).  

We now give a detailed derivation specific to the comb-based O-TWTFT shown in Fig. 3 and 

presented in more detail in Fig. 4.  As emphasized in Fig. 4, at each site, all signals are digitized 

and processed in a real-time signal processor whose clock is driven by the local comb A or B. 

Therefore, all digitized samples are recorded on the local timebase, albeit with additional timing 

jitter and timing delays inherent in transferring the optical pulse train timing to the ADC clock 

(that must be calibrated and removed.) Indeed, as shown in Fig. 4, there are multiple delays 

between various detected signals within the transceiver.  For the derivation, we initially ignore 

these delays and treat all measurements as occurring at a single reference point. Later, we discuss 



 

17 

the transceiver calibration that adjusts the timing of these signals to the reference plane, 

effectively applying the calibration term, ( )cal cal
VT V c TΔ + Δ  , discussed earlier.   

III.B.1 Local Timebase 

The master frequency comb A’s field at Site A’s reference plane, z = zA, is  

 ( ) ( )AA A2
A A A,

,, t zimi t
mm

E t z e E eπν Φ= ∑%   (2) 

where t is a general oracle time (a purely notational/mathematical convenience), the integer m 

labels the comb tooth number, Aν%  is the frequency of some central comb tooth, A,mE  is the 

amplitude of the mth comb tooth, and ( )A ,t zΦ  is the phase of comb A’s pulse train at a position 

z and oracle time t.  We write identical expressions for the remote and transfer combs with the 

subscript “A” replaced by “B” and “X”, respectively.  At site B, we define a reference plane 

Bz z= . The repetition rate of Combs A and B are ( ) ( ) ( )1
,A A A2 ,rf t d t z dtπ −= Φ  and 

( ) ( ) ( )1
,B B B2 ,rf t d t z dtπ −= Φ , respectively, as measured against the oracle timebase. Against 

their own timebases, both repetition rates are exactly the nominal repetition frequency r̂f  by 

definition, in this case, Eq. (2) is the usual comb equation with exponents ( )ˆ2 0,r Amf t zπ + Φ .   

Comb X’s repetition rate ( ) ( ) ( )1
,X X2 ,rf t d t z dtπ −= Φ  is offset by ~ rfΔ , the nominal 

difference in repetition frequencies. This offset repetition frequency rfΔ  sets the fundamental 

update rate of the overall measurement and is 2 kHz here. Throughout, we assume ( )rf t  is close 

to r̂f  and varies slowly compared to 1 rfΔ . As shown in Fig. 3a, the repetition rate of each 

clock comb A or B is phase locked to the underlying optical oscillator at its site.  
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In the above expression, t is some inaccessible oracle time. The measurable time at each site 

is defined through the comb phase. For site A, the phase of comb A, ( )A A,t zΦ  defines the 

timebase as indicated in the following equivalent expressions:   

 

( ) ( )
( ){ }

A A A

A

A

ˆ, 2
ˆ2

2

r

r

t z f t t

f t t t

k

π

π
π

Φ ≡

= + Δ

=

.  (3) 

The first expression of Eqn. (3) expresses the direct relationship between site A’s timebase ( )At t  

and comb A’s phase.  In other words, a “tick” in the timebase occurs at every integer multiple (of 

2π) of the phase -- or equivalently at the arrival of an optical pulse at the reference plane – and 

we define the time interval between ticks as 1 r̂f  according to that clock. The phase is a 

continuous function so that this timebase is well defined in the intervals between ticks. In 

general, we use the phase, ( )A A,t zΦ , rather than ( )At t  to describe the timebase, which avoids 

notational and Doppler-related complexities. The second expression of Eqn. (3) relates the comb 

A timebase to oracle time through a slowly varying time-offset ( )At tΔ . (In Ref. [17], this 

quantity appears as Aτ ). Finally, the third expression of Eqn. (3) relates the comb A timebase to 

the sample number, kA,  of the analog-to-digital converter (ADC) at site A (which is clocked by 

the comb A pulse train as shown in Fig. 4).  In reality, there is excess timing jitter and an 

additional time offset between comb A’s phase and kA, but we ignore these factors until the 

calibration discussion.  To reiterate, integer values of ADC sample number, kA, correspond to the 

kAth pulse arrival at z = zA and to ( )A A A, 2t z kπΦ = .  As the phase is continuous, so too kA is not 

restricted to integer values and we will consider fractional values retrieved, for example, from 
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fitting a peak with subsample precision.  At Site B, all the above equations apply after replacing 

the subscript A with B.  

Our goal is to calculate the time offset between sites, i.e. 

( ) ( ) ( )
1

A B B BA AAB
ˆ2 , ,rt tft tt z zπ

−
≡ Δ − ⎡ ⎤Δ Φ − ΦΔ ⎣= ⎦ . The simplest approach would be direct 

two-way transfer of Combs A and B between the sites followed by direct detection, as implied in 

Section III.A. However, the timing signals then have picosecond-level jitter/systematics because 

of photodetection and the ADC sample clock jitter and systematics. We can avoid this 

uncertainty through heterodyne detection between the optical pulses themselves. However, the 

short pulses from combs A and B would rarely overlap (unless the time-of-flight was an exact 

multiple of 1
r̂f
− ).  Hence, we introduce the transfer comb X that runs at an offset repetition rate 

as illustrated in Fig. Error! Reference source not found..  We measure the phase difference 

between Comb X and Comb A at the master site, and between Comb X and Comb B both at the 

remote and master site.  From these data, we extract the desired phase difference 

( ) ( )AA B B, ,t z t zΦ − Φ .  
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Figure 5: Diagram illustrating the relationship between the interferogram produced by (a) the 
interference of two combs and (b) the analogous heterodyne mixing of continuous-wave 
oscillators. (c) The peak of the interferograms between the combs yield their associated phase 
difference with orders-of-magnitude higher precision than if the detected repetition rates were 
instead measured as in (b).   This higher precision is a consequence of the shot-noise limited 
signal-to-noise ratio and the ~ 1 THz measurement bandwidth set by the optical pulse bandwidth.  
As indicated in the bottom graph, we can view the phase offset, alternately, against “oracle 
time”, which is mathematically convenient but experimentally inaccessible, or the local 
timebase, evaluated in terms of the local optical phase or the local ADC sample number.  Note 
the kAX are not integers.   

III.B.2 Computation of the Clock Offset 

The three heterodyne signals between the combs effectively measure their phase differences, 

as illustrated in Fig. 5. The pulsed nature of the comb signal provides a much more precise 
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measurement of the phase crossings (i.e. points of equal phase modulo 2π ) between oscillators, 

but interpolation is required to evaluate the phase difference during the intervening period.  

Figure 5c shows the phase difference between combs A and X, evaluated at the master site.  We 

similarly measure the phase difference between combs B and X at each site.  

Mathematically, the intensity of the heterodyne signal between the master (A) and transfer 

(X) combs (i.e. the master-transfer interferogram) is  

 ( ) ( ) ( ) ( )AA AX A X2 *
AX A A, X,

, ,, . .im t z t zimi t
m m

m m
I t z e E e E e c cπ ν ν ′− Φ− Φ

′
′

= +∑ ∑% % . (4) 

(It is actually measured at the local ADC indicated in Fig. 4, but we consider it here at z = zA).  

