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We analyze the time evolution of the Bose-Hubbard model after a sudden quantum quench to
a weakly interacting regime. Specifically, motivated by a recent experiment at Kyoto University,
we numerically simulate redistribution of the kinetic and onsite-interaction energies at an early
time, which was observed in non-equilibrium dynamics of ultracold Bose gases in a cubic optical
lattice starting with a singly-occupied Mott-insulator state. In order to compute the short-time dy-
namics corresponding to the experimental situation, we apply the truncated-Wigner approximation
(TWA) to the Bose-Hubbard model on a cubic lattice. We show that our semiclassical approach
quantitatively reproduces the fast redistribution dynamics. We further analyze spatial spreading
of density-density correlations at equal time in the Bose-Hubbard model on a square lattice with a
large filling factor. When the system is initially prepared in a coherent state, we find that a prop-
agation velocity of the correlation wave packet in the correlation function strongly depends on the
final interaction strength, and it is bounded by twice the maximum group velocity of the elementary
excitations. In contrast, when the system is initially in a Mott-insulator state, the propagation
velocity of the wave packet is approximately independent of the final interaction strength.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

High controllability and cleanness of ultracold-gas sys-
tems allow us to utilize them as analog quantum sim-
ulators for quantum many-body systems [1–3]. Indeed,
the performance of quantum simulators built with ul-
tracold gases in optical lattices has been validated by
the quantitative agreement between experiment and ex-
act numerical simulation [4–8]. An interesting target
of such quantum simulators is quantum dynamics far
from equilibrium [9, 10], which is in general impossible
to simulate with currently available numerical methods
on classical computers due to the exponential growth of
the Hilbert-space dimension with system size and the
minus-sign problem in quantum Monte Carlo simula-
tions. Direct comparison with numerical simulations
by the time-dependent density matrix renormalization
group (t-DMRG) at one dimension (1D) has demon-
strated that the quantum simulator can provide accurate
data even in a long-time region, where t-DMRG fails [6].

Among diverse quantum many-body dynamics, par-
ticular attention has been devoted to quantum quench
dynamics, which arises after a sudden and substan-
tial change of parameters in the Hamiltonian [6, 7,
9–18]. In recent years, some experimental groups
have explored far-from-equilibrium dynamics of high-
dimensional Bose-Hubbard systems quenched from typ-
ical quantum states [19–22]. Specifically, some of the
current authors and their collaborators observed the re-
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distribution dynamics of kinetic and onsite-interaction
energies of Bose gases in a cubic optical lattice after a
rapid quench of the lattice depth from a Mott insula-
tor state [21, 22]. An immediate usage of such quantum
simulation results is to examine or develop numerical
methods for computing quantum many-body dynamics
by taking them as an accurate reference. Nevertheless,
any quantitative approach that can recover the exper-
imental results at three dimensions (3D) has not been
established thus far.

In this paper, aiming to simulate the energy-
redistribution dynamics quantitatively, we adopt a semi-
classical approximation formulated by a phase-space rep-
resentation of quantum systems, namely, the truncated-
Wigner approximation (TWA) [23–26]. According to
the framework of TWA for the Bose-Hubbard model
[26], one can represent a time-dependent quantum av-
erage of physical observables as a semiclassical form in
terms of deterministic trajectories of a discrete Gross–
Pitaevskii equation, where the initial classical fields are
weighed with the Wigner’s quasi-probability distribution
corresponding to an initial quantum state. This ap-
proximation allows one to obtain quantitative descrip-
tions of short-time dynamics of the quantum averages
even for macroscopic quantum systems, to which exact-
diagonalization methods are inaccessible.

