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Plasmon resonance, with strong coupling of light to electrons at a metal-dielectric interface, al-
lows light confinement and control at subwavelength scale. It’s fundamentally limited by the inher-
ent mobility of the free electrons, leading to the corresponding non-locality of the electromagnetic
response.[1, 2] We report that this non-locality also results in the formation of a hyperbolic layer
near the metal-dielectric interface, with a strong anisotropy of its electromagnetic response. While
the resulting “hyperbolic blockade” leads to the suppression of the conventional plasmon resonance,
the hyperbolic layer also supports a new class of surface waves, which offer longer propagation
distance and stronger field confinement, simultaneously. Furthermore, these “hyper-plasmons” are
not limited to the proximity of the plasmon resonance, which extends the operational bandwidth of
plasmonic devices.

I. INTRODUCTION

With the ultimate goal of controlling light on a sub-
wavelength scale, the field of nanophotonics generally re-
lies on two main ideas – the plasmon resonance and the
use of hyperbolic media. In the former approach, the
subwavelength confinement of the electromagnetic field
is achieved via the resonant coupling to free charge car-
riers in a conducting medium,[3] while in the latter it’s
the result of the extreme anisotropy of the material re-
sponse that qualitatively changes the nature of the prop-
agating fields.[4] These are generally considered as fun-
damentally distinct concepts, with their inherent advan-
tages and drawbacks: e.g. plasmonic systems that rely
on the properties of a single metal-dielectric interface are
simpler to fabricate, but generally limited to the prox-
imity of the corresponding resonance frequency,[3] while
the approach based on hyperbolic media offers a broad
bandwidth at the expense of highly nontrivial fabrication
when the required anisotropy is due to the nanostructur-
ing of the material.[5] However, it is now well understood
that the fundamental limits on the light confinement in
both cases are defined by the inherent non-locality of
the electromagnetic response in the constituent materi-
als, due to e.g. the mobility of the free carriers in con-
ducting materials.[1, 2] In this work, we demonstrate that
electromagnetic non-locality leads to an even deeper con-
nection between these two seemingly different concepts
of plasmon resonance and hyperbolic media: the inher-
ent mobility of the free charge carriers in a plasmonic
material leads to a strong dielectric anisotropy near the
metal-dielectric interface, where the corresponding elec-
tromagnetic response becomes effectively hyperbolic.

The resulting hyperbolic layer near the metal-dielectric
interface supports a new type of surface waves that, com-
pared to the conventional surface plasmons, offer both
longer propagation distance and stronger field localiza-
tion, at the same time. This behavior is not limited to the
proximity of the plasmon resonance, but – in agreement
with the generally broad bandwidth response in hyper-
bolic media [4] – persists well above the corresponding

resonance frequency. Not only does this leads to a dra-
matic change in the resulting photonic density of states
(by several order of magnitude) and consequently in all
associated phenomena – from quantum electrodynamics
to nonlinear optics to near-field thermal transport, but –
by virtue of freeing plasmonics from the proximity of the
corresponding plasmon resonance frequency – opens the
field to a large class of materials that have not yet been
considered in the context of plasmonics.

The existence of the “hyper-plasmon” surface waves
with simultaneously long propagation distance and high
wavenumbers finally puts to rest the fears of an “ultimate
limit field confinement by surface plasmon-polaritons.”
[6] This limit, while certainly accurate within the frame-
work of an isotropic electromagnetic response theory, ap-
pears to be a general artifact of all models that do not
properly account for the free electron mobility and the
resulting anisotropy of the electromagnetic response of a
conducting material.

The predicted phenomena also have broad implications
outside the fields of nanophotonics and light-matter in-
teractions in condensed matter physics. In particular,
new surface waves predicted in the present work, can
be excited at the dielectric elements of research balloons
and rocket probes when these enter ionosphere, which
would strongly affect electromagnetic measurements and
RF communications.

II. THE HYPERBOLIC LAYER

In the local approximation, the electromagnetic re-
sponse of free carriers to a time-dependent electric field
depends on the corresponding frequency and the carrier
scattering time, and can be defined in terms of the mo-
mentum transfer between the field and the free carri-
ers. However, in close proximity to a high quality metal-
dielectric interface that can be considered locally flat,
the electron surface reflection will reverse normal to the
surface component of the momentum, while leaving its
tangential projection intact. As a result, while the spec-
ular reflection at the interface will not strongly affect the
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electromagnetic response in the tangential direction, its
component that is normal to the metal surface, will be
substantially altered – leading to a strong anisotropy in
this interfacial layer.

In the presence of surface roughness the free carrier
reflection is no longer specular,[7] however the effect of
the surface scattering on the momentum transfer from
the free carriers to the interface (and thus to the entire
sample as a whole) is still very different in the normal
and tangential directions. As a result, the free carrier
electromagnetic response near the conductor - dielectric
interface retains its strong anisotropy.

For the field parallel to the surface, the response is
similar to that in the bulk medium, and the resulting
contribution to the effective dipole moment and the cor-
responding polarization of the medium, is opposite to the
field, just as in the bulk of the material. However, when
the field is driving the electron towards the surface, the
resulting reflection from the interface reverses the sign of
the normal to the interface component of its velocity –
and the momentum initially given to the electron by the
field, at the reflection is transferred to the crystal as the
whole. As a result, compared to the bulk of the mate-
rial, the electron response in the normal-to-the-interface
direction is strongly suppressed. Without the negative
contribution of the free electrons, the real part of the
permittivity in the normal to the interface direction is
now effectively positive – and the thin layer near the sur-
face behaves as if it had negative permittivity parallel to
the interface and positive permittivity normal to the in-
terface. A high-quality metal-dielectric surface therefore
supports a hyperbolic layer.

The formation of the hyperbolic layer relies on high
quality of the interface that supports it. While the hy-
perbolic layer will adiabatically follow a smooth varia-
tion of the surface geometry, short-range surface rough-
ness amplitude h that exceeds the characteristic scale of
vF /ω, where vF is the Fermi velocity of the electrons
in the metal, will suppress it. At optical frequencies,
this length scale can be on the order of a few nanome-
ters or below, and the formation of the hyperbolic layers
that’s predicted in the present work, is only expected in
high-quality samples with sub-nanometer surface rough-
ness. At lower frequencies however this surface quality
requirement is proportionally relaxed – e.g. for mid-IR
“designer metals” [8, 9] one needs h . 10 nm.

