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We demonstrate theoretically the existence of optical coherence bandgaps by performing simu-
lations of partially coherent light incident on a linear array of circular holes in a subwavelength-
thickness gold sheet. We use a simple scalar Foldy-Lax system of equations for our model. A possible
physical mechanism for the bandgaps is discussed.

I. INTRODUCTION

The coherence of a light field can affect many of the
observable characteristics of the field as it propagates,
including its directionality [1], its spectrum [2], and its
state of polarization [3, 4]. Consequently, the ability to
control spatial coherence allows control over the proper-
ties of a field as it propagates. Furthermore, it is known
that partially coherent light is beneficial in a number of
applications, such as free-space optical communications
[5, 6], and that the degree of coherence must be opti-
mized for the specifics of the communications channel.
The ability to control spatial coherence is therefore of
great importance.
It has been shown theoretically that the spatial coher-

ence of light can be modulated in a Young double-slit
experiment in which the slits are in a surface plasmon-
supporting metal, and that the coherence can be in-
creased or decreased with the appropriate geometry [7].
Some of these predictions were confirmed experimentally
[8–10]. It was further shown that adding a third slit to
the plasmon-supporting material can further modulate
coherence, and that the middle slit does not act as a sig-
nificant barrier to plasmon coupling between the outer
two [11]. Based on this, an array of holes in a metal
plate was proposed as a coherence-converting plasmonic
device [12]. In the simulations undertaken, however, the
hole arrays almost universally caused an increase in the
spatial coherence, and no significant decreases.
In this work, we study computationally the spa-

tial coherence of light transmitted through a plasmon-
supporting metal plate possessing a one-dimensional ar-
ray of holes. We demonstrate that such arrays produce
extended spectral regions in which plasmon coherence
effects are significantly suppressed. These regions repre-
sent a previously unrecognized phenomenon that we refer
to as spatial coherence bandgaps.

II. DESCRIPTION OF MODEL

We use the scalar cylindrical wave model of Ref. [12]
to describe the effects of plasmonic scattering; here we
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review the salient details. Figure 1 illustrates the pro-
cess for a 1× 3 array of holes of radius a separated with
period d. A quasi-monochromatic input field with cen-
tral wavelength λ0 illuminates the plate from the z < 0
side; at each hole, part of the illuminating field is directly
transmitted, and part of it is coupled into a cylindrical
surface plasmon wave. When the plasmon wave interacts
with another hole, it can couple back into a propagat-
ing light wave, where it can interfere with the directly
transmitted wave. If the fields illuminating each of the
holes are mutually incoherent, the light emanating from
the holes will in general be a mixture of all three inputs;
the light coming out of the holes is therefore partially
coherent.

FIG. 1. A cut-away sketch of a 1× 3 plasmonic hole array,
viewed from the z < 0 side of the plate, showing the coherence
conversion process. (Note that the input field is the same
everywhere in the plane; the arrows in the figure are color-
coded only to indicate which hole they are incident upon.)

To model this process, we first consider a coherent in-
put field φk(x), where k represents a variable parameter
of the field, incident upon a row of holes lying along the
x axis. We take the field to be polarized along the x
axis, so we may use a scalar field. Upon striking a hole
at location xn, some fraction α of the mode will transmit
directly through the hole, and some fraction will couple
to the plate as a surface plasmon wave and propagate
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to other holes. Assuming that the holes have subwave-
length diameter and that the distance between the holes
is larger than the wavelength, the holes may be treated
as point scatterers. The output field at location xn is
thus

ψk(xn) = αφk(xn) + β

N
∑

m=1,m 6=n

G(xn, xm)ψk(xm). (1)

where N is the number of holes in the array and
G(xn, xm) is a cylindrical wave that has propagated from
xm to xn and represents the scattered surface plasmon.
The cylindrical wave may be written as

G(xn, xm) =
i

4
H

(1)
0 (ksp |xn − xm|) , (2)

whereH
(1)
0 is the zeroth-order Hankel function of the first

kind, ksp is the surface plasmon wavenumber,

ksp = k0

√

ǫ0ǫm
ǫ0 + ǫm

, (3)