In the past two decades, TWA or related semiclassical
frameworks were widely used to explore non-equilibrium
phenomena of isolated Bose gases trapped by optical
lattices [13, 17, 26–38], quantum spin systems [26, 39–
42], open quantum systems [43–48], spin-boson mod-
els [49–51], and interacting fermions [52–54]. In ear-
lier literatures on interacting bosons in optical lattices
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[13, 17, 27, 28, 35, 37], it was argued that in a weakly
interacting regime the semiclassical approach can be
used to describe the time evolution induced by a sud-
den quench from a Mott-insulator state. However, the
application of such semiclassical approaches to the 3D
case at unit filling, which is the situation realized in the
experiment [21, 22], has not been demonstrated in prac-
tice. We apply a TWA technique, which was previously
used to study 1D Bose-Hubbard dynamics at a large-
filling factor [13, 27, 28], to the case of the 3D Bose-
Hubbard model initially prepared in a singly-occupied
Mott-insulator state. By computing the time evolution
of the kinetic and interaction energies inside a weakly in-
teracting regime, we will show that the results obtained
by our semiclassical approach agree well with those ob-
served in the experiment [21, 22].

As a further application of the developed method, we
study dynamics of non-local spreading of density-density
spatial correlations after a sudden quench in the 2D Bose-
Hubbard model. Correlation spreading in 1D ultracold
neutral atoms has been discussed [7, 55, 56] in the con-
text of the Lieb-Robinson bound of non-relativistic quan-
tum many-body systems [57]. Both of the experiment
and theory showed that in the strongly interacting re-
gion the propagation speed of the correlation spreading is
bounded by the maximum group velocity of particle-hole
excitations. In addition, similar correlation spreading at
1D was also studied for trapped-ion or interacting-spin
systems [58–63]. More recently, correlation-spreading dy-
namics at 2D have been analyzed [22, 41, 64, 65], whereas
their quantitative properties are, however, less under-
stood compared with the 1D case. In this paper, within
the semiclassical regime of the 2D Bose-Hubbard model,
we compute the time evolution of a density-density cor-
relation function at equal time by starting with either a
coherent state or a Mott-insulator state. We find that
when the system is initially prepared in a coherent state,
a mean propagation velocity of a wave packet in the cor-
relation function strongly depends on the final interac-
tion. In contrast, when the system is initially in a Mott-
insulator state, a wave packet in the correlation function
propagates with a nearly constant velocity with respect
to the final interaction.

The remaining part of this paper is organized as fol-
lows: In Sec. II, we introduce the Bose-Hubbard Hamilto-
nian, which effectively describes ultracold bosonic atoms
tightly trapped by an optical-lattice potential, and ex-
plain the TWA method for this model. In Sec. III, we
discuss an application of the TWA to the quench exper-
iment at 3D [22]. In Sec. IV, we analyze spreading dy-
namics of spatial density-density correlations in a weakly
interacting regime of the 2D Bose-Hubbard model after
a sudden quench from either a coherent state or a Mott-
insulator state. In Sec. V, conclusions of this article are
summarized.

II. TRUNCATED-WIGNER APPROXIMATION
FOR THE BOSE-HUBBARD HAMILTONIAN

In this paper, we investigate non-equilibrium dynamics
of ultracold bosonic atoms trapped in an optical lattice.
Supposing that the lattice depth is sufficiently deep, the
system is effectively described by the single-band Bose-
Hubbard model [66, 67],

Ĥ = −J
∑
〈jk〉

(â†j âk + h.c.) +
U

2

∑
j

â†j â
†
j âj âj . (1)

Here âj and â†j are the annihilation and creation Bose
operators at each site with an index j. The bracket sym-
bol 〈jk〉 denotes nearest-neighbor pairs of the sites. The
two energy scales J and U(> 0) characterize the tun-
neling between nearest-neighbor sites and the onsite re-
pulsive interaction. When the mean density of atoms
per site (filling factor) is integer, the model (1) exhibits
a quantum phase transition between the superfluid and
Mott-insulator states [67, 68]. The accurate values of the
transition points at unit filling have been obtained with
quasi-exact numerical methods as (U/J)c = 3.367 (1D)
[69], (U/J)c = 16.74 (2D) [70], and (U/J)c = 29.34 (3D)
[71], respectively. In the following discussions, we write
M and Ntot as the total numbers of lattice points and
atoms.