We select similar nominal central frequencies so that low-pass filtering retains only terms for 

which 'm m= .  Figure 6 shows an example measured interferogram.   

 
Figure 6: Example digitized interferogram between comb A and comb X (blue line).  To find its 
center, it is first filtered by a matched filter, then a Hilbert transform is applied to generate an 
envelope function (red dashed line) followed by a subsample interpolation to find its precise 
peak position.  The other interferograms require a more involved procedure (cross-ambiguity 
function search) to find their peaks’ position due to Doppler shifts. 

With appropriate substitution of the subscripts, we write similar expressions for the remote-

transfer interferogram, ( )BX , AI t z  and the transfer-remote interferogram, ( )XB , BI t z .  Dropping 

the carrier term and assuming a flat detector response (see Appendix A), the three interferograms 

are 
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( ) ( ) ( ){ }

( ) ( ) ( ){ }
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Φ −Φ
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=

=

∑

∑

∑

  (5) 

These sums describe a series of interferograms, or peaks, at times whenever the phase 

difference is zero modulo 2π , as illustrated in Fig. 5.  They repeat at the difference in repetition 

rates, rfΔ . Consider the stream of interferograms represented by IAX. Let us introduce the 

integer AXp  that counts successive interferogram peaks that occur at oracle times AXpt t=  so that 

we have ( ) ( )X AX A AX A AX, , 2p A pt z t z pπΦ − Φ = .  Of course, we do not have access to these oracle 

times, AXpt . Rather, we have access to the interferogram peak locations with respect to the local 

ADC clock: ( )A AX A AX, 2p pt z kπΦ ≡ . (See Figure 5c.)  We record the ADC sample numbers kpAX 

corresponding to the pAX interferogram with sub-sample precision by applying a matched filter to 

the incoming interferogram signal, calculating the Hilbert transform to find the envelope, and 

fitting the peak.  (See Fig. 6.)  The end result is set of paired values { }AX AX, pp k .  

For the interferograms IBX and IXB, we introduce the analogous integers BXp  and XBp  that 

count successive interferogram peaks occurring at oracle times BXpt  and XBpt .  For IBX, we find 

the interferogram peak location as kpBX against site A’s ADC clock, whereas for IXB, we find the 

interferogram peak location as kpXB against site B’s ADC clock.  In these cases, the incoming 

comb light and thus interferograms suffer from Doppler shifts. Therefore, we cannot find the 

peak locations by the same matched-filter approach as for the kpAX as this would incur intolerable 

systematics due to coupling between the extracted peak values and the Doppler shifts due to 
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dispersion. (See Section III.A.3.)  Instead, we use a cross-ambiguity function search, as 

described in Appendix A.  The end results is again two sets of paired values, { }BX BX, pp k  and 

{ }XB XB, pp k . 

We connect the recorded pairs of data from the interferogram peaks with the comb phases as 

follows.  

On site A, from the master-transfer (AX) interferogram, 

 ( ) ( )X AX A A AX A AX, , 2p pt z t z pπΦ − Φ =  , (6) 

 ( )A AX A AX, 2p pt z kπΦ ≡ .  (7) 

On site A, from the remote-transfer (BX) interferogram, 

 ( ) ( )X BX A B BX A BX, , 2p pt z t z pπΦ − Φ = , (8) 

 ( )A BX A BX, 2p pt z kπΦ ≡ .  (9) 

On site B, from the transfer-remote (XB) interferogram, 

 ( ) ( )X XB B B XB B XB, , 2p pt z t z pπΦ − Φ =  .  (10) 

 ( )B XB B XB, 2p pt z kπΦ ≡ .  (11) 

In writing Eqns. (6) through (11), the comb phases appear on the left hand side and measured 

quantities appear on the right hand side.  Again, these equations for now ignore any offsets due 

to propagation delays internal to each site and timing noise.  (Section III.B.3 discusses the 

system calibration.)   

The integers AXp , BXp , and XBp  represent the number of excess pulses that the transfer comb 

has accumulated compared to the master or remote comb since the start of each site's pulse 
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counter.  AXp  is straightforwardly counted as the co-located master and transfer combs yields a 

stable, reliably measurable IAX that peaks for each and every excess pulse from the transfer 

comb.  However, turbulence-induced fades can lead to missing interferograms for IBX and IXB. 

Therefore, BXp  and XBp  must be resolved using the communications-channel-based TWTFT 

system as described in Appendix B. 

We now rewrite these equations to (i) effectively eliminate the transfer comb phase and (ii) 

formally obtain equations as in two-way time transfer. This elimination of the transfer comb 

phase is achieved by using Eqn. (6) and a linear expansion of the phase to map XΦ  to AΦ  as 

 ( ) ( ) { }X A A A AX AX, , 2 2 r pt z t z p f t tπ πΦ = Φ + + Δ −   (12) 

where t is near tpAX. In the implementation, this mapping is done through parabolic interpolation 

and does not require knowledge of rfΔ . This parabolic interpolation is accurate up to constant 

acceleration, meaning that any bias would be on the order of ( )2 ra fΔ& .  Note the right-hand side 

includes oracle times but only as a difference, and thus the offset between oracle time and the 

local site A timebase, AtΔ , drops out. We will use Eq. (12) liberally below. 

To formally obtain the two-way time-transfer equations, we identify two events that occur at 

every update time interval 1 rfΔ  (assuming no turbulence fades):  

Event 1: Effective transmission of the comb A time (or phase) to site B, as recorded by the 

pXBth peak of the IXB interferogram at oracle time t = tpXB.  In the conventional two-way time 

transfer, we would record the departure time TAA from site A (as measured against site A’s 

timebase) and the arrival time TAB at site B (as measured against site B’s timebase).  In analogy, 

for Event 1, we formally define: 
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( ) ( )
( ) ( )( )

XB

X

1

B XB

AB

1

AA

ˆT 2

ˆT 2

,

,

B p B

A p A B pr A

r t z

t

f

f T t z

π

π
−

→

−
Φ≡

Φ −≡
  (13) 

where we convert from phase to time through the nominal repetition rate, r̂f  and ( )A B XBpT t→  is 

the time-of-flight for a signal that arrives at site B at oracle time XBpt . Therefore, we have a pair 

of TAB and TAA associated with each pXB. 

Event 2 Effective transmission of the comb B time (or phase) to site A, as recorded by the 

pBXth peak of the IBX interferogram at oracle time t = tpBX.  Again, in the conventional two-way 

time transfer, we would record the departure time TBB from site B (as measured against site B’s 

timebase) and the arrival time TBA at site A (as measured against site A’s timebase).  In analogy, 

for Event 2 we formally define: 

 
( ) ( )
( ) ( )( )

1

BX A

BX

BA

1

BB A XB B B

ˆT 2

ˆT 2

,

,

A p

B p

r

r p

t z

t t z

f

f T

π

π

−

−

→

Φ

Φ −

≡

≡
  (14) 

where ( )B A BXpT t→  is the time of flight for an event that arrives at site A at oracle time BXpt . We 

have a pair of TBA and TBB associated with each pBX. 