ǫm is the dielectric constant of the metal, ǫ0 is the di-
electric constant of free-space, and k0 = 2π/λ0 is the
free-space wavenumber. We model ǫm as a function of
λ0 using a critical points model [13, 14]. The scattering
parameter β is estimated by treating a cylindrical hole as
a spherical cavity in a solid metal background; the details
can be found in Ref. [12]. The result is that β may be
written as

|β| ≈
(

2πa

λ0

)3 ∣
∣

∣

∣

(1− ǫm/ǫ0)

(1 + 2ǫm/ǫ0)

∣

∣

∣

∣

. (4)

Equation (1) represents a Foldy-Lax system of N equa-
tions with N unknowns which can be solved using matrix
methods; the solution results in the value of ψk(x) at the
output of each hole.
So far, we have considered only spatially coherent

fields propagating through the system. Partial coher-
ence is characterized by use of the cross-spectral density
W (xn, xm),

W (xn, xm) = 〈U∗(xn)U(xm)〉ω , (5)

where the average is over an ensemble of monochromatic
fields U(x) of frequency ω [15]. In general, the cross-
spectral density may be written in terms of the spectral
density S(x) at each hole and the spectral degree of co-
herence µ(xn, xm) between holes as

W (xn, xm) =
√

S (xn)S (xm)µ (xn, xm) . (6)

The spectral degree of coherence is a normalized quantity
that represents the strength of correlations between two
points in the field, with |µ| = 1 representing complete
coherence, and |µ| = 0 representing incoherence.
We consider the special case of an incident field which

has a uniform spectral density across the z = 0 plane

and has degree of coherence µ0 of Gaussian Schell-model
form, i.e.

µ0 (|xm − xm|) = exp

(

− |xm − xn|2
2δ2

)

, (7)

where δ is the transverse correlation length.
To propagate this partially coherent field through the

hole array, we first write µ0 in terms of its spatial Fourier
transform,

µ0(|xm − xn|) =
∫ ∞

−∞

µ̃0 (k) e
ik(xm−xn)dk, (8)

where

µ̃0 (k) =
δ√
2π

exp

(

−1

2
δ2k2

)

. (9)

It then follows, using Eqs. (6) to (9), that the cross-
spectral density of the input field may be written as an
incoherent superposition of coherent modes as

W0(xn, xm) =

∫ ∞

−∞

µ̃0 (k)φ
∗
k(xn)φk(xm)dk, (10)

where

φk(x) =
√

S0e
ikx . (11)

and we have assumed a uniform spectral density S0 across
the entire input plane. We see now that k represents a
transverse wavenumber.
As the modes φk(x) propagate through the plasmonic

system, they will remain mutually incoherent, and the
weighting factor µ̃0 (k) will remain unchanged. The
cross-spectral density of the output field will therefore
be

Wf (xn, xm) =

∫ ∞

−∞

µ̃0 (k)ψ
∗
k(xn)ψk(xm)dk, (12)

where ψk(x) is determined by numerically solving Eq.
(1). We may therefore evaluate Wf (xn, xm) by propa-
gating individual modes φk(x) through the system and
combining them together using Eq. (12). With this re-
sult, the output spectral degree of coherence µf (xn, xm)
can be calculated.

III. RESULTS AND DISCUSSION

There is one significant difficulty in studying the co-
herence of the field output by the plasmonic hole array.
Though the input field is Schell-model, and the overall
degree of coherence can be characterized by the single
parameter δ, the output field is no longer Schell-model,
and the degree of coherence will generally be different for
light being emitted from any pair of holes. To talk about
overall changes to the spatial coherence of the output
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field, we need to define a single number that accurately
characterizes this global coherence.
We therefore define the average output coherence of

the array Mf by the following formula:

Mf =
1

N

N
∑

n=1

1

N − 1

N
∑

m=1,m 6=n

|µf (xn, xm)| . (13)

The average input coherence M0 is defined similarly in
terms of µ0 (xn, xm). This expression is the average of
the spectral degree of coherence, taken over all pairs of
holes. It is to be noted that the absolute value of the
degree of coherence is used in the expression, to avoid
spurious low values that could come from different terms
being out of phase. It should also be noted that the
magnitude of this quantity will generally decrease as the
array size is increased, as the coherence of more distant
pairs of holes will be included.
In our simulation code, we arbitrarily decided to set