Let us briefly review the TWA method applied to
the Bose-Hubbard model. In terms of the phase space
method defined in a 2M -dimensional phase space of
a complex-valued vector ~α = (α1, α2, · · · , αM ), the
time evolution of lattice bosons can be described by
a quasi-probability distribution, i.e. the Wigner func-
tion W (~α, ~α∗, t), which is equivalent to the Wigner–Weyl
transform of the density operator ρ̂(t) of the system
[23, 25, 26, 43]. For the Bose-Hubbard model (1), the
equation of motion of W (~α, ~α∗, t) is given by

i~
∂

∂t
W (~α, ~α∗, t) = 2HW (~α, ~α∗)sinh

(
Λc
2

)
W (~α, ~α∗, t),

(2)

where HW = (Ĥ)W is the Wigner–Weyl transform of
Eq. (1) [25, 26]. The explicit form of HW is presented in
Appendix A. The symbol Λc represents the symplectic
operator working on c-number functions defined in the
phase space, and its explicit form reads

Λc =
∑
j

[ ←−
∂

∂αj

−→
∂

∂α∗j
−
←−
∂

∂α∗j

−→
∂

∂αj

]
. (3)

With use of the Wigner function, the time-dependent
quantum average of an operator Ω̂, defined by 〈Ω̂(t)〉 ≡
Tr[ρ̂0Ω̂(t)], can be expressed as a phase-space averaged
form [25, 26]

〈Ω̂(t)〉 =

∫
d~αd~α∗W (~α, ~α∗, t)ΩW (~α, ~α∗), (4)
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where d~αd~α∗ = π−M
∏
j dRe[αj ]dIm[αj ].

According to the previous literatures [23, 26], the
TWA is derived in a semiclassical expansion of the right-
hand side of Eq. (2) in the symplectic operator Λc. If
one eliminates higher-order terms of order O(Λ3

c) from
the expansion series, then the time evolution of the
Wigner function is effectively generated by the classical
Liouville equation i~∂W/∂t ≈ {HW ,W}P.B.. Here the
bracket {·, ·}P.B. denotes the Poisson bracket defined in
the phase space. In this approximation, the Wigner func-
tion is conserved along characteristic trajectories, which
are solutions of the discrete Gross–Pitaevskii equation
i~∂αcl,j/∂t = ∂HW /∂α

∗
cl,j [26]. This statement is noth-

ing but the Liouville theorem in the classical statisti-
cal mechanics [23]. Using the theorem, we find that the

quantum average of Ω̂(t) can be reduced to a semiclassi-
cal form [25, 26]

〈Ω̂(t)〉 ≈
∫
d~α0d~α

∗
0W (~α0, ~α

∗
0)ΩW [~αcl(t), ~α

∗
cl(t)], (5)

where ~αcl(t) is a solution of the Gross–Pitaevskii equa-
tion for an initial classical field ~α0. The initial classical
fields distribute over the phase space according to the
Wigner function of the initial quantum state. Here we
note that the classical field scales with a square root of
the filling factor n̄ = Ntot/M , so that the expansion in
Λc is characterized by the inverse of n̄ [26].

The semiclassical approximation used in Eq. (5) yields
a quantum-fluctuation correction to a mean-field solution
of dynamics within the lowest order [29]. In a weakly
fluctuating regime, where an interaction parameter λ ≡
Un̄/J is far from the quantum phase transition point
λc, i.e., λ � λc, the TWA quantitatively describes time
evolution of the system until the time t approaches a
characteristic timescale tc [26–28]. When λ is close to
the critical value λc, the semiclassical treatment breaks
down at short time due to the strong fluctuations. Since
λc ∝ n̄2, larger n̄ and/or smaller U/J means larger tc [27,
28]. Especially at U/J = 0 or n̄ = ∞, the semiclassical
approximation becomes exact.

In typical experiments including the one in Refs. [21,
22], n̄ is tuned to unity and λ is O(1). If one computes
time evolution of the 1D Bose-Hubbard model with n̄ = 1
and λ ∼ 1 within the TWA, it fails in much shorter time
than O(~/J) because of rather small λc(= 3.367). In
contrast, for the 3D case with the same parameters, it is
expected that the TWA is able to simulate the dynamics
up to t ∼ ~/J , because λ of O(1) is sufficiently far from
λc = 29.34. As we will see in Sec. III, the TWA can
reproduce characteristic early-time dynamics observed in
the experiment [22] until t ∼ ~/J .