Note that the conventional hydrodynamical models re-
cently used to account for the free carrier non-locality,
generally rely on the material parameters (such as e.g.
the phenomenological parameter β in Refs. [1, 2, 10–13])
that are taken from the bulk electromagnetic response of
the conduction electrons. However, this approximation
does not allow to describe the inherent anisotropy of the
electromagnetic response in the hyperbolic layer near the
metal-dielectric interface. As a result, even though the
hydrodynamic models can accurately describe the bulk
longitudinal waves with the dispersion band that shows
positive slope above the plasma frequency, [12] they do
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FIG. 1. (Color online) The field and the energy density of a
Gaussian beam incident on a metal-dielectric interface, calcu-
lated with a full account of the free electron mobility and the
resulting non-locality of the electromagnetic response. Panel
(a) shows the magnitude of the tangential component of the
electric field. Panels (b)-(d) show the corresponding (time-
averaged) densities of the tangential electric field wx (panel
(b)) and of the normal to the interface electric field wz (panel
(c)), and the product wxwz (panel (d)). The vertical white
line indicates the interface z = 0. Note clearly visible di-
electric region z < 0 (wx > 0, wz > 0), metallic region
z & 0.01c/ωp (wx < 0, wz < 0), and the hyperbolic layer
0 < z . 0.01c/ωp (wx < 0, wz > 0). The frequency of
the incident beam ω = 0.5ωp, the electron scattering time
τ = 18.84/ωp, the crystal lattice permittivity of the conduc-
tor ε∞ = 12.15, the permittivity of the dielectric εd = 10.23,
and the Fermi velocity vF = 0.00935 c ' 2.8 · 106 m/sec; for
the plasma wavelength λp ≡ 2πc/ωp = 10 µm these param-
eters correspond to the AlInAs/InGaAs material system of
Ref. [8]. Note that in this case the electron de Broglie wave-
length λ ' 1 nm, well below the thickness of the hyperbolic
layer (∼ 20 nm).
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FIG. 2. (Color online) The dispersion of the surface waves at
the metal - dielectric interface, with the in-plane momentum
kτ (in units of ωp/c) and the frequency ω (in units of ωp).
Panel (a) corresponds to the standard result for the Drude
metal, with the permittivity εm = ε∞

(
1− ω2

p/ (ω (ω + i/τ))
)
,

in logarithmic scale (main panel) and linear coordinates (the
inset). Panels (b) - (c) show the results for the exact solution,
with the ratio of the Fermi velocity to the speed of light in
vacuum, vF /c = 0.005 (b), 0.0063 (c), and 0.00935 (d). The
material parameters (ε∞, τ , εd) are the same as in Fig. 1. The
red (dark gray) line corresponds to the conventional plasmon,
blue (black) – to the hyperbolic mode, green (light gray) –
to the hybrid hyper-plasmon, and magenta (gray) curve – to
the suppressed resonant plasmon. The solid and dotted lines
respectively represent the real and imaginary parts of the in-
plane momentum. With the plasma wavelength λp = 10 µm,
the doped semiconductor system AlInAs/InGaAs corresponds
to the panel (d). Note that in all cases, the wavenumber kτ
is below the Landau damping limit ω/vF .[42]

not account for the hyper-plasmons that originate from
the inherent anisotropy of the hyperbolic layer near the
conductor-dielectric interface.

Within the general framework of the hydrodynamic ap-
proach, the effect of the spatial nonlocality can also be
represented by replacing the nonlocal conductor with a
composite material, comprising a thin isotropic dielec-
tric layer on top of a local conductor. [13] Although
this approach also does not capture the hyper-plasmonic
surface waves, this issue can be addressed by the replace-
ment of the isotropic dielectric in the layer by an effec-
tive hyperbolic medium. The permittivity components
and the thickness of this effective hyperbolic layer can be
obtained from the theory introduced in the present work.

On the other hand, new surface waves introduced here
in the context of the semiclassical approach, should also
emerge in ab-initio time-dependent density functional
theory of the optical response, both in the case of atom-
istic first-principle calculations as well as in the jellium
limit.

Since the electromagnetic response of free charge carri-
ers is essentially nonlocal, the definition of hyperbolic vs.
dielectric vs. metallic response cannot rely on the tensor
of the local dielectric permittivity. In principle, it can
be formulated in terms of the electric and displacement
fields. However, in the presence of the material loss such
definition will be complicated and difficult to interpret,
as it involves a nontrivial relation between two complex
quantities (or equivalently the amplitudes and the phases
of the corresponding fields), rather than a simple sign of
the relevant permittivity. Instead, we rely on the (time-
averaged) real-valued scalar densities

wEx,y =
ExDx + EyDy

8π
, wEz =

EzDz

8π
, (1)

which represent the response in parallel and normal to
the surface directions, respectively.

By definition, in a dielectric wEx,y > 0 and wEz > 0,

in a metal wEx,y < 0 and wEz < 0, while in a hyper-

bolic medium wEx,y and wEz have opposite signs. For a
dispersion-free material D = εE, this reduces to the con-
ventional definition of the dielectric, metallic and hyper-
bolic media in terms of εx,y and εz. However, even when
the electromagnetic response is essentially nonlocal, the
densities wx,y and wz in Eqns. (1) can still be calculated
from the actual electromagnetic field, and thus represent
a useful measure of the electromagnetic response of a
non-local medium.

Note that, together with the magnetic density,

wB =
B2

8π
, (2)

wEx,y and wEz add to the standard expression for the elec-
tromagnetic energy density of a dispersion-free, lossless
medium,[14]

w =
B2 + E ·D

8π
≡ wB + wEx,y + wEz , (3)
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FIG. 3. (Color online) The hyper-plasmonic surface wave profile at the interface of isotropic dielectric with a conducting
medium, and its evolution with frequency. The red (gray) and blue (black) lines respectively correspond to the energy densities
of the tangential (wEx , blue (black) line) and normal to the surface (wEz , red (gray) line) components of the electric field, for
ω = 0.7ωp (a), ω ' ωp (b), ω = 1.27 ωp (c). The material parameters and the z coordinate in absolute units (at the top)
correspond to the AlInAs/InGaAs interface. The light-red (gray) background indicates the dielectric response (wEx > 0 and
wEz > 0), light-blue (light gray) – to metallic response (wEx < 0 and wEz < 0), and light-green (white) – to the hyperbolic layer
(wEx < 0 and wEx > 0).

However, this connection is only valid in dispersion-free
limit, as in the presence of absorption (inherently con-
nected to dispersion via the Kramers-Kronig relations)
the electromagnetic energy cannot be defined as a ther-
modynamic quantity.[14] Even in the limit of infinitesi-
mal absorption, the resulting Brillouin expression for the
energy density [14] is not identical to (3), but includes
additional terms.[15]

In Fig. 1 we consider a gaussian electromagnetic beam
incident onto a half-infinite metal with an atomically flat
boundary at z = 0, and calculate the actual distribution
of the electromagnetic energy density that takes full ac-
count of the non-locality of the electron response in the
metal. Here, the numerical values for the plasma fre-
quency, electron scattering time etc. correspond to the
high-quality interface of doped semiconductor GaInAs
with the dielectric AlInAs, the material platform which
over the last decade became the system of choice for plas-
monics in mid-IR range. [8, 9] While the magnitude of
the electric field (see Fig. 1(a)) displays the conven-
tional intensity pattern of the reflected wave, the plots
of the local energy density (Fig. 1(b)-(d)) clearly show
the presence of the hyperbolic layer at 0 < z . 0.01c/ωp,
where ωp is the plasma frequency, determined from the
metal’s bulk response. Note that, the thickness of the
hyperbolic layer in this example exceeds the electron de
Broglie wavelength by more than an order of magnitude
– so that the formation of the hyperbolic layer can be
treated within the semiclassical framework.