α to 0.5; however, we note that for our calculations it
makes no difference what the value of α is, as long as
it is nonzero, since it is present in both the numerator
and denominator of µ (xn, xm) in such a way that it is
canceled out.
In Fig. 2, we plot Mf and M0 as a function of λ0

for several array sizes from 1× 2 to 1× 100, with d and
δ both set to 1000nm. As the array goes from 1× 2
to 1× 5, the broad peak on the left narrows, while Mf

elsewhere flattens to around the same value as M0. At
the 1× 10 array, a new peak emerges at around 710nm,
which redshifts and splits into multiple peaks as the array
size increases. Just to the left of this peak (or series of
peaks) is a region between λ0 ≈ 670nm and λ0 ≈ 700nm
where Mf is flat and roughly equal to M0. This flat re-
gion exhibits a dependence on the number of holes anal-
ogous to the dependence that a transmittance bandgap
has on the number of layers in a photonic crystal. This
suggests that this flat region is a bandgap, but one which
affects optical coherence rather than optical intensity.
If this flat region is truly a bandgap, it should be sen-

sitive to the periodicity of the array; if the periodicity
of the array is destroyed, the flat region should be de-
stroyed. We test this sensitivity by randomizing the hole
positions within the array to destroy the periodicity and
observe how the coherence changes. The randomization
procedure is as follows. A given hole, say, hole n, has
non-randomized location xn. We obtain the randomized
location Xn via

Xn = xn + Znσ, (14)

where Zn is a number drawn from the standard normal
distribution and σ is a chosen standard deviation. We
constrain the randomized location such that for every
hole pair, say, Xn and Xm, we have |Xn − Xm| > 2a.
This is to prevent the holes from overlapping. If any
holes did not satisfy this condition, we discarded that
sample configuration and obtained a new one until the
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FIG. 2. Averaged output and input coherence for increasingly
large hole arrays, with d = 1000 nm and δ = 1000 nm. There
is a flat dip between λ0 ≈ 660 nm and λ0 ≈ 700 nm; this is
the coherence bandgap we will be examining. It is noticeable
with as few as 10 holes in the array.

condition was met. Figure 3 shows randomization results
for a 1× 20 array with d and δ set to 1000nm, with
σ = 50nm, 75 nm, and 100nm. For each value of σ, Mf

was calculated for 100 configurations, and the average
of those Mf is shown in Fig. 3. The unrandomized case
(σ = 0nm) is also shown. We can see that as σ increases,
the prominent peaks at λ0 ≈ 550 nm and λ0 ≈ 715 nm
gradually disappear and the flat region located at λ0 ≈
690nm disappears as the coherence becomes basically a
single broad peak. This indicates that the flat region is
a bandgap.

Having established the existence of coherence
bandgaps, we now need to understand their cause. To
do this, consider the plasmon waves between a pair of
holes at locations x1 and x2, as depicted in Fig. 4. Con-
fining our attention to x1 for the moment, we consider
three plasmon waves: the plasmon wave denoted G1

propagating from x1 to x2, a reflected wave G1r, and a
wave G2 propagating from x2 to x1. The argument of
G2 will be R{ksp} d at x1, where R{} denotes the real
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FIG. 3. Coherence of randomized 1× 20 hole arrays, with
d = 1000 nm and δ = 1000 nm. For each value of σ (except 0),
100 randomizations were done, and their averaged coherence
Mf calculated. These Mf were then averaged together to
produce this figure.

part. When the argument of G2 is

R{ksp} d = ν2π, (15)

where ν2 is an integer, then G2 will have constructive
(destructive) interference with G1 when ν2 is even (odd).
We call these “ν2 modes.” Similarly, the argument of
G1r will be R{ksp} 2d and will have constructive (de-
structive) interference with G1 when

R{ksp} 2d = ν1rπ, (16)

where ν1r is again an even (odd) integer. We call these
“ν1r modes.” Combining Eqs. (15) and (16), we can see
that at any value of kspd where these conditions coincide,
ν2 and ν1r have the relationship

ν1r = 2ν2. (17)