We can connect these definitions Eqns. (13) and (14) with the actual measurements, Eqns. (6)

through (11) as (see Appendix C for derivation): 
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XB
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=
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We can now find the time difference by use of the standard two-way time-transfer equation, 

e.g. Eqn. (1), 

 [ ] ( ) ( ) ( )AB AA AB BB BA A B XB B A BX cal cal
1 1 /
2 2

V
p pt T T T T T t T t T V c T→ →

⎡ ⎤Δ = − − + + − + Δ + Δ⎣ ⎦   (16) 

evaluated at the mean oracle time ( )BX XB 2p pt t t= +  and where we have introduced a static, calTΔ

, and velocity dependent, cal
VTΔ , calibration term whose determination is discussed in Section 

III.B3.  This formula can be derived by use of Eqn. (3) and their analog at Site B, Eqn. (13), Eqn. 

(14), and the expansion ( )( ) ( ) ( )B BX B A BX B B BX B B A BX
ˆ, , 2p p p r pt T t z t z f T tπ→ →Φ − ≈ Φ − . 

To evaluate this quantity, e.g. Eqn. (16), we require the middle term, which is the non-

reciprocal time-of-flight. Based on the discussion in Section III.A.1 and III.A.2 as well as 

Ref. [28], for our geometry  

 ( ) ( ) [ ]A B XB B A BX async A B2p p
V VT t T t t L L
c c→ →− = Δ + −   (17) 

which assumes a mirror moving at closing velocity V/2 located at a distance LA(t) from site A 

and LB(t) from site B.  Note that in this geometry, the difference A BL L−  is time independent and 

must be roughly calibrated by measuring the distances for a shorted link.  To generalize to the 

alternate scenario of a stationary clock A and a moving clock B, we would replace Eqn. (17) 

with ( ) ( ) ( )A B XB B A BX async B A BXp p p
VT t T t t T t
c→ → →
⎡ ⎤− = Δ +⎣ ⎦  and in addition introduce a time dilation 

as discussed in Section II.B.  Note that the asynchronous sampling time offset, 

async AB BA ABt T T tΔ = − + Δ ,  defined initially in Section III.A.2 notably depends on the clock offset 

so that a solution of (17) requires solving for ABtΔ .    
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However, we first require the instantaneous closing velocity, V , which is assumed slowly 

varying on the timescale of 1 rfΔ . It is computed from the derivative of the timestamps and is 

given by 

 BB AA

BA AB

1 T TV
c T T

= −
& &

& &
,  (18) 

where each derivative is computed using a 3-point numerical derivative centered on the right 

time, which is accurate up to second order. This equation follows from Eqns. (13) and (14) and 

simply reflects the Doppler shift on the received pulse trains, e.g. 

( ) ( )( ) [ ] ( )
1

BB B B A B ,B
ˆ ˆ2 , 1r r rT f d t T t z dt V c f t fπ

−

→= Φ − = −&  .  

Solving Eqn. (16) by use of Eqns. (17) and the expression for asynctΔ  gives,  

 [ ] [ ]cal AB BA AAB AA AB BB BA B cal
11 2 2

2 /
VVT T T L L T

c
t T T T T

V c c
⎧ ⎫Δ = ⎛ ⎞Δ − + − Δ⎜ ⎟

⎝
− − + + + +⎨

⎠
⎬− ⎩ ⎭

  (19) 

or using Eqn. (15)a-d to express the clock offset directly in terms of the measured quantities,  

 

( ) ( )

[ ]( )

1

AB AX BX AX XB XB AX2

XB BX AX cal

1
XB BX A B cal

1 ˆ1ˆ2 /

1 2 2ˆ

1 ˆ ˆ2ˆ

r
p p r r p p

r

r

V
p p r r

r

ft k k f f k k p p
V c f

p p p T
f

V k k f c L L f T
cf

−

−

⎧Δ⎪ ⎡ ⎤Δ = − + + Δ − − +⎨ ⎢ ⎥− ⎣ ⎦⎪⎩

⎡ ⎤+ + − + Δ⎣ ⎦

⎫⎪+ − + − + Δ ⎬
⎪⎭

  (20) 

Alternatively, to connect with [17], we can retain an explicit time-of-flight term using Eqn. (33)

from Appendix C and note that 1 1
AX XB AX XB ABp p r p r pt t f k f k t− −− = − + Δ   to write 
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{ } ( )

[ ]( )

1 1 1
AB AX XB BX A B XB

1

1 1
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XB BX AX cal

1
A B aX c l

1

2 2

2

ˆ ˆ ˆ2ˆ ˆ ˆ2 / /
ˆ

ˆ ˆ

r r
r p r p r p p

r r r r

r

r p r
V

p

f ft f k f k f k T t
V c f

p p p T

V k c L

f f f

f

f T
c

f k L

− − −
→

−

− −−

⎧Δ Δ⎪Δ = − − +⎨
− + Δ ⎪⎩

+ − Δ

⎫+ + − + Δ

⎡ ⎤+ +⎣ ⎦

− ⎬
⎭

.  (21) 

We note that solving for A B XB( )pT t→  to first order in velocity through another combination of our 

four effective timestamps yields 

[ ] ( )[ ] ( )[ ]21 1 1
2 4 2A B XB AB AA BA BB AB AA BA BB A B( )pT t T T T T V c T T T T V c L L→ = − + − + + − − + −  which 

in turn could be expressed in terms of measured quantities via Eqn. (15). 

III.B.3 Transceiver calibration 

As discussed previously, the above equations assume measurements at one site are made at 

exactly the same physical point.  However, as shown in Fig. 4, each site is far from a single 

physical point. To obtain the delays, we implemented a custom Optical Time Domain 

Reflectometer (OTDR) with the FPGA-DSP platform.  A cw laser was amplitude-modulated by 

a 5 ns pulse and injected at all possible fiber inputs to the system, indicated by the black dots of 

Fig. 4, while the digitized detected signal was measured at all possible locations. One such set of 

paths for a single injection point is indicated by the grey shading in Fig. 4. We also include an 

additional detector to record the launch time of the pulse.  Each pair of launch and detection 

times yields one particular linear combination of the system delays, which is captured through a 

measurement matrix M with each row representing one measurement and each column 

representing one delay.  

This system of equations alone was not sufficient to solve independently for all the possible 

delays (there are far too few measurements). Consequently, we built a second matrix C 
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(Calibration) representing only the subset of linear combinations of delays required to adjust the 

various timestamps to relate them all to a single calibration point.  The problem was thus reduced 

to finding a linear combination of our measurements that yielded each required calibration value, 

itself a linear combination of the physical delays of the system, which can be succinctly 

represented as solving the system: C = A*M, where each row of A contains the coefficients of 

the linear combination of measurements required to compute one calibration value.  By using the 

same RF paths, clock distribution and ADCs as the synchronization measurements, the delays 

associated with the FPGA-DSP platform are taken into account.  This step needs to only be 

performed once as long as the transceiver configuration is not altered. We could combine the 

various delays to generate the values for calTΔ  and cal
VTΔ . However, in the actual implementation 

we simply apply separate correction terms to each of the measured values before combining 

them into Eqn. (19). 

Note that these delays can change with time. In particular, environmentally-induced phase 

noise due to temperature fluctuations or vibrations will cause variations in the delay values and 

can appear as a systematic bias in clock offset.  Fortunately, the impact of environmentally-

induced noise on the RF cables and components is suppressed by rrf fΔ . The main concern is, 

therefore, temperature-induced variations in the various “non-reciprocal” fiber optic paths, e.g. a 

portion of the fiber inside the optical transceivers. (Note that fiber paths connecting the 

transceivers to the free-space optical telescopes are part of the link and thus any variations in the 

delay from these is reciprocal and thus removed.) These non-reciprocal fiber paths are thus 

minimized in length and housed in temperature-controlled aluminum boxes.   