III. THEORETICAL DESCRIPTION

The actual response to the time-dependent electromag-
netic field is defined by the electronic density matrix ρpp′ ,

governed by the Liouville - von Neumann equation [16]
that in the linear response regime reduces to [17, 18]

εp − εp′ + ~ω
i~

ρpp′ +
f
(0)
p − f (0)p′

εp − εp′
V Epp′ = Ipp′ [ρ] , (4)

where Ipp′ {ρ} is the collision integral that includes the
contributions from both the bulk and the surface scatter-
ing of the free carriers, f

(0)
p ≡ f0(εp) is the equilibrium

(Fermi-Dirac) distribution function, and Vpp′ is the ma-
trix element of the spatially dependent amplitude of the
electric field E (r, t) = E (r) exp (−iωt) that is given by

V Epp′ =

∫
dr jpp′ ·E (r) , (5)

where jpp′ is the matrix element of the charge carrier
current density.[21]

When the relevant “classical” parameters such as the
mean-free path ` ≡ veτ and ve/ω (where ve is the typical
electron velocity, equal to the Fermi velocity vF and the
thermal velocity vT for degenerate and non-degenerate
statistics respectively) are well above the free carrier de
Broglie wavelength λ, the Wigner transformation [19, 21]
of the density matrix reduces [17, 18, 20] Eqn. (4) to the
Boltzmann equation for the charge carrier distribution
function fp (r)

−iωfp (r) + vp · ∇fp (r) + eE · ∂f
(0)
p

∂p
= Î [fp] , (6)

where vp ≡ ∂εp/∂p is the charge carrier group velocity

for the Bloch momentum p, the collision integral Î [fp]
includes both the bulk and the surface scattering con-
tributions, and has a highly nontrivial form. However,
if the surface roughness h is substantially smaller than
ve/ω and the electron mean free path ` = veτ ,[22] the
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kinetic equation (6) can be expressed in the conventional
form[17, 18, 20]

−iωfp + vp · ∇fp + eE · vp
∂f0
∂εp

= −fp − f0
τ

(7)

where the effective relaxation time τ is defined by the
bulk scattering, while the effect of the surface is described
by the boundary condition on the distribution function
at the interface [17, 18] – see Appendix A. For a high-
quality interface along one of the symmetry planes of
the crystal, the latter reduces to the specular reflection
boundary condition at the surface[7, 23–28]

fp− (rs) = fp+ (rs) , (8)

where p+ and p− are connected by the specular reflec-
tion condition, with equal tangential to the surface com-
ponents p+τ = p−τ , and positive and negative group veloc-
ity components in the normal to the interface direction:(
vp+

)
ns
> 0,

(
vp−

)
ns
< 0, respectively.[29]

Note that while the standard derivation [10, 11] of the
hydrodynamic models [10, 13] for the electromagnetic re-
sponse of free charge carriers usually follows the applica-
tion of the Hamilton’s principle to the Hohenberg-Kohn
ground state Hamiltonian,[30] the hydrodynamic model
can also be derived as an approximation for the solu-
tion of the kinetic equation (6) based on the method of
moments.[31] Such an approximation however neglects
the essential anisotropy of the free carrier surface scatter-
ing, and the resulting hydrodynamic approach is there-
fore unable to capture the formation of the hyperbolic
surface layer, as well as its implications.
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FIG. 4. (Color online) The “figure-of-merit” Re [kτ ] /Im [kτ ]
of the surface wave vs. the compression factor kτ/(ω/c), at
the AlInAs/InGaAs interface. Red (dark gray) line corre-
sponds to the conventional plasmon and is calculated using
the Drude theory (see also Fig. 2(a)), while the green (light
gray) curve corresponds to the exact solution for the hyper-
plasmon (see Fig. 2(e)).

The present semiclassical theory corresponds to a con-
trolled expansion in the small parameter that is equal
to the ratio of the electron de Broglie wavelength, λ ∼

~/mve, the characteristic scale of the hyperbolic layer
thickness, ve/ωp,

~ωp
mv2e

� 1. (9)

When the criterion (9) is satisfied, the quantum phenom-
ena such as finite work function and tunneling leading
to the electron “spill-out” – the continuous variation of
the electron density from the bulk value to zero), can be
safely neglected. However, the density matrix formalism
used to derive our semiclassical expressions, also allows to
incorporate these effects in the leading-order corrections
to the present theory.

Quantitatively, for plasmonic metals we find that the
ratio ~ωp/mv2e is barely below unity (∼ 0.65 for alu-
minum, ∼ 0.77 for gold, and 0.87 for silver), and the
quantum tunneling neglected in the semiclassical theory,
leads to the length and energy scales that are similar to
those of the hyperbolic layer. As a result, for a quanti-
tative description of the hyper-plasmon waves in metals,
quantum corrections to the semiclassical theory may be
needed. Note however, that it is also the case of plas-
monic metals that leads to the most stringent require-
ments on the surface roughness – making this regime also
the most difficult for experimental study of the new sur-
face waves.

In contrast to this behavior, for transparent conduct-
ing oxides such as the indium-tin oxide (ITO) with the
plasma frequency in IR range, we find ~ωp/mv2F ∼ 0.26,
while for doped semiconductors that show the plasmonic
behavior, such as InGaAs, ~ωp/mv2F ∼ 0.15. Here, we
expect the semiclassical theory to yield a fully quanti-
tative description, so that experiments on transparent
conducting oxides and semiconductors should show clear
manifestations of the predicted behavior.

In the other limit, that of a non-degenerate electron
plasma such as the E layer in Earth ionosphere, we find
~ωp/mv2T ∼ 1.6 · 10−5. Aside from its practical implica-
tions for RF communications and sensing in Earth iono-
sphere (the problem typically encountered by any space
re-entry vehicle), this case should also be considered as a
“proof of existence” for the new surface waves, as in this
regime no quantum effect should be relevant.