III. REDISTRIBUTION DYNAMICS OF THE
KINETIC AND INTERACTION ENERGIES

In this section, we apply the formalism of TWA for
simulating the non-equilibrium dynamics of Bose gases

in a cubic optical lattice observed in the experiment [21,
22]. We numerically compute the time evolution of the
kinetic and interaction energies after a sudden quench
from a singly-occupied Mott-insulator state into a weakly
interacting regime.

A. Experimental setup

In the experiment of Refs. [21, 22], a gas of 174Yb atoms
(bosons) is confined in a cubic optical lattice with lattice
spacing dlat = 266 nm. The typical energy scale of this
system is given by the recoil energy ER/~ = 2π×4021.18
Hz. The experimental protocol for studying quantum
quench dynamics is summarized as follows:

(i) One slowly ramps up the optical lattice depth V0 up
to V0 = 15ER, at which U/J = 99.4, in order to prepare
a singly-occupied Mott insulator.

(ii) One abruptly ramps down the lattice depth from
V0 = 15ER to V0 = 5ER in the ramp-down time tf = 0.1
ms in order to prepare a state far from equilibrium. At
the final depth, implying that U/J = 3.41, the ground
state is deeply in the superfluid regime [71].

(iii) After the ramp-down process, one measures the
time evolution of ensemble averages of the kinetic energy

K̂ = −J
∑
〈jk〉(â

†
j âk + h.c.) and the onsite-interaction

energy Ô = U
2

∑
j â
†
j â
†
j âj âj . The kinetic and interaction

energies are extracted from the time-of-flight imaging
and the high-resolution atom-number-projection spec-
troscopy, respectively [72].

It is worth noting that although there is a parabolic
trapping potential in the real experiment [22], we neglect
it in our TWA calculations for the following reason. At
the initial Mott-insulator state, the particle density of
the system is almost uniform in space so that the initial
quantum state is well approximated as a direct-product
wave function, which is spatially uniform and composed
of a local Fock state (see Sec. III B). The trapping po-
tential gives no noticeable effect on the quench dynamics
within the time window t . ~/J , in which the experi-
ment was performed, because the trap frequency is much
smaller than J/~.

B. Application of TWA to the quench experiment

Within the framework of TWA, the time-dependent
quantum mechanical average of the kinetic and interac-
tion energies is approximated to a semiclassical form with
the deterministic Gross–Pitaevskii trajectory ~αcl(t)

〈K̂(t)〉 ≈
∫
d~α0d~α

∗
0W (~α0, ~α

∗
0)KW [~αcl(t), ~α

∗
cl(t)] ,

〈Ô(t)〉 ≈
∫
d~α0d~α

∗
0W (~α0, ~α

∗
0)OW [~αcl(t), ~α

∗
cl(t)] ,

where KW (~α, ~α∗) and OW (~α, ~α∗) are the Wigner-Weyl

transforms of K̂ and Ô, respectively. The explicit forms
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of KW (~α, ~α∗) and OW (~α, ~α∗) can be derived by means of
the Bopp-operator representation of the bosonic opera-

tors âj → αj + 1
2

∂
∂α∗j

and â†j → α∗j − 1
2

∂
∂αj

[26], and their

derivation is demonstrated in Appendix A.
The initial state before the quench in the experiment

can be represented by a product-state wave function
|Ψini〉 =

∏
j |n̄〉j , where |n̄〉j is a local Fock state char-

acterized by n̂j |n̄〉j = n̄|n̄〉j . The corresponding Wigner
function W (~α, ~α∗) is given by a direct product of the lo-
cal Wigner function of the Fock-state vector |n̄〉j at each
site, thus, it reads [25, 28, 73, 74]

W (~α, ~α∗) =
∏
j

2e−2|αj |2(−1)n̄Ln̄(4|αj |2), (6)

where Ln(x) =
∑n
r=0(−1)r n!

(n−r)!(r!)2x
r is the Laguerre

polynomial of order n. Here we parametrize the classical
field as αj = |αj |eiϕj . This Wigner function is not posi-
tive definite along a direction of the amplitude degrees of
freedom |αj |, except for a trivial case n̄ = 0. The phase
of the classical field ϕj distributes uniformly in [0, 2π].
The Wigner function has an explicit U(1) symmetry re-
flecting the restored symmetry inside the Mott-insulator
state. In fact, a general phase shift of the phase-space
variables, αj → αje

iϕ̃j , does not change in the value of
the Wigner function.