In the implementation of the calibration procedure, we do not include the integer number of 

pulse repetition periods in the delays between the comb signal and the ADC clock input, which 
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ultimately clocks the FPGA sample counter. This delay only affects the value of the sample 

counter, which takes on an arbitrary value at the system boot time. They have no effect for a 

static situation.  With motion, the sub-sample parts of these delays do matter.  However, as the 

maximum potential residual uncertainty in the computed clock offset is ( ) 5 ns=0.4 fsV c ⋅  for 

our maximum speed of 24 m/s, we chose to leave them out of the initial calibration.  As shown in 

Section V.B, the system operated below this maximum bias value and thus we could not see this 

contribution.  For systems operating at speeds greater than 60 m/s, these delays must be coarsely 

calibrated to avoid the residual uncertainty exceeding 1 fs.   

As discussed in Appendix A, to avoid Doppler-systematics, we must also compensate for the 

electrical dispersion in the detection chain. To estimate the required compensation filters, the 

system’s electrical impulse response was measured by injecting pulses from an external 

frequency comb at a highly offset repetition rate to create occasional impulses (single-point 

interferograms). This optical injection technique of ultra-short pulses required no modification of 

the RF path, ensuring that all synchronization measurements used the identical RF signal path as 

the one seen by the interference signal. 

In the case of our “Doppler simulator” rail, an additional calibration step must be performed 

to compute the initial distance from the remote and master clocks to the retroreflector, i.e. 

[ ] ( ) ( )1 1
A B A B0 0c L L c L L− − ⎡ ⎤− = −⎣ ⎦ .  This distance needs to be known to 30 cm to achieve 100 as 

timing and was determined in the same OTDR measurement as described above. 

III.C Hardware Implementation  

Section III.A already provided a system overview with additional details of the optical system 

provided in Refs. [2–4,29].  Here, we highlight the modifications required to suppress the 
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motion-related effects by the necessary three-four orders of magnitude. First, we physically 

altered the optical transceivers of Refs. [2–4,29] to reduce the dispersion and therefore the delay-

Doppler coupling. In addition, as noted above, there was significant ancillary calibration 

hardware and firmware developed for the calibration.  Second, while nearly invisible in the 

schematics of Figs. Error! Reference source not found. and 4, the digital signal processing 

required a new architecture. We now use a much more flexible combination of an FPGA and a 

DSP to implement the algorithm derived in the previous section in real time at a 2-kHz update 

rate, thereby enabling real-time synchronization between remote sites with a 10-100 Hz effective 

bandwidth.   

III.C.1 Optical Transceivers 

 
Figure 7: Measured time shift in the interferogram position as a function of Doppler shift, both 
without dispersion compensating fiber (DCF) and with DCF.  The improvement with the 
addition of DCF is evident in the factor of 50 reduction in y-axis between the top and bottom 
plots.  It is evident in the latter computation that a simple linear compensation for the delay-
Doppler coupling is insufficient to maintain fs-level timing. 

The optical transceivers at each site are very similar to that of Refs. [2,29].  However, unlike 

the case of a slowly-varying link, the total optical dispersion must be minimized to mitigate the 

delay-Doppler coupling as described in Section III.A.3.  Specifically, the local comb pulse train 



 

32 

needs to experience close to the same dispersion as the incoming pulse train in order to avoid the 

largest delay-Doppler systematic of magnitude, ( ) 22 bs
r

Com
r cf V cf πν βΔ Δ . To this end, we add 

polarization-maintaining dispersion compensating fiber (DCF) at the output of each site’s 

transceiver.  This fiber is in the common path of both combs B and X. It compensates for the 

dispersion accumulated in the fiber optic paths from the transceivers to the free-space optical 

terminals and to the Doppler simulator.  The home-built DCF module had a 4-dB insertion loss, 

but the low insertion loss (1.5 dB) of the free-space optical terminals [25] still enabled operation 

at 4 km.  (Lower loss DCF modules are also commercially available.) Figure 7 shows the delay-

Doppler coupling in terms of systematic time shift of the extracted interferogram peak location 

versus Doppler shift, both before and after the insertion of the DCF module. The DCF module 

reduced the delay-Doppler coupling by a factor of 30. As the effects of second-order dispersion, 

2
CombsβΔ , is minimized, it is clear from Fig. 7 that higher order dispersion effects must be 

considered. To counteract systematics from all dispersion effects and to avoid further 

calibrations associated with this effect, we perform a two-dimensional search of the cross-

ambiguity function. This approach is discussed in Appendix A. Figure 8 compares the cross-

ambiguity function before and after the insertion of the DCF.  
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Figure 8: Delay-Doppler coupling.  The specific waveform dispersion causes coupling between 
the closing velocity (Doppler shift) and the measured arrival time of the interferogram as 
recorded before and after the insertion of the DCF. (a) High differential dispersion, 2

CombsβΔ , 
leads to a chirped interferogram (top figure) and a large delay-Doppler coupling as illustrated by 
the cross-ambiguity function (bottom figure).  The amplitude of the cross-ambiguity function is 
shown on an arbitrary linear scale with warmer colors indicating higher intensity (greater 
correlation).  (b) Low differential dispersion achieved through the insertion of dispersion 
compensating fiber reduces the interferogram chirp (top figure) and the delay-Doppler coupling 
(bottom figure). A vertical line would reflect zero delay-Doppler coupling. 

III.C.2 Digital Signal Processing  

The real-time digital signal processing enables all processing steps, from initial interferogram 

detection to clock offset computation, to occur within a single interferogram period, 

500 μs1  rfΔ .  The computed clock offset is then fed to a Kalman-filter-based loop filter to 

allow for feedback to comb B with a synchronization bandwidth of 10 – 100 Hz.   Here, we 

provide more details on the implementation of the digital signal processing with a high-level 

view of the signal processing on site B captured in Figure 9. The digital signal processor (DSP) 

is a 1.25 GHz multicore DSP with hardware floating-point support, running a bare-metal 

application.  It interfaces with the Field Programmable Gate Array (FPGA), which is a Virtex 7 
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XC7VX485T [30] and contains 486k logic cells and 2.8k dedicated hardware multipliers running 

at 200-MHz clock rate. 

 
Figure 9: (a) Signal processing on Site B.  The heterodyne detection between the incoming comb 
X and local comb B yields the series of interferograms (blue trace).  After digitization and 
filtering, the signal processor extracts the timestamps using a cross-ambiguity function (CAF) 
search, as described in Appendix A. The coherent communication channel detects the heterodyne 
signal between the local cw laser and transmitted cw laser.  As discussed in Ref. [27], it 
generates both the timestamps for the communication-based O-TWTFT, labelled 
{ }AA AB BB BA, , ,T T T T% % % % , and transmits the timestamps recorded on site A via data packets to site B.  
The signal processor computes the clock offset from the equations given in Section III. A  
Kalman-filter-based loop filter then applies the necessary feedback to comb B via a Direct 
Digital Synthesizer (DDS). (b) Image of the signal processor that uses an 8-core digital signal 
processor (DSP) and field programmable gate array (FPGA). (c) Image of the optical transceiver 
at site B. CAF: cross-ambiguity function; IGM: interferogram  

From the comb-based system, we detect three heterodyne signals corresponding to the three 

series of interferograms, two on the master site and one on the remote site.  All three heterodyne 

signals are low-pass filtered before digitization by the ADC at a 200 MHz sampling rate.  The 
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time series of the heterodyne signals then passes through a wideband digital filter, which 

compensates for the electrical dispersion (see Section III.B.3), and then a Hilbert-transform filter.  