The electromagnetic field at the interface of a dielec-
tric with a conducting medium is defined by the self-
consistent solution of the kinetic equation and the surface
scattering boundary condition together with the Maxwell
equations, where the electron charge and current densi-
ties are given by

ρ (r) = 2

∫
dp

(2π~)
3 · (fp (r)− f0 (εp)) , (10)

j (r) = 2

∫
dp

(2π~)
3 · e vpfp (r) , (11)

For a high-quality planar surface, [32] the corresponding
mathematical problem can be reduced to the system of
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two coupled linear integro-differential equations (see Ap-
pendix B) that allows an exact analytical solution. For
the electric field in the conducting medium we obtain

Ek (z > 0) =

∫ ∞
−∞

dq

2π
e (k, q) exp (ikx− iqz) , (12)

where

e (k, q) =
2

D (k, q)

(
∂Ex
∂z

∣∣∣∣
z=+0

− ik Ez|z=+0

)

×
(
εzz (k, q)

ω2

c2
− k2, 0, νxz (k, q)

)
, (13)

and

D (k, q) =

(
εxx (k, q)

ω2

c2
− q2

)
×
(
εzz (k, q)

ω2

c2
− k2

)
− ν2xz (k, q) , (14)

with

εxx (k, q) = ε∞ −
16πie2τ

ω

∫
vz>0

dp

(2π~)
3

∂f0
∂εp

× v2x
1− iωτ + ikvxτ

(1− iωτ + ikvxτ)
2

+ q2v2zτ
2
, (15)

and

εzz (k, q) = ε∞ −
16πie2τ

ω

∫
vz>0

dp

(2π~)
3

∂f0
∂εp

× v2z
1− iωτ + ikvxτ

(1− iωτ + ikvxτ)
2

+ q2v2zτ
2
, (16)

and

νxz (k, q) = kq − 16πe2τ2ωq

c2

∫
vz>0

dp

(2π~)
3

∂f0
∂εp

× vxv2z
1− iωτ + ikvxτ

(1− iωτ + ikvxτ)
2

+ q2v2zτ
2
. (17)

Note that the problem of finding the self-consistent so-
lution of Maxwell equations at the planar metal-dielectric
interface together with the Boltzmann kinetic equation
for free electrons, can be also approached using the sur-
face impedance formalism, [33] pioneered by G. E. H.
Reuter and E. H. Sondheimer [28] more than half a cen-
tury ago. However, while it is in fact possible, [34] an
extension of this formalism that would allow to treat the
hyper-plasmonic surface waves, was not attempted, and
the applications of the surface impedance formalism to
surface waves at the metal-dielectric interface remain lim-
ited to the regular plasmons. [33]

For a degenerate electron gas [35] we reduce the above

expressions to

εxx (k, q) = ε∞ −
3ε∞

2

ω2
p

ω (ω + i/τ)

{
q2 − 2k2

(k2 + q2)
2

(ω + i/τ)
2

v2F

+

(
q2

k2 + q2
+

2k2 − q2

(k2 + q2)
2 ·

(ω + i/τ)
2

v2F

)

× F0

(
vF
√
k2 + q2

ω + i/τ

)}
, (18)

εzz (k, q) = ε∞ −
3ε∞

2

ω2
p

ω (ω + i/τ)

{
k2 − 2q2

(k2 + q2)
2

(ω + i/τ)
2

v2F

+

(
k2

k2 + q2
+

2q2 − k2

(k2 + q2)
2 ·

(ω + i/τ)
2

v2F

)

× F0

(
vF
√
k2 + q2

ω + i/τ

)}
, (19)

νxz (k, q) = kq

{
1 +

9ε∞
2

ω

ω + i/τ

ω2
p

(k2 + q2) c2

× F1

(
vF
√
k2 + q2

ω + i/τ

)}
, (20)

where ωp is the standard plasma frequency,

F0 (x) =
1

2x
log

1 + x

1− x
, (21)

and

F1 (x) =
1

x

{
1

x
+

1

2

(
1

3
− 1

x2

)
log

1 + x

1− x

}
. (22)

The results presented in Fig. 1, were obtained using this
solution (see Appendix C).

In the case of a non-degenerate electron gas, we obtain

εxx (k, q) = ε∞ −
ε∞ ω2

p

ω (ω + i/τ)

{
F2

(
vT
√
k2 + q2

ω + i/τ

)

+
k2

k2 + q2
· F3

(
vT
√
k2 + q2

ω + i/τ

)}
, (23)

εzz (k, q) = ε∞ −
ε∞ ω2

p

ω (ω + i/τ)

{
F2

(
vT
√
k2 + q2

ω + i/τ

)

+
q2

k2 + q2
· F3

(
vT
√
k2 + q2

ω + i/τ

)}
, (24)
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FIG. 5. (Color online) The spontaneous emission rate near the dielectric - doped semiconductor interface, for the AlInAs/InGaAs
system, as a function of the frequency (a) and the distance d to the surface (b). The emission rate is normalized to its value
in infinite dielectric. Solid lines show the exact solution, while the corresponding dotted lines represent the results of the
calculation based on the Drude theory. In panel (a), different colors corresponds to different values of the distance to the
interface λp/d = 50 (red (dark gray) curves), 25 (green (light gray)), 10 (blue(black)) and 3 (orange (gray)). In panel (b),
different colors correspond to different frequencies, with ω = 0.4ωp (cyan (light gray)), 0.73ωp (magenta (gray)) and 1.25ωp
(grey). Note that suppression of the plasmon resonance due to the hyperbolic blockade, together with and order of magnitude
the enhancement of the spontaneous emission rate above the plasmon resonance frequency seen in panel (a).

and

D (k, q) = ε∞

(ω
c

)2{
1−

ω2
p

ω (ω + i/τ)

× F4

(
vT
√
k2 + q2

ω + i/τ

)}
·
[
ε∞

(ω
c

)2
×

{
1−

ω2
p

ω (ω + i/τ)
F2

(
vT
√
k2 + q2

ω + i/τ

)}
− k2 − q2

]
, (25)

where vT ≡
√

2kBT/m is the thermal electron velocity,
and the functions F2 , F3 and F4 are defined as

F2 (x) =

√
π

x

[
Erfi

(
1

x

)
− i
]

exp

(
− 1

x2

)
, (26)

F3 (x) = 2

(
1

x2
− 1

2

)
F2 (x)− 2

x2
, (27)

F4 (x) = F2 (x) + F3 (x) . (28)

Here, Erfi (x) is the imaginary error function.