The negativity of Eq. (6) makes it difficult to obtain
converged results in numerically evaluating the phase-
space integration weighted by the Wigner function. For
this reason, in our numerical simulations, we adopt a
Gaussian approximation for the exact Wigner function
of a Fock state [73, 74]. Repeating the discussions in the
previous literatures [73, 74], the Gaussian-Wigner func-
tion corresponding to a Fock-state vector |n̄〉 has a gen-
eral form as

Wg(n) =
1√

2πσ2
e−

1
2σ2

(n−n0)2 , (7)

where n = |α|2. The mean n0 and covariance σ are
free parameters determined from the consistency that the
Gaussian function should exactly recover the first and
second order local moments of the density, i.e., 〈n̂j〉 and
〈n̂2
j 〉. From direct calculations, we find that the optimal

choice is n0 = n̄ + 1
2 and σ = 1

2 . It is worth noting that
the (rescaled) higher-order moments n̄−m〈n̂mj 〉 for m > 2
computed by the Gaussian function agree with the exact
ones up to O(n̄−2) [74]. While the normalized Gaussian
function can give rise to an unphysical negative density,
however, it does not affect the phase-space average itself
because the probability, which corresponds to the Gaus-
sian tail, is sufficiently small even at n̄ = 1. In addition,
a similar Gaussian approximation is often used in litera-
tures of TWA studies [28, 35, 37, 39, 42, 52, 73, 74] and
manifests its validity in the semiclassical descriptions of
short time dynamics.

Now we summarize what should be analyzed in the
TWA: We solve time evolutions of a time-dependent
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FIG. 1: Semiclassical time evolution of the kinetic and onsite-
interaction energies (green-dotted and blue-solid lines) after
the sudden quench from the singly-occupied Mott-insulator
state. We do not deal with finite-time effects of the ramp
down process, i.e., tf = 0. The red-dashed line represents the
total sum of these energies. In the numerical simulation, we
set Ntot = M = 123 and λf = 3.41. In the current setup,
0.6 ms ≈ ~/J , where J corresponds to the final lattice depth.
In this TWA simulation, we sampled nmc = 100000 random
initial conditions of the classical field according to Eq. (7).
Throughout this paper, we omit the standard error of the
Monte-Carlo sampling, which scales with 1/

√
nmc, because for

each simulation the error is sufficiently small to be neglected.

Bose-Hubbard model Ĥ[λ(t)] by using the TWA. At
t = 0, the Hamiltonian has λ = λi = 99.4 correspond-
ing to V0 = 15ER. In the ramp-down process, λ(t) de-
creases with V0(t), which declines linearly. Recall that
the duration of the ramp-down process is tf = 0.1 ms
in the experiment. At t = tf , the lattice depth reaches
V0 = 5ER, which implies λ = λf = 3.41. At t > tf ,
the system evolves in time under the time-independent
Hamiltonian Ĥ[λf ]. The phase-space averaging with the
Wigner function is evaluated by using the Monte-Carlo
integration, where each initial configuration of the classi-
cal fields, ~αcl(0), is randomly chosen from the Gaussian-
Wigner function (7).

Before proceeding to a numerical simulation corre-
sponding to the experimental setup, we discuss a sim-
pler problem, i.e., an infinitesimal-time limit of the ramp-
down process (tf = 0). In this case, the Hamiltonian is al-
ways independent of time at t > 0. Figure 1 depicts a nu-
merical simulation of the kinetic and interaction energies
within TWA for tf = 0, where we set Ntot = M = 123

and assume an open boundary condition. We clearly see
that the semiclassical approach captures fast redistribu-
tion of the kinetic and interaction energies. The timescale
of the redistribution is on the order of 0.1 ms and com-
parable to the experimental result. In addition, the sum
of the energies, i.e., Etot = 〈K̂(t)〉 + 〈Ô(t)〉 completely
maintains its initial value because the Hamiltonian of the
system is independent on time. We emphasize that the
redistribution dynamics presented in Fig. 1 cannot be
recreated by means of naive mean-field theories without
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FIG. 2: Dependence of (a) the hopping strength J and (b) the
onsite-interaction strength U on the lattice depth V0. These
quantities are measured in the unit of the recoil energy ER.

fluctuations from a classical configuration, such as the
Gross–Pitaevskii theory and the Gutzwiller variational
method.