When the amplitude of the Hilbert-filtered signal is above a given threshold, the processor passes 

a short data window (512 samples) around the peak to the DSP for further processing.   

The DSP determines the precise timestamp, according to the local ADC clock, corresponding 

to each interferogram peak. For the interferograms between comb A and X, we use a simple 

matched-filter-based extraction of the timestamp, as discussed in Figure 6.  For the 

interferograms between comb B and X, we use the more complicated cross-ambiguity function 

(CAF) search as discussed in Appendix A. To accomplish this search in realtime, we implement 

first a coarse search based on an FFT algorithm along a grid defined by a few initial velocity 

guesses and then a fine search based on the Nelder–Mead (downhill simplex) method [31].   

The detection of an interferogram also triggers the protocol to initiate a communication-based 

TWTFT measurement and the subsequent transmission of those data and the comb timing data 

from site A to site B.  Thus, the communication-based TWTFT data are also updated at a rate of 

rfΔ .  Each site takes turns at sending { }AA AB BB BA, , ,T T T T% % % % their own PRBS signal to generate these 

timestamps, { }AA AB BB BA, , ,T T T T% % % % , as discussed in Appendix B and Ref. [27]., after which the 

communications link transmits the four timestamps from site A, AA BA,T T% % , BXk  and AXk  to site B.  

The processor on the remote site then aggregates all the observations into short circular 

buffers in order to handle the asynchronous data streams, allow interpolation operations (e.g. 

Eqn. (12)), and ensure that all observations are recent enough to calculate a clock offset.  The 

timestamps are all offset by the calibrated transceiver delays, as discussed in Section III.B.3, in 

order to relate all observations to a common reference point at each site. While each observation 

stream is nominally sampled at a rate of 2 kHzrfΔ ≈ , random signal fades lead to missing 
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timestamps.  In that case, no time offset is calculated since we require a full set of timestamps 

from both the heterodyne comb measurement and communication-based O-TWTFT. 

Furthermore, the velocity estimation (Eq. (18)) requires three nearly consecutive data points. 

Therefore, before calculation of a time offset, we verify that all data is within a 2 ms time 

window. The calculated clock offset is then passed to the Kalman filter, whose phase estimate is 

passed to a proportional-integral loop filter that adjusts the remote comb.   

IV. Free-space Testbed 

In the absence of a moving clock, we employed two different methods of generating a time-

varying link both of which mimic time-transfer via moving, intermediate clock site. (See Figure 

1).  

 
Figure 10: (a) Schematic of the Doppler-simulator. The corner cube is on a 2-meter long rail.  
This 6-pass design allows for bi-directional propagation, effective displacements of 24 m and 
effective speeds of 24 m/s. (b) Detailed schematic of coupling to quadcopter-mounted-
retroreflector. 

The Doppler simulator rail is shown in Fig. 10a and consists of a retroreflector mounted on a 

cart that travels back and forth across a 2-m long rail by a belt-and-pulley and programmable 



 

37 

servo motor.  As shown, the signals are polarization multiplexed to allow for bi-directional 

operation and to multiply the path length by 12, giving effective displacements of 24 meters and 

closing velocities of up to ±24 m/s. The motion was programmed for approximate constant 

velocity, other than the brief deceleration/acceleration at the turn-around points. The inevitable 

cross-talk between polarizations causes spurious back reflections. However, these back 

reflections can usually be rejected in the time domain given the pulsed nature of the signals via a 

windowing operation. The Doppler simulator rail is used in series with the existing 0-4 km free-

space link.  

The Doppler simulator allowed for repeated testing but had limited displacement. For more 

realistic conditions, we mounted a retroreflector onto a quadcopter, which was flown directly 

towards and away from the clocks at effective closing velocities of up to ±20 m/s and over 

displacements of 500 meters.  Flight restrictions at the test site prevented longer flight paths.  In 

previous static demonstrations and for the tests with the Doppler simulator, we had created a 

folded free-space link by placing a flat mirror at the far point.  Here, we effectively replace that 

flat mirror with a retroreflector to minimize the pointing requirements on the quadcopter. As a 

consequence, the free-space link is folded onto itself, thus a single tracking terminal is needed, 

and we use polarization multiplexing of the two-way optical signals to maintain bi-directionality.  

In transitioning to this configuration, a new full OTDR-based calibration was not performed and 

thus the calibration of several transceiver delays was not as precise leading to a slight 

degradation in performance.  As described in Ref. [32], the tracking terminal follows the 

quadcopter by feedback to a gimbal based on image processing from a bore-sighted CMOS 

camera that detects the retroreflected light of an 850-nm LED beacon. 
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V. Results 

V.A Time Synchronization 

Here, we present results from the full time synchronization of sites A and B.  The signal 

processor at site B returns the computed clock offset from the O-TWTFT data, the estimated 

instantaneous closing velocity, and estimated instantaneous time-of-flight. For verification data, 

it also samples the out-of-loop clock offset continuously. We then have two different measures 

of the clock time offset: (i) the O-TWTFT computed time offset, which is only available in the 

absence of signal fades, and (ii) the verification data for the clock offset, which is available at all 

times including during fades and during the subsequent re-synchronization. Both are available at 

a 2-kHz update rate. Typically, we only show the verification data as it is an “out-of-loop” 

measurement as opposed to the computed O-TWTFT clock offset, which is “in-loop” in the 

sense it must be driven to zero by the overall synchronization feedback.  Figure 11 shows “out-

of-loop” verification data for the clock offset when the system is operated for 30 minutes with 

the Doppler simulator at effective ±24 m/s relative velocities in series with the 4-km turbulent air 

path. The feedback to the remote clock at site B was set to a synchronization bandwidth of 10 

Hz, giving the clear shoulder in the timing power spectral density (PSD) of Fig. 11b. 

Because the link included a 4-km turbulent air path, there are also signal fades of a few 

millisecond duration which there is no O-TWTFT data. In Fig. 11a, we indicate these periods by 

the blue data points. Since they are short, the use of the Kalman filter effectively maintains 

synchronization. In general, we distinguish between periods of active synchronization, when 

there is valid O-TWTFT data over the link, and periods without active synchronization, when 
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there has been a long signal fade and therefore no O-TWTFT data.  For the typically short signal 

fades, such as those evident in Fig. 11a, we still consider the system actively synchronized. 

However, if the signal-fade is of long duration (with respect to the inverse overall feedback 

bandwidth) then we consider the remote site free-running.  Given the current bandwidths, we 

consider the system “actively synchronized” if the signal fades are less than 20-ms in duration.  

Therefore, when we report time deviation or other quantities during active synchronization, we 

mask out the period of the signal fade and re-acquisition for fades greater than 20-ms duration.   