IV. SURFACE WAVES

For a surface state at the metal-dielectric interface,
matching the tangential electric field and the normal
component of the electric displacement at the interface
yields (see Appendix D)

1

π

∫ ∞
−∞

dq
εzz (k, q)ω2/c2 − k2

D (k, q)
= − c

2

ω2

κd
εd
, (29)

where εd is the permittivity of the dielectric medium, and

κd =
√
k2 − εdω2/c2 (30)

is the corresponding field decay rate.
For degenerate electron statistics, Eqn. (29) generally

has two distinct solutions. For a sufficiently small value
of the ratio of the Fermi velocity to the speed of light in
vacuum, these correspond to (i) the conventional surface
plasmon, and (ii) the hyperbolic wave that is primarily
supported by the hyperbolic layer [36] – see Fig. 2(b).
Note that the hyperbolic surface wave is only present
above the cut-off frequency that is close to that of the
standard surface plasmon resonance at the plane inter-
face ωsp, when the bulk (Drude) metal permittivity

εm (ω) = ε∞

(
1−

ω2
p

ω (ω + i/τ)

)
(31)

satisfies the resonance condition [3]

εm (ωsp) = −εd. (32)

With the increase of the ratio vF /c (by e.g. increas-
ing the doping density in a semiconductor) beyond its
critical value (vF /c)∗, these two branches of the disper-
sion diagram undergo an avoided crossing (see Appendix
E), so that the “conventional” surface plasmon contin-
uously evolves into the hyperbolic mode (green curve
in Fig. 2(c),(d)), while the plasmon resonance, with
its peak in the frequency dependence of the in-plane
wavenumber (and the corresponding photonic density of
states), is strongly suppressed (magenta curve in Fig.
2(c),(d)). The physical origin of this suppression orig-
inates from the fact that plasmonic resonance relies on
the resonant coupling between the electromagnetic field
to the free charges in the immediate vicinity of the inter-
face. The formation of the hyperbolic layer with strongly
anisotropic electromagnetic response, no longer allows
the resonance condition near the interface, and the con-
ventional plasmon resonance is rapidly suppressed.
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FIG. 6. (Color online) The dispersion of the surface waves at the interface of a dielectric (εd = 2) with ionized plasma in the
atmospheric E-layer (a), and the corresponding “figure of merit” Re [kτ ] /Im [kτ ] vs. the “compression factor” kτc/ω diagram
(b). The plasma frequency in the E-layer is 5 MHz and the electron scattering time is 3.2 µsec.[40, 41] The red (dark gray)
line corresponds to the standard Drude model for the surface plasmon, while the magenta (gray) line corresponds to its exact
solution. The green (light gray) and blue (black) curves show the “hyper-plasmons”.

One of the main challenges in nanoplasmonics is the
inherent trade-off between the contradictory require-
ments of the surface plasmon propagation and field
confinement.[3] In a conventional surface plasmon, an im-
provement of the “compression factor” [37] kτ/k0 (that
defines the field confinement) can be generally achieved
only at the expense of the smaller propagation distance.
This is illustrated by the red curve in Fig. 4, which plots
the “figure of merit” Re [kτ ] / Im [kτ ] that represents the
propagation distance in units of the plasmon’s own wave-
length, vs. the compression factor. However, the new
“hyper-plasmon” surface wave that is supported by the
hyperbolic layer (green curve in Fig. 4) greatly exceeds
these values, for both the propagation distance and the
compression factor, simultaneously.

Due to the singularity in the density of states of a
hyperbolic medium,[38] the formation of the hyperbolic
layer dramatically changes the photonic density of states
near a high-quality metal-dielectric interface, with the
resulting effect on all related phenomena – from radia-
tive heat transfer to quantum-electrodynamic effects to
Förster energy transfer to nonlinear optics. As an ex-
ample of this behavior, in Fig. 5 we plot the sponta-
neous emission rate near the metal-dielectric interface, as
a function of frequency (Fig. 5(a)) and the distance to
the interface (Fig. 5(b)). Note the dramatic suppression
of the conventional plasmon resonance, and the enhance-
ment of the emission rate above the plasmon resonance
frequency.

While the Drude theory predicts positive permittiv-
ity tensor above the plasma frequency, the inherent
non-locality of the electronic response near the metal-
dielectric interface dramatically modifies this simple pic-
ture. Above the plasma frequency the hyper-plasmon
surface wave propagates with the in-plane wavenumber
kτ � ω/c, corresponding to the phase velocity vph � c.

For the electrons in the metal, the characteristic veloc-
ity v ∼ vF can therefore be on the order of vph, which
results in the Doppler phase shift that is comparable to
the actual frequency ω. As a result, even with ω > ωp,
for an electron that is propagating in the direction close
to that of the surface wave, the resulting Doppler-shifted
frequency

ω′ = ω − k · v (33)

can be well below ωp, thus increasing its negative contri-
bution to the total permittivity

ε ' ε∞

(
1−

ω2
p

(ω′)
2

)
. (34)

Therefore, even when in the stationary frame of reference
the frequency ω is well above ωp, the apparent dielectric
permittivity parallel to the surface that corresponds to
electromagnetic waves with large wavenumbers, is still
negative. As a result, for k � ω/c the hyperbolic layer
is still present above ωp – which explains the continued
existence of the hyper-plasmon surface wave at higher
frequencies.

In the case of a non-degenerate electron gas at the in-
terface with a dielectric, there are several hyper-plasmon
surface waves, in addition to the “conventional” plas-
mon. This behavior is illustrated in Fig. 6 where
we consider the electromagnetic waves at the surface
of a dielectric surrounded by free electron plasma of
the Heaviside E layer of the Earth ionosphere (at the
height of ∼ 100 km from the Earth surface).[39] In this
case,[40, 41] the plasma frequency is 5 MHz, the elec-
tron temperature T ' 750K corresponds to the thermal
velocity vT ' 0.0005c, and the electron scattering time
τ ' 3.2 µsec (so that ωpτ ' 100). Note the emergence of
two separate hyper-plasmon surface waves in a tangent
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bifurcation at the frequency ω ' 0.59 ωp, and relatively
high losses Re [kτ ] /Im [kτ ] < 10 due to Laudau damping.
[21, 42] With high compression factors (kτ ∼ 100 ω/c)
corresponding to the effective length on the order of one
meter, such modes formed at the dielectric elements of
research balloons and rocket probes, can affect the RF
communications and measurements in ionosphere.

The hyperbolic blockade – the suppression of the plas-
mon resonance due to the formation of the hyperbolic
layer at the metal surface, caused by the inherent non-
locality of the free electron electromagnetic response –
is the general feature of a high-quality metal-dielectric
interface. However, a finite surface roughness leads to
an effective averaging of the polarization anisotropy in
the hyperbolic layer, and reduces the effect of the hy-
perbolic blockade. Quantitatively, this corresponds to
the short-range roughness [43] amplitude h that exceeds
the thickness of the hyperbolic layer, ∼ vF /ω. Near the
plasma frequency, the hyperbolic layer thickness vF /ωp
is within a single order of magnitude from the Thomas-
Fermi screening length, vF /ωp =

(√
3ε∞/ 3

√
π
)
RTF. In

good plasmonic metals such as silver or gold, the hyper-
bolic layer thickness can therefore be on the order of a
fraction of a nanometer, and the effect of the hyperbolic
blockade in all but the highest-quality samples will be
negligible.