At x2, there are identical relationships between G2, G1,
and a reflected G2 wave. Furthermore, in an arbitrarily-
sized array, every hole will have these relationships with
its neighboring holes, all at the same wavelength. Thus,
the entire array will obey the relationships in Eqs. (15)
to (17), meaning that the entire array will have identical
ν2 modes and identical ν1r modes.
If we consider this behavior as a function of R{ksp} d,

this means that ν2 modes will only ever coincide with
constructively interfering ν1r modes, that there will be
a destructive ν1r mode between these combined modes,
and that these combined modes will alternate between
constructive and destructive ν2 modes. This behavior
will be demonstrated in Fig. 5.
Figure 5 shows the averaged coherence of a 1× 50 ar-

ray as a function of R{ksp} d. The ν2 and ν1r modes
are indicated. In order to show many cycles, in Fig. 5
we have neglected the wavelength dependence of ǫm and

G1

G2

G1r
x1 x2

φk(x1) φk(x2)

ψk(x1) ψk(x2)

FIG. 4. Notation for plasmonic interference between two
holes.

β. Looking at Fig. 5, we can make a few observations.
First, we can note that that coherence peaks occur near
multiples of π, and that when ν2 is even, we tend to have
higher peaks than when it is odd. This is because at these
wavelengths with even ν2, both G2 and G1r are in phase
with G1, which increases the coherence. Second, we can
note that the flat bandgaps occur near peaks at odd val-
ues of ν2. This is because around these wavelengths,
particularly in the region between here and where ν1r is
also odd, G2 and G1r will destructively interfere with G1.
This minimizes the plasmonic contribution to the over-
all field, which reduces the output coherence to near its
input value. This is the mechanism behind the bandgap
regions. It should be noted that in our testing there are
not always bandgaps at odd ν2, but they do appear only
at odd ν2.
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FIG. 5. Mf for a 1× 50 array, with d = 1200 nm and
δ = 1500 nm. Here, the dielectric constant and scattering pa-
rameter were set to constant values of ǫm ≈ −10.6488+i1.3734
and β = 5, independent of wavelength. Red lines are wave-
lengths of destructive interference, blue of constructive inter-
ference, and purple is where the two coincide.

The coherence peaks observed in these simulations may
also be interpreted in another way: as a classical form
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of superradiance and subradiance. Quantum superradi-
ance, first introduced by Dicke [16], is a phenomenon in
which closely-packed atoms end up radiating coherently
due to their interaction with a mutual radiation field. For
our purposes, we may imagine this as each atom having
two contributions to its radiation: direct spontaneous
emission, and emission stimulated by constructive radia-
tion from the other atoms. Subradiance, in contrast, is
the result of destructive interference suppressing the radi-
ation rate. In a plasmonic hole array, superradiance and
subradiance may be interpreted as arising from the in-
teractions between the directly transmitted light at each
hole and the plasmonic contribution, as first discussed by
Ropers et al. [17].

Referring back to Fig. 2, the coherence peak at 750nm
is evidently the subradiant peak, while the coherence
peak at 560 nm is the superradiant peak. This can be
partly justified by looking at the two-hole case at the top
of the figure, in which the coherence is near maximum
at around 550 nm, and near minimum at around 750nm;
these are regions in which the coherent part of the trans-
mitted field is enhanced and suppressed, respectively, due
to the interaction between the holes. In contrast to Ref.
[17], however, the peaks observed here are peaks in the
spatial coherence of the transmitted light, not in the in-
tensity of the transmitted light itself.

It is to be noted that connections between surface plas-
mons and spatial coherence have been considered else-
where in recent years, albeit in a very different con-

text. Friberg et al. [18–20] have considered the con-
trol and modification of the spatial coherence of surface
plasmons themselves, without their effect on transmitted
light. Their results indicate that there is much more to
be studied in partially coherent surface plasmon optics.

IV. SUMMARY

In summary, we have theoretically demonstrated the
existence of optical coherence bandgaps caused by sur-
face plasmons in linear arrays of circular holes in a thin
metal sheet. We have also proposed a physical mecha-
nism causing these bandgaps. It is important to note that
the bandgaps discussed here are not of the typical form,
which result from the interference of waves along the lon-
gitudinal direction of propagation. Here, it is the trans-
verse coherence properties of the field that are suppressed
through the interactions of propagating plasmons. The
observed effects appears to be a bandgap phenomenon
that has previously gone unobserved.
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