 
Figure 11: (a) Out-of-loop clock offset sampled continuously (light blue) and only during active 
synchronization (grey dots) at the full ~ 2 kHz sampling rate over a 4-km open air path and at a 
24 m/s effective speed by use of the Doppler simulator.  This trace shows a short 1-s segment  
out of the full dataset to better illustrate the behavior. (b) Timing power spectral density (PSD) 
for the full 30-minute duration dataset. (c) Fractional frequency instability (modified Allan 
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deviation) for both continuous sampling (light blue squares) and only during active 
synchronization (grey circles).  The strong white phase noise character at averaging times below 
100 seconds is evident with the red dashed line of 16 3/25.2x10 t− −  added as a guide to the eye. (d) 
Time deviation for the same data. 

Figure 12a presents a more detailed view of a 10-s data set acquired with the Doppler 

simulator in series with the 4-km turbulent open-air path. As expected, at the full 2 kHz sampling 

rate, the in-loop computed O-TWTFT clock offset is noisier than the out-of-loop verification 

data because the optimized feedback bandwidth of 10 Hz effectively smooths the clock offset. 

(In other words, for timescales shorter than 0.1 s, the timing follows the local optical oscillator.)  

However, its average value is zero since the system is phase-locked.  Because of turbulence 

across the 4-km air path, there are many fades during even this brief data set, indicated by the 

blue regions in the out-of-loop clock offset.  For several of the longer duration fades, the out-of-

loop clock offset shows both the random, slow walk-off in the clock time offset followed by re-

synchronization.  

The velocity estimate is critical to removing the velocity-dependent effects.  As mentioned 

earlier, it is evaluated at the full data rate (of 2 kHz) by use of three successive time stamps. It 

has an uncertainty of 1.2 mm/sec due to the uncertainty in the timestamps. With averaging, this 

uncertainty drops as 1/220  μm/s sτ −⋅ ,  thus reaching 20 μm/s at a τ=1-second averaging time.  

Figure 12b presents the out-of-loop clock offset for operation with the Doppler simulator at 

±24 m/s effective closing velocities over varying open-air paths of 0, 2, and 4 km for a 1200-s 

duration measurement. In addition, it presents data for zero velocity over a shorted (0-km) path.  

The standard deviations are 0.98 fs, 1.0 fs, 1.2 fs, and 0.81 fs, respectively. The slightly 

increased standard deviations are consistent with, and attributed to, an increased number of 

signal fades over the longer air paths rather than systematic velocity-dependent effects.  The 

slow wander in the out-of-loop time offset evident in these data (and also in Fig. 11c and d at 
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averaging times of 100 seconds or greater) is dominated by temperature-induced variations in the 

path length of the optical fiber connecting the two sites to provide the verification time offset 

signal. 

 
Figure 12: (a) Clock synchronization with the Doppler simulator operated at its maximum ±24 
m/s speed. The plot shows the instantaneous closing velocity (dark blue, top trace) as the 
retroreflector cycles back and forth on the Doppler simulator rail, the in-loop computed O-
TWTFT clock offset (purple dots, center trace) and the out-of-loop verification clock offset 
during periods of active synchronization (grey dots, lower trace) and across signal fades (light 
blue line, lower trace).  (b) Out-of-loop measured clock offset during periods of active 
synchronization for the following conditions:  V = 0 m/s and L =0 km, V =±24 m/s and L =0 km,  
V=±24 m/s and  L=2 km, V =±24 m/s and L =4 km.  All data is at the full 2 kHz sampling rate.   

Figure 13 shows a similar data set but for three passes of the quadcopter-mounted 

retroreflector. The signal fades here can sometimes have long duration due to the challenges of 

coupling light into the single-mode fiber while tracking the moving quadcopter, rather than the 

effects of atmospheric turbulence.  The standard deviation of the clock offset during active 

synchronization is 3.7 fs representing a slight degradation in performance from that of the 
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Doppler simulator. We attribute this degradation to the increased measurement noise due to 

lower return powers and frequent signal fades, as well as the less precise delay calibration.  

Figure 13 includes expanded views of the clock offset during periods of active synchronization 

but that include short signal fades.  The significant control effort to re-acquire synchronization 

after a long duration fades is clearly evident in the lower rightmost panel, which exhibits ~ 100 fs 

clock excursion. 

 

Figure 13: Clock synchronization during flight of quadcopter. Top Panel: Three passes of the 
quadcopter showing the instantaneous closing velocity (blue) and out-of-loop clock offset during 
active synchronization (grey dots).  Bottom Panels: Expanded views containing continuously 
sampled clock offset (light blue) as well as only during active synchronization (grey dots) 
showing clock walk-off during signal fades and synchronization re-acquisition. 

In addition to the time deviation and modified Allan deviation presented  in Fig. 11 above, 

Ref. [17] provides additional time and modified Allan deviations for both the Doppler simulator 

and quadcopter.  

V.B Velocity-Dependent Bias 
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Figure 14 summarizes an analysis to quantify any velocity-dependent bias based on data 

acquired with the Doppler simulator at effective relative velocities from 0 to ±24 m/s and a free-

space path length of 0, 2 or 4 km. As discussed below, we find no bias, at the two-sigma level, to 

within 330 as uncertainty for relative velocities up to ±24 m/s.  

 
Figure 14: Time series of closing velocity and clock offset for operation of the Doppler simulator 
in series with a (a) 0 km, (b) 2 km, and (c) 4 km open air path.  The clock offset data is 
resampled to 10 Hz.  (d-e) Clock offset vs closing velocity (grey circles) for the 0 km, 2 km, and 
4 km paths of (a)-(c).  The red dashed line is a quadratic fit to the data which is used to estimate 
any residual bias. 

For these data, we reversed the normal operation of the system. We re-routed the signals so 

that the input to the feedback for the remote clock was the verification clock offset data rather 

than the clock offset computed from the O-TWTFT data.  In this way, we avoid the increase in 

the clock offset noise caused by the combination of signal fades and loop dynamics. (We could 

also have simply locked both sites to the same local oscillator and disabled the feedback.)  This 

configuration allows us to examine the clock offset computed from the O-TWTFT data for any 

residual velocity-dependent bias without the impact of the loop dynamics.  The data of Figure 
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14a exhibit a slow, few-femtosecond wander, but this wander is not correlated with velocity. It is 

attributed to laboratory temperature fluctuations that modulate the length of the fiber optic in the 

verification path.  As seen earlier, we do observe an increase in the clock-offset noise for the 2 

and 4 km path, but again there is no correlation with velocity. It is attributed to reduction in 

received power due to atmospheric turbulence.  

To quantify any residual velocity-dependent bias, we calculated the mean of the clock offset 

versus closing velocity by averaging the clock offset over periods of constant velocity from the 

Doppler simulator. These data are given Fig. 14 (d)-(f) for 0, 2, and 4 km free-space paths, 

respectively.  To test the hypothesis of the absence of velocity-dependent bias, we fit the 

combined data of Fig. 14 (d)-(f) to a flat line. We find a reduced chi-square value of 

2
reduced 0.803χ =  given the measurement noise.  There is an 87% confidence of obtaining this 

value of reduced chi-squared or higher due to measurement noise alone, indicating that there is 

indeed no velocity-dependent bias (with all the standard assumptions of normality and 

independence of errors).   

Alternatively, to further attempt to quantify the maximum possible bias, we fit these data 

separately to the quadratic function 2
0 1 2t c c V c VΔ = + + , yielding the red dashed lines of Fig. 14. 