The situation however is dramatically different in other
conductors, such as transparent conducting oxides[44, 45]
or doped semiconductors.[8, 9] E.g. in the latter, the
thickness of the hyperbolic layer is in the range between
10 nm and 100 nm, and exceeds both the typical rough-
ness in high-quality MBE- or MOCVD-grown samples
(generally on the order of a fraction of a nanometer) and
the corresponding electron de Broglie wavelength λ by
more than an order of magnitude – see the caption of
Fig. 1.

Furthermore, the formation of the accumulation /
depletion layers at the semiconductor interface can be
avoided, or at least substantially reduced by choosing
the materials with large bandgap discontinuity (such as
e.g. in the AlGaInAs platform). Even if present however,
the band curvature can still be accounted for within the
same boundary condition formalism [46] and thus will
not prevent the hyperbolic blockade and the emergence
of the hyper-plasmon surface waves. Charges trapped at
the surface states of the semiconductor-dielectric inter-
face, may increase the diffuse component in the electron
surface scattering. This however does not remove the
inherent anisotropy of the electromagnetic response in
the hyperbolic layer. As a result, the effect of the de-
fect states at the interface will be limited to an increase
the loss factor of the hyper-plasmon waves. Experiments
on doped semiconductor materials should therefore show
clear manifestations of the hyperbolic blockade and the
emergence of the hyper-plasmon surface waves, predicted
in the present work.

The formation of the hyperbolic layers near the metal-
dielectric interface both below and above the plasma fre-

quency, also offers an entirely new approach for the search
of new plasmonic materials. With the requirement for
the operation in the proximity to the surface plasmon
resonance frequency, the material options for nanoplas-
monics remain fairly limited.[44, 45] Although plasmonic
bandwidth can be improved by using the metamaterial
approach,[47] where one can design and fabricate a metal-
dielectric composite that extends the plasmonic behavior
to a broader frequency range in a variety of form-factors,
from planar metamaterials [48] to core-shell plasmonic
particles,[49] this comes at the cost of an increased fab-
rication complexity,[47] with resulting “hit” in perfor-
mance due to inevitable disorder at each interface.[50] In
contrast to this behavior, the hybrid “hyper-plasmons”
introduced in the present work, offer high field compres-
sion factors that are not limited to the proximity to the
resonance frequency ωsp – and exist well above its value
(see Fig. 2). To put it in the context of an actual ma-
terial platform, the high-quality doped semiconductors
originally introduced as plasmonic materials for mid- and
far-infrared frequencies,[8] support hyper-plasmons well
into the near-IR range.

V. CONCLUSIONS

In this work, we introduced the concept of the hyper-
plasmonic surface wave, supported by hyperbolic layers
near any high-quality metal-dielectric interface. We pre-
sented the theory of this effect that takes full account
of the mobility of free charge carriers in plasmonic ma-
terials and the corresponding non-locality of the electro-
magnetic response. For a high-quality planar interface,
we obtained the exact solution of the resulting system of
coupled integro-differential equations. We demonstrated
that hyper-plasmonic surface waves with simultaneously
high compression factors and long propagation distance
can be supported by an interface of a dielectric with con-
ducting material, well above the corresponding plasma
frequency – thus opening the field of plasmonics to many
new materials, or extending the applications of existing
materials in nanophotonics to shorter wavelength.
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Appendix A: Boundary condition for the charge
carriers distribution function.

The effect of the surface can be described by the
boundary condition on the distribution function at the
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interface, [17, 18] which in the general case can be ex-
pressed as

fp− (rs) =

∫
dp+ W

(
p−,p+

)
fp+ (rs) , (A1)

where the coordinate rs corresponds to the surface, p+

and p− are the electron momenta with respectively pos-
itive and negative group velocity components in the nor-
mal to the interface direction:

(
vp+

)
ns
> 0,

(
vp−

)
ns
<

0, and the surface scattering indicatrix W (p−,p+) can
be calculated from first principles.[17, 18]

When the characteristic surface roughness is smaller
then both the mean free path ` ≡ veτ and ve/ω, Eqn.
(A1) can be represented in terms of the specular reflec-
tion probability[25, 26] P as

fp− (rs) = P fp+ (rs) + (1 + P) Φε
(
εp−

)
, (A2)

with P = 1 corresponding to the ideal interface (8) with
specular reflection and P = 0 for the opposite limit of
diffuse (Lambertian) scattering of the free charge car-
riers. Here, the function Φε is obtained from the con-
servation of the electron flux to and from the boundary.
The specular reflection probability P may be treated as a
phenomenological parameter, or alternatively calculated
quantum-mechanically from the statistical properties of
the surface roughness, [7, 17, 18] e.g. when the surface
roughness correlation length is smaller than electron be
Broglie wavelength λ we find [7]

P = exp

(
−16π2h2

λ2

)
. (A3)

For a high-quality interface along one of the symmetry
planes of the crystal, Eqn. (A2) reduces to the specular
reflection boundary condition at the surface [7, 17, 18]

fp− (rs) = fp+ (rs) , (A4)

where p+ and p− are now connected by the specular
reflection condition, with equal tangential to the surface
components p+τ = p−τ .

Appendix B: Electromagnetic field and charge
carrier distribution at the metal-dielectric interface.

The electromagnetic field, and charge and carrier den-
sities near the metal dielectric interface are defined by
the self-consistent solution of the system of Maxwell’s
equations,

div D = 4πρ (r, t) (B1)

div B = 0 (B2)

curl E = −1

c

∂E

∂t
(B3)

curl B = −4π

c
j (r, t) +

1

c

∂D

∂t
, (B4)

where the displacement field

D = εE =

{
εd E, z < 0
ε∞ E, z > 0

, (B5)

εd is permittivity of the dielectric and ε∞ is the “back-
ground” permittivity of the crystal lattice in the con-
ductor, while the free charge density ρ (r, t) and the free
current density j (r, t) are defined by the charge carrier
distribution function fp (r, t) via

ρ (r, t) = 2

∫
dp

(2π~)
3 · (fp (r)− f0 (εp)) , (B6)

j (r, t) = 2

∫
dp

(2π~)
3 · evpfp (r, t) . (B7)

In the liner response regime, the charge carrier distri-
bution function fp (r, t) satisfies the Boltzmann kinetic
equation

∂fp
∂t

+ vp · ∇fp + eE · vp
∂f0
∂εp

= −fp − f0
τ

, (B8)

with the boundary condition at the metal-dielectric in-
terface (see also Eqn. (A1)

fp|z=0,vz<0 =

∫
v′z>0

dp′ W (p,p′) fp′ |z=0 . (B9)

When the surface roughness is much smaller than the
charge carrier de Broglie wavelength, h� λ, or if h ' λ
and surface roughness correlation length L � λ, Eqn.
(B9) reduces to the specular reflection boundary condi-
tion (see also Eqns. (8) and (A4))

f (vx, vy, vz)|z=0 = f (vx, vy,−vz)|z=0 . (B10)