C. TWA versus experimental results

Here we take into account the finite-time ramp-down
process in V0(t). The hopping strength J and the onsite-
interaction strength U vary with V0(t) as depicted in
Fig. 2. We note again that V0(t) linearly decreases in time
from V0(0) = 15ER to V0(tf) = 5ER where tf = 0.1 [ms].
In this process, the system passes through the Mott-
insulating and the quantum critical regimes where the
quantitative validity of TWA is justified only in rather
short time t � O(~/J). Nevertheless, our approach is
expected to be able to explain the redistribution dynam-
ics after the quench because the system actually leaves
away from these regimes in the short time.

In Fig. 3, we show 〈K̂(t)〉 and 〈Ô(t)〉 including the
ramp-down process. The numerical simulation is per-
formed with an open boundary condition and at M =
Ntot = 303, which is comparable to the size of the ac-
tual system. Compared with the previous calculation in
Subsec. III B, the ramp-down process significantly mod-
ifies the value of each energy at t = tf . The total energy
Etot decreases from zero. In addition, the timescale for
the saturation toward each quasi-steady value is slightly
diminished. Due to such modifications, the semiclassi-
cal result including the ramp-down process agrees very
well with the experimental one, which is presented by
points with error bars in Fig. 3, without any fitting pa-
rameter. The original experimental data are extracted
from Ref. [21]. The detailed experimental setup will be
provided in Ref. [22].

We conclude this section by making comments on the
limitation of our semiclassical approach to the experi-
mental system at intermediate final interactions and at
unit filling. Although the experiment is able to access a
long-time regime t� ~/J , our approach is limited to sim-
ulate a short time dynamics up to t ∼ ~/J . To develop
an efficient tool which allows one to study the long-time
dynamics, e.g., a relaxation dynamics toward a thermal
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FIG. 3: Semiclassical time evolution of the kinetic and onsite-
interaction energies (green-dotted and blue-solid lines) includ-
ing the ramp-down process from the singly-occupied Mott-
insulator state. The red-dashed line represents the total sum
of these energies. In the numerical simulation, we set Ntot =
M = 303 and λf = 3.41. The horizontal axis starts from
t = tf . In the TWA simulation, we sampled nmc = 10000 ini-
tial conditions according to Eq. (7). The green-square, blue-
triangular, and red-circle points represent the corresponding
experimental data of the ensemble-averaged kinetic, onsite-
interaction, and total energies. The vertical bar for each point
indicates an experimental error.

equilibrium state, remains to be an open and challenging
issue.

IV. SPATIAL-CORRELATION SPREADING
AFTER A SUDDEN QUENCH

In Sec. III, we corroborated the quantitative validity of
the TWA method for quantum quench dynamics of the
3D Bose-Hubbard model in a weakly interacting regime
(λ � λc) starting with a Mott-insulator state. In this
section, we next apply our approach to investigate time
evolutions of spatial correlation spreading after sudden
quenches in the 2D Bose-Hubbard model. Especially, we
consider two different initial states, i.e., a coherent state,
which is the ground state at λ = 0, and a Mott-insulator
state. We discuss their difference emerging in the re-
sulting dynamics after a sudden quench into a weakly
interacting regime.