In the absence of bias, the coefficients c1 and c2 should be zero.  The values returned from these 

fits are given in Table II.  For the worst quadratic systematic from the table (at 2 km), the 2-

sigma value of the coefficient is -0.26-2(0.16)= -0.58 as/(m/s)2, which yields a worst case timing 

bias of 330 as.  Repeating this process for the worst-case linear systematic yields 210 as.  Note 

that a value below 330 attoseconds represents orders of magnitude suppression of potential 

sources of bias as illustrated in Table I.   

Table II: Coefficients from weighted quadratic fit of clock offset versus closing velocity. 
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Pathlength 
[km] 

c0 
[as] 

c1 
[as/(m/s)] 

c2 [as/(m/s)2] 

0 19 ± 30 4.5 ± 2.1 -0.01 ± 0.14 

2 51 ± 45 -0.5 ± 2.2 -0.26 ± 0.16 

4 -23 ± 65 2.3 ± 2.7 0.07 ± 0.21 

VI.  Considerations in Scaling to Higher Velocity and Longer 

Distances 

There is no clear velocity-dependent limit in either the data of Fig. 12, 13 and 14 or the data 

of Ref. [17].  Rather, the short-term noise is due to the timing jitter of the frequency combs and 

the long term wander is due to temperature drifts in the out-of-loop verification fibers.  For these 

data, the Doppler simulator reached a maximum speed of 24 m/s and a folded physical 

displacement of 12 m, while the quadcopter reached a maximum speed of 20 m/s and a folded 

physical displacement of 500 m.  At even higher velocities or longer displacements, we expect 

limitations on the synchronization performance to arise due to terms of order 2V , the presence of 

acceleration or higher order velocity derivatives, and the limits of the transceiver calibration. A 

number of these effects can be calculated and the equations of Section III extended.  

For example, we can consider the impact of acceleration.  While the limits due to acceleration 

were not fully explored experimentally due to physical limitations of the Doppler simulator, the 

system reached accelerations of ~70 m/s2.  Naively, we might expect the first order contribution 

to scale as 
2

A B
1

2 r

a T
c f →

⎡ ⎤
+⎢ ⎥Δ⎣ ⎦

 , where a is the acceleration, yielding 15 fs for ~ 70a  m/s2.  

However, by using centered derivatives to estimate the closing velocity at both sites at the 

correct time, the contribution from acceleration is below 100 attoseconds.  This limit could 
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conceivably be lowered further if an explicit model of displacement vs time which includes an 

acceleration term was added to the equations.  

Assuming that the higher-order velocity and acceleration terms could be handled by extending 

the O-TWTFT equations of section III, the most significant concern at higher velocities will be 

the increased Doppler shifts.  The interferograms are currently sampled at rf ~ 200 MHz.  To 

avoid aliasing, we thus currently require the Doppler shifts to be below roughly half of the 

Nyquist range of 100 MHz, which limits the system to an effective speed of 75 m/s. In principle, 

by exploiting aliasing the system could support higher Doppler shift but this is restrictive in 

practice. Moreover, strong Doppler shifts will disrupt the initial detection, or triggering, of the 

interferograms. Finally, the cross-ambiguity search for the interferogram peaks, described in 

Appendix A, is only suitable for a limited range of Doppler shifts in its current implementation. 

Many of these concerns apply as well to the coherent communication channel as the optical 

carrier is also frequency-shifted and may lead to the loss of interference signals. Therefore, as the 

speeds exceed ~50 m/s, the system will require modified approaches, such as IQ detection, 

proper bandpass sampling of the interferograms, separate transmit and local oscillators for the 

communication channel, digital filter banks for triggering etc.. However, these technical 

challenges are not dissimilar from those encountered in radar and coherent optical 

communication and a similar set of tools can be successfully applied.  

VII.  Conclusion 

Here, we have presented a detailed description of the system implementation needed to 

synchronize clocks using comb-based O-TWTFT in the presence of motion.  Using this 

implementation, we have shown that clocks at distant sites can be synchronized to below a 

femtosecond despite a time-varying link with associated speeds of up to ±24 m/s. This result 
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corresponds to a factor of 10,000 suppression of potential velocity-dependent effects.  We find 

no velocity-dependent bias between the synchronized clocks to within a conservative (two-

sigma) statistical uncertainty of 330 attoseconds.  This approach should scale to higher velocities 

if the equations are extended to higher order terms and the calibration and Nyquist limitations of 

Section VI are handled appropriately.  This demonstration opens the door for free-space clock 

networks between mobile, airborne or spaceborne platforms. 
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Appendix A: Compensation of Systematics Due to Delay-Doppler 

Coupling 

Here we derive the equations governing the coupling of dispersion and Doppler effects that 

yield systematic time shifts. We consider second-order dispersion only, but the equations can be 

generalized to higher order dispersion. Note that the algorithm uses a fit to the cross-ambiguity 

function, which does correct for these higher order dispersion effects.   

Consider the interferogram BXI . As a function of oracle time and including the response of the 

rf detection system, it is given by 

 
( ) ( ) ( ) ( )( )

( ) ( )( ) ( )
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 (22) 

where XB X Bν ν νΔ = −% % % , Xν%  is the frequency of some central tooth of comb X, ( )Doppler BV cν ν≡ %  is 

comb B’s doppler shift, * is the convolution operator, and ( )rfh t  models the lumped rf detection 

chain’s impulse response.  We dropped any constant phase terms and simplified the phase 

difference to ( ) ( )X A B A, , 2 2r rt z t z m f t mfτ π π τΦ − Φ − = Δ + , where τ  is the desired time stamp 

equal to the time-of-flight for comb B modulo rf . The objective is to measure τ  independent of 

Dopplerν . In writing  (22), we make several approximations. First, we assume this detector 

response has low enough bandwidth that we keep only a single term of the double-sum as in Eqn. 

(5).  Second, we apply a common Doppler shift to all comb teeth, corresponding to the Doppler 

shift on the tooth at the center of the transmitted comb B. Here, we neglect the corresponding 

Doppler shift on the repetition rate.  The effect of this Doppler shift on the spacing of successive 

timestamps is, of course, included within the equations of Section III, but here we are concerned 
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only with the time shift of a single interferogram. In this case, the Doppler shift on the repetition 

frequency only causes a negligible stretching of the interferogram.  (It would have to be included 

at higher velocities or if rfΔ  were significantly lower.)   

Consider Eq. (22) in the frequency domain at zero velocity and zero Doppler shift. For 

notational simplicity, we drop the BX subscript and the z-argument to find,  

( ) ( ){ }
( ) ( )( ) ( ) ( ) ( ){ }
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where we define the baseband comb spectral envelopes ( ) ( )X X XEA f f ν≡ + %  and  

( ) ( )B B BEA f f ν≡ + % , and    
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where r rM f f≡ Δ  is the “time expansion” or “frequency contraction” provided by the linear 

optical sampling.  The inverse Fourier transform of Eq. (23) is simply a train of interferograms, 

where each individual interferogram has a spectrum ( )Doppler,S f ν . Note that in the case where the 

frequency shifts are negligible, 1M >> , and there is no time delay, we have 

 ( ) ( ) ( ) ( )r
*
B Xf,0,0 H fS f A Mf A Mf≈   (25) 

 which is just the product of the scaled comb pulse spectra, modified by the rf detector response.  