For a harmonic wave with the in-plane momentum k in
the x-direction,

E (r, t) = (Ex (z) , 0, Ez (z)) exp (ikx− iωt) ,(B11)

B (r, t) = (0, B (z) , 0) exp (ikx− iωt) , (B12)

fp (r, t) = f0 (ε) + f (v, z) exp (ikx− iωt) , (B13)

Note that in the harmonic representation
(B11),(B12),(B13), Eqns. (B1),(B2) directly follow
from (B3),(B4), and therefore do not represent indepen-
dent constrains onto the electromagnetic field and the
charge carrier distribution function.[52]

Applying curl to (B3), and using (B4), (B7), (B11),
(B13), for z > 0 we obtain

−∂
2Ex
∂z2

+ ik
∂Ez
∂z

=
4πiω

c2
jx + ε∞

(ω
c

)2
Ex, (B14)

ik
∂Ex
∂z

+ k2Ez =
4πiω

c2
jz + ε∞

(ω
c

)2
Ez, (B15)

where

jx,z = 2e

∫
dp

(2π~)
3 vx,z f (v, z) . (B16)
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Substituting (B13) into the kinetic equation (B8) and
the boundary condition (B10), we obtain

f (v, z) = −e θ (vz)

vz

∂f0
∂ε

∫ ∞
0

dζ (vxEx (ζ) + vzEx (ζ))

× exp

(
−ζ + z

vz

(
1

τ
− iω + ikvz

))
− e θ (vz)

vz

∂f0
∂ε

∫ z

0

dζ (vxEx (ζ) + vzEx (ζ))

× exp

[
ζ − z
vz

(
1

τ
− iω + ikvz

)]
+ e

θ (−vz)
vz

∂f0
∂ε

∫ ∞
z

dζ (vxEx (ζ) + vzEx (ζ))

× exp

[
ζ − z
vz

(
1

τ
− iω + ikvz

)]
. (B17)

Following the approach of Ref. [28], originally de-
veloped in the context of the calculation of surface
impedance of metals at microwave frequencies, we intro-
duce the auxiliary fields

Ex (z) = Ex (|z|) , (B18)

and

Ez (z) = Ez (|z|) sign (z) , (B19)

that represent respectively even- and odd “extension” of
the electric field in the conductor (z > 0) to the entire
range −∞ < z <∞.

Substituting (B18) and (B19) together with (B16) and
(B17) into (B14) and (B15), we obtain

∂2Ex
∂z2

+ ε∞

(ω
c

)2
Ex − ik

∂Ez
∂z

=− 4πiω

c2

∫ ∞
−∞

dζ Kxx (z − ζ) Ex (ζ)

− 4πiω

c2

∫ ∞
−∞

dζ Kxz (z − ζ) Ez (ζ) , (B20)

and

−ik ∂Ex
∂z

+

(
ε∞

(ω
c

)2
− k2

)
Ez

=− 4πiω

c2

∫ ∞
−∞

dζ Kzx (z − ζ) Ex (ζ)

− 4πiω

c2

∫ ∞
−∞

dζ Kzz (z − ζ) Ez (ζ) , (B21)

where

Kxx (u) = 2

∫
vz>0

dp

(2π~)
3

(
−∂f0
∂ε

)
v2x
vz

× exp

(
− (1− iωτ + ikvxτ)

|u|
vzτ

)
, (B22)

Kxz (u) = Kzx (u) = 2 sign (u)

∫
vz>0

dp

(2π~)
3

(
−∂f0
∂ε

)
vx

× exp

(
− (1− iωτ + ikvxτ)

|u|
vzτ

)
, (B23)

Kzz (u) = 2

∫
vz>0

dp

(2π~)
3

(
−∂f0
∂ε

)
vz

× exp

(
− (1− iωτ + ikvxτ)

|u|
vzτ

)
. (B24)

Despite its relative complexity, the system of coupled
linear integro-differential equations (B20),(B21) only has
difference kernels, and by means of the Fourier transform

ex (k, q) =

∫ ∞
−∞

dz Ex exp (iqz) , (B25)

ez (k, q) =

∫ ∞
−∞

dz Ez exp (iqz) , (B26)

can be reduced to a system of linear algebraic
equations.[51] We therefore obtain

ex (k, q) =
2 A (k)

D (k, q)

(
εzz (k, q)

ω2

c2
− k2

)
, (B27)

ez (k, q) =
2 A (k)

D (k, q)
νxz (k, q) , (B28)

where

A (k) =
∂Ex
∂z

∣∣∣∣
z=+0

− ik Ez|z=+0 , (B29)

D (k, q) =

(
εxx (q)

ω2

c2
− q2

)
×
(
εzz (q)

ω2

c2
− k2

)
− ν2xz (k, q) , (B30)

and

εxx (k, q) = ε∞ −
16πie2

ω

∫ ∞
0

du cos (qu)

∫
vz>0

dp

(2π~)
3

∂f0
∂εp

× v2x
vz

exp

(
− (1− iωτ + ikvxτ)

u

vzτ

)
, (B31)

εzz (k, q) = ε∞ −
16πie2

ω

∫ ∞
0

du cos (qu)

∫
vz>0

dp

(2π~)
3

∂f0
∂εp

× vz exp

(
− (1− iωτ + ikvxτ)

u

vzτ

)
, (B32)

νxz (k, q) = kq − 16πe2

ω

∫ ∞
0

du sin (qu)

∫
vz>0

dp

(2π~)
3

∂f0
∂εp

× vx exp

(
− (1− iωτ + ikvxτ)

u

vzτ

)
. (B33)
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For z > 0, the auxiliary field E is identical to the actual
electric field E, and Eqns. (B25) - (B33) therefore offer
the exact analytical solution for the electric field in the
metal:

E (z > 0) =

∫ ∞
−∞

dq

2π
e (k, q) exp (−iqz) . (B34)

The amplitude A(k) in Eqn. (B29) is defined by the
values of the normal component of the electrical field
Ez|z=+0 and the normal derivative of the tangential elec-
tric field ∂Ex/∂z|z=+0 at the boundary. These magni-
tudes depend of the electric field in the dielectric (z < 0),
and are obtained from the continuity of the tangential
components of the electrical field and the normal compo-
nents of the displacement vector

Ex|z=−0 = Ex|z=+0 , (B35)

εd Ez|z=−0 = ε∞ Ez|z=+0 , (B36)

where εd is the permittivity of the dielectric.
Finally, the u-integration in Eqns. (B31),(B32),(B33)

can be performed analytically, which yields

εxx (k, q) = ε∞ −
16πie2τ

ω

∫
vz>0

dp

(2π~)
3

∂f0
∂εp

× v2x
1− iωτ + ikvxτ

(1− iωτ + ikvx)
2

+ q2v2zτ
2
, (B37)

εzz (k, q) = ε∞ −
16πie2τ

ω

∫
vz>0

dp

(2π~)
3

∂f0
∂εp

× v2z
1− iωτ + ikvxτ

(1− iωτ + ikvxτ)
2

+ q2v2zτ
2
, (B38)

νxz (k, q) = kq − 16πe2τ2ωq

c2

∫
vz>0

dp

(2π~)
3

∂f0
∂εp

× vxv2z
1− iωτ + ikvxτ

(1− iωτ + ikvxτ)
2

+ q2v2zτ
2
. (B39)

Appendix C: The reflection amplitude at the planar
metal-dielectric boundary.