In order to characterize spatial-correlation spreading,
we specifically deal with a density-density equal-time cor-
relation function defined by

Cd(t) =
1

Mn̄2

∑
j

〈n̂j(t)n̂j+d(t)〉c, (8)

where d = (dx, dy) is a 2D relative vector between two
different sites. In the definition of the correlation func-
tion, 〈· · · 〉c denotes a connected correlation function,
i.e., 〈n̂j(t)n̂j+d(t)〉c = 〈n̂j(t)n̂j+d(t)〉 − 〈n̂j(t)〉〈n̂j+d(t)〉.
Within TWA, the connected correlator is approximated
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FIG. 4: Energy deviation per site ∆E/(MJ) of the coherent
state from the ground state energy within the Bogoliubov
approximation as a function of λf , where n̄ = 10.

to

〈n̂j(t)n̂j+d(t)〉c ≈ n(j)
W (t)n

(j+d)
W (t)− n(j)

W (t) · n(j+d)
W (t),

(9)

where the overline in the right-hand side means the
phase-space average by use of the Wigner function of

initial quantum states. The c-number quantity n
(j)
W rep-

resents the Wigner-Weyl transform of the local density

n̂j , i.e., n
(j)
W = |αj |2 − 1

2 . In cold-atom experiments,
the time evolution of the non-local density-density cor-
relation is measurable by utilizing the quantum-gas mi-
croscope technique [7] or measuring spatial-noise correla-
tions in a time-of-flight interference pattern of expanding
gases [75, 76].

A. Sudden quench from a coherent state

We begin with analyzing density-density correlation
spreading inside a superfluid regime assuming that the
system is initially in a direct-product state composed of

the local coherent states |ᾱ〉j = eᾱâ
†
j−ᾱ∗âj |0〉:

|Ψini〉 =
∏
j

|ᾱ〉j . (10)

Here, ᾱ =
√
n̄eiϕ̄ parametrizes each coherent-state vec-

tor. Calculating the Wigner-Weyl transform of this wave
function (10), we can obtain the corresponding Wigner
function as follows [26]:

W (~α, ~α∗) =
∏
j

{
2e−2|αj−ᾱ|2

}
. (11)
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FIG. 5: Density-density correlation spreading after the sud-
den quench from the coherent state at λf = 2. The blue circle
and green square indicate the maximum and minimum values
of the correlation function within tJ/~ ≤ 3. The relative
vector d = (dx, dy), Euclidean distance dE, and offset of
correlation ∆d take values of (dx, dy; dE; ∆d) = (0, 1; 1.00; 0),
(1, 1; 1.41; 1), (0, 2; 2.00; 2), (1, 2; 2.24; 3), (2, 2; 2.83; 4),
(0, 3; 3.00; 5), (1, 3; 3.16; 6), (2, 3; 3.617), (0, 4; 4.00; 8) from
the bottom to top, respectively. In the TWA simulation, we
sampled nmc = 40000 initial conditions according to Eq. (11).

This Wigner function can take on non-negative values for
arbitrary αj , so that there is no difficulty in the Monte-
Carlo sampling of the TWA. In the following discussions,
we set ϕ̄ = 0 for simplicity.

In order to keep the accuracy of TWA for a relatively
long timescale, here we choose n̄ = 10 in numerical sim-
ulations. In addition, we impose periodic boundary con-
ditions on the system. Throughout this section, we sup-
pose that the quench is abruptly done for an infinitesimal
time, for simplicity.

Before proceeding to our main results, we calculate the
energy deviation per site defined by

1

M
∆E =

1

M

[
〈Ψini|Ĥf |Ψini〉 − 〈Ĥf〉g

]
, (12)

where Ĥf is the Hamiltonian at λ = λf and 〈Ĥf〉g means

the ground-state energy of Ĥf . We evaluate 〈Ĥf〉g within
the standard Bogoliubov approximation for the Bose-
Hubbard model as follows:

〈Ĥf〉g ≈M

E0 +
1

2M

∑
p6=0

(Ep − ~ωp)

 , (13)



7

dE/vpt+ t�

dE/vpt+ t�
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  1.5  2  2.5  3  3.5  4  4.5

Pe
ak

 ti
m

e 
(u

ni
ts

 o
f h̄

/J
)

Euclidean distance (units of dlat)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  1.5  2  2.5  3  3.5  4  4.5

Pe
ak

 ti
m

e 
(u

ni
ts

 o
f h̄

/J
)

Euclidean distance (units of dlat)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  1.5  2  2.5  3  3.5  4  4.5

Pe
ak

 ti
m

e 
(u

ni
ts

 o
f h̄

/J
)

Euclidean distance (units of dlat)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  1.5  2  2.5  3  3.5  4  4.5