To find the time delay, we consider the spectral phase of (24) 

 ( ) 22 2 2 2
Doppler 2,rf 2 XB Doppler, 2,S ff f f MMτ ν π β π ν νπ τ β∠ ⎡ ⎤+ Δ − Δ ++ ⎣≈ ⎦%   (26) 
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where we assume the group delay associated with the rf detection chain is included in calibration 

and drop higher-order dispersion terms. The first term yields the desired time delay and the last 

two are quadratic variations in the spectral phase from second-order dispersion that can lead to 

systematic bias.      

To remove the dispersion terms and therefore temporally narrow the interferogram which 

improves the SNR, we can apply a matched filter or simply multiply by ( )* , 0,0S f , measured 

during calibration.  We then have the simple relationship,  

 ( ) ( ){ }*, ,0 ,0,0 2S f S f Mfτ π τ=∠ ,  (27) 

in the absence of Doppler shifts. In the real-time processor, we actually find the peak of the 

filtered time-domain signal but the result is the same and avoids problematic spectral phase 

unwrapping at low SNR.  Now consider the bias in the presence of Doppler shifts, where  
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which would give a systematic velocity-dependent bias in the extracted optical pulse delay of 

2 DopplerMπ β ν− Δ .  

We remove this systematic in two steps. Fortunately, the rf dispersion term of Eq. (26) is 

independent of the Doppler shift and can thus be compensated for by simply applying an inverse 

filter ( )1
rfH f− .  Second, we search for the optimal Doppler shift that flattens the spectral phase 

and therefore leads to the strongest time-domain signal. We conduct this search in two-

dimensions to both retrieve the optimal Doppler shift and the corresponding time delay. This 

amounts to maximizing the cross-ambiguity function by computing
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( ) ( ) ( ) [ ]( )CAF BX template, exp 2I I t I t i t dtτ ν τ πν τ= − −∫   where ( ) ( ){ }1
template , 0,0I t S f−= F  . 

Figure 8 shows an example of the computation of ( )CAF ,I τ ν   for the system with and without 

DCF. 

Appendix B: Ambiguity resolution by the communication-channel 

O-TWTFT 

As discussed after Eqns. (6)-(11), we must resolve the ambiguity associated with the comb’s 

pulse train, i.e. BXp , and XBp .  (Recall that AXp  is determined from the straightforward tracking 

of the number of interferogram peaks between the co-located master and transfer combs.)  

We perform this resolution via the communications-based TWTFT which runs in parallel on 

the same free-space link and produces pairs of observations of the phase of the master and 

remote combs at both sites.  These observations have two salient characteristics: first, they are 

completely unambiguous and second, since they originate from a direct-modulation time transfer 

link, they are much less precise and accurate than the observations produced by the 

interferometric comb subsystem.  (See Ref.  [27] for details of the comm-based O-TWTFT 

system.) 

These two characteristics make these ‘coarse’ (10’s of ps) but unambiguous observations 

perfectly suited to resolve the ambiguities present in the comb equations.  Any noise on the 

coarse observations will drop out of the final result, as long as it is less than half a period of the 

ambiguities (5 ns), because it will not change the resolved integers.  We note that for a system 

operated at a greatly increased repetition frequency, the precision of the unambiguous 

observations must correspondingly increase. 
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This communication-based O-TWTFT system generates its own set of two-way values based 

on the emission and arrival of a pseudorandom binary sequence: { }AA AB BB BA, , ,T T T T% % % % ,  where the 

tilde indicates information associated with the lower precision comm-based O-TWTFT 

subsystem These four measurements contain the same, albeit noisier, information as Eqn. (15)a-d 

but measured at different oracle times ABt  and BAt  instead of XBt  and BXt ; however, we can 

interpolate these values to the times XBt  and BXt .  We essentially invert the equations analogous 

to Eqn. (13) and Eqn. (14) to find ( )( )A AB A B AB B,t T t z→Φ −% , ( )B AB B,t zΦ% , ( )A BA A,t zΦ%  and 

( )( )B BA B A BA A,t T t z→Φ −% , where again the tilde indicates information associated with the comm-

based O-TWTFT subsystem.  To find the integer BXp , we use Eqn. (8), the identity 

( )( ) ( )B pBX B A pBX B B pBX A, ,t T t z t z→Φ − ≡ Φ , and the local ( )X pBX A,t zΦ from the comb-based 

measurements to find its value through: 

 ( ) ( )( )X pBX A B pBX B A pBXX BB round , 2 , 2t z t T tp zπ π→
⎡ ⎤= − ⎦− Φ⎣Φ

% . (29) 

Likewise, to resolve the integer XBp , we first isolate it by Eqn. (10) and the identity 

( )( ) ( )X pXB A B pXB A X pXB B, ,t T t z t z→Φ − ≡ Φ  .  We then use the extrapolation expression of Eqn.(12) 

to generate values of AΦ%  at the necessary times along with the local ( )B pXB B,t zΦ from the 

comb-based measurements, to find: 

 

( )( )
( )( ) ( ){ }

( )

A pXB A B pXB A

ˆ A pXB A B pXB A A pA

XB

AX

X A

B pXB B

, 2

           , 2 , 2

           

r n

 

o

,

u d

2

r

r

f
f

p

p

t T t z

t T t z t z

t z

π

π π

π

→

Δ
→

⎡Φ −⎣

+ Φ −

=

+

− Φ

⎤−Φ ⎦

%

% % . (30) 
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Appendix C: Derivation of Effective Timestamps in terms of 

measured quantities. 

Here, we derive Equations (15)a-d. Equations (15)b and (15)d follow directly from the 

definitions, (13) and (14), combined with Eqns. (11) and (9), respectively.   

Equation (15)a is slightly more challenging to derive.  From Eqn. (12), we have  

 ( ) ( ) { }A pXB A B A X pXB A B A AX pXB A B pAX, , 2 2 rt T z t T z p f t T tπ π→ → →Φ − = Φ − − − Δ − − .  (31) 

We replace the first term with ( ) ( )X pXB A B A X pXB B XB XB, , 2 2t T z t z p kπ π→Φ − = Φ = +  based on 

Eqns. (10) and (11). We convert the time interval, { }pXB A B pAXt T t→− − , from measurements in 

“oracle” time to measurements referenced to the site A timebase as, 

 ( ) ( )( ) ( )
( )

X pXB A B pXB A X pAX A
pXB A B pXB pAX

, ,
ˆ2 r r

t T t z t z
t T t t

f fπ
→

→

Φ − − Φ
− − =

+ Δ
, (32) 

which can be further be expressed in terms of measured quantities as 

 ( ) XB pXB AX pAX
pXB A B pXB pAX

r̂ r

p k p k
t T t t

f f→

+ − −
− − =

+ Δ
. (33) 

Substituting into (31) yields: 

 
( )( )A pXB A B pXB A pXB

XB pXB AX pAX AX XB

, 2

2                                       2 +2ˆ
r

r r

t T t z k

f p k p k p p
f f

π

π π π

→Φ − =

Δ ⎡ ⎤− ⋅ + − − −⎣ ⎦+ Δ

. (34) 
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Equation (15)c is derived by noting the identity ( )( ) ( )B pBX B A pBX B B pBX A, ,t T t z t z→Φ − ≡ Φ , 

and then solving for ( )B pBX A,t zΦ  by use of Eqns. (6) through (9), Eqn. (12) and the relationship 

between time and sample number ( )1
pBX pAX pBX pAXr̂t t f k k−− = − .   
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