For a given in-plane momentum k, the electric electric
field in the dielectric (z < 0) with the permittivity εd can
be expressed as

E (r, t) = E+

1, 0,− k√
εd (ω/c)

2 − k2


× exp

(
ikx+ i

√
εd (ω/c)

2 − k2 z − iωt
)

+ E−

1, 0,
k√

εd (ω/c)
2 − k2


× exp

(
ikx− i

√
εd (ω/c)

2 − k2 z − iωt
)
, (C1)

leading to the corresponding magnetic field

B (r, t) =
c

iω
curl E

= ŷ

[
E+ exp

(
i

√
εd (ω/c)

2 − k2z
)

− E+ exp

(
i

√
εd (ω/c)

2 − k2z
)]

× εd ω/c√
εd (ω/c)

2 − k2
exp (ikx− iωt) . (C2)

Therefore the electromagnetic wave impedance [52, 53]
in the z = −0 plane

Z|z=−0 ≡
Ex
By

∣∣∣∣
z=+0

=
r + 1

r − 1

√
εd (ω/c)

2 − k2

εd ω/c
, (C3)

where the reflection coefficient

r ≡ E+

E−
. (C4)

On the other hand, from Eqns. (B27)-(B34) the tan-
gential electric field at the metal side of the interface

Ex|z=+0 =

(
∂Ex
∂z

∣∣∣∣
z=+0

− ik Ez|z=+0

)

× 1

π

∫ ∞
−∞

dq
εzz (k, q) (ω/c)

2 − k2

D (k, q)
, (C5)

while the magnetic field

B|z=+0 =
c

iω
curl E

∣∣∣
z=+0

=
c

iω
ŷ

(
∂Ex
∂z

∣∣∣∣
z=+0

− ik Ez|z=+0

)
, (C6)

so that the corresponding wave impedance in the z = +0
plane

Z|z=+0 ≡
Ex
By

∣∣∣∣
z=+0

=
iω

πc

∫ ∞
−∞

dq
εzz (k, q) (ω/c)

2 − k2

D (k, q)
. (C7)

From Eqns. (C3) and (C7) for the reflection coefficient
r we therefore obtain

r = −1 + 2

1 + i
εd (ω/c)

2√
εd (ω/c)

2 − k2

× 1

π

∫ ∞
−∞

dq
εzz (k, q) (ω/c)

2 − k2

D (k, q)

}−1
. (C8)
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FIG. 7. (Color online) The evolution of the “crossing” of the plasmonic (red (dark gray) line) and the hyperbolic mode (blue
(black)), into the hybrid hyper-plasmonic (green (light gray) line) and “residual” (magenta (gray)) modes, with the increase
of vF /c. Panels (a,e): vF /c = 0.005, panels (b,f): vF /c = 0.0062, panel (c,g): vF /c = 0.0063, panels (d,h): vF /c = 0.00935.
Other material parameters (ε∞, τ , εd) correspond to the semiconductor system AlInAs/InGaAs, and are the same as in Fig. 1.
With the plasma wavelength λp = 10 µm, the doped semiconductor system AlInAs/InGaAs corresponds to the panels (d,h).
The dotted lines in panels (a) - (d) represent the imaginary parts of the in-plane momentum kτ .

Appendix D: Surface waves at the metal-dielectric
interface.

For a surface wave at the metal-dielectric interface with
the in-plane momentum k >

√
εd ω/c, the electric field

in the dielectric half-space z < 0 is given by

E (r, t) = E0

1, 0,− ik√
k2 − εd (ω/c)

2


× exp

(
ikx+

√
k2 − εd (ω/c)

2
z − iωt

)
, (D1)

while the corresponding magnetic field

B (r, t) = ŷ E0
iεd ω/c√

k2 − εd (ω/c)
2

× exp

(
ikx+

√
k2 − εd (ω/c)

2
z − iωt

)
. (D2)

The wave impedance at z = −0 is therefore given by

Z|z=−0 ≡
Ex
By

∣∣∣∣
z=−0

=

√
k2 − εd (ω/c)

2

i εd ω/c
. (D3)

From Eqns. (C7) and (D3)

1

π

∫ ∞
−∞

dq
εzz (k, q) (ω/c)

2 − k2

D (k, q)

= − εd (ω/c)
2√

k2 − εd (ω/c)
2
, (D4)

which defines the dispersion law of the surface wave ω (k).

Appendix E: “Crossing” to “Avoided Crossing”
crossover

The dispersion equation for the surface modes at the
conductor-dielectric interface, Eqn. (29) for a degenerate
electron gas generally has two distinct solutions. For a
sufficiently small value of the ratio of the Fermi veloc-
ity to the speed of light in vacuum, these correspond to
the conventional surface plasmon (red (dark gray) curve
in Fig. 7 (a),(b) and (e),(f)), and the hyperbolic wave
that is primarily supported by the hyperbolic layer (blue
(black) curve in see Fig. 7 (a),(b) and (e),(f)). In this
regime, there is a large difference in the lifetimes of the
“plasmonic” and the “hyperbolic” surface waves, so the
seemingly un-avoided crossing in the plot of the real parts
of the wavenumber and the frequency in Fig. 7 (a),(b) is
a direct consequence of this behavior – in the full phase
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space (see Fig. 7 (e),(f)) these two modes actually stay
far apart from each other.

With the increase of the ratio vF /c (by e.g. increas-
ing the doping density in a semiconductor) however, the
corresponding lifetimes approach each other, and at the
critical value of vF /c the “plasmonic” and the “hyper-
bolic” modes finally become degenerate. At higher vF /c
the dispersion diagram shows an avoided crossing – as
seen in Fig. 7 (c),(g) calculated for the value of vF /c

just above this critical point. From now on, with an in-
crease of the frequency, the “conventional” surface plas-
mon continuously evolves into the hyperbolic mode – see
the evolution of the magenta curve in Fig. 7 (c),(d) and
(g),(h). At the same time, the standard plasmonic reso-
nance, which generally manifests itself by the peak in the
frequency dependence of the in-plane wavenumber (and
the corresponding photonic density of states), is strongly
suppressed – see the behavior of the magenta curve in
Fig. 7(c),(d) and note the use of the logarithmic scale.
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