Pe
ak

 ti
m

e 
(u

ni
ts

 o
f h̄

/J
)

Euclidean distance (units of dlat)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  1.5  2  2.5  3  3.5  4  4.5

Pe
ak

 ti
m

e 
(u

ni
ts

 o
f h̄

/J
)

Euclidean distance (units of dlat)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  1.5  2  2.5  3  3.5  4  4.5

Pe
ak

 ti
m

e 
(u

ni
ts

 o
f h̄

/J
)

Euclidean distance (units of dlat)

FIG. 6: Maximum (left column), minimum (center column) and averaged (right column) peak times extracted from the TWA
simulations. The vertical and horizontal axes express the peak time and Euclidean distance. The upper and lower rows
correspond to λf = 2 and λf = 4, respectively.

where p = (px, py) is a momentum in the first
Brillouin zone, E0 = −4Jn̄ + Un̄2/2, and ~ωp =

Un̄ + 4J
∑
j=x,y sin2[pjdlat/(2~)]. In addition, Ep =√

(~ωp)2 − (n̄U)2 is the energy of the elementary exci-
tations (For more details, see Ref. [77]). Figure 4 shows
∆E/(MJ) of the coherent state as a function of λf . Be-
cause ∆E/M is less than the typical energy scale J over
a wide range of λf , the dynamics after the quench from
the coherent state is dominated by the low-energy ele-
mentary excitations from the ground state, i.e., the Bo-
goliubov quasiparticles.

Figure 5 monitors how density-density correlations
propagate over the square lattice. In the numerical simu-
lation, we set λf = 2 and M = 202 at n̄ = 10. In addition,
we characterize the correlation spreading by means of the
usual Euclidean distance defined by dE ≡ (d2

x + d2
y)1/2.

In the time evolution, we observe that a characteristic
signal of correlation, i.e., a wave packet enveloping max-
imum (blue circle) and minimum (green square) peaks
of a fine oscillation propagates over the square lattice
in time. Such a fine oscillation can be interpreted as a
quasi-coherent oscillation reflecting that a few elemen-
tary excitations are created by the quench.

To quantify the correlation spreading, we extract a
propagation velocity of the wave packet from the nu-
merical results in the following manner. Let us denote
the peak times of the maximum and minimum values of
the correlation as t+ and t−, which are represented by
the blue circles and the green squares in Fig. 5. For a

given Euclidean distance dE, we can define a reasonable
(instantaneous) propagation velocity vp as a harmonic
average of these peak times such that

vp ≡
dE

2

(
1

t+
+

1

t−

)
, (14)

where dE/vp is regarded as an averaged peak time. In
Fig. 6, we indicate t+, t−, and dE/vp for different rel-
ative distances at λf = 2 and λf = 4, respectively. It
is found that the averaged peak time almost linearly in-
creases with dE. A linear fitting of the averaged peak
times gives a mean propagation velocity, v̄p, of the wave
packet. In order to compute v̄p, we take into account
early twelve peaks in a timescale of t ∼ ~/J , which are
found in Cd(t) with dE < 5dlat.

Figure 7 shows the mean propagation velocity v̄p as a
function of the final interaction λf . In the same figure,
we also display twice the maximum and sound velocities
of the Bogoliubov excitations, 2vm and 2vs, which are
expressed as

vm = max
p


√(

∂Ep

∂px

)2

+

(
∂Ep

∂py

)2
 ,

vs = lim
p→0


√(

∂Ep

∂px

)2

+

(
∂Ep

∂py

)2
 .

Note that vm coincides with vs in the limit that λf � 1. It
is clearly observed in Fig. 7 that v̄p is bounded by twice
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FIG. 7: Final interaction dependence of the mean propaga-
tion velocity v̄g (circle). The solid and dashed lines represent
twice the sound (2vs) and maximum (2vm) velocities of the
Bogoliubov excitation, respectively. The horizontal axis ex-
presses the final interaction λf . The vertical bar indicates the
normal estimation error of the mean propagation velocity in
the linear fitting (see also Fig. 6).

the maximum velocity 2vm over a range of λf ∈ [1, 5].
This numerical result is consistent with the general one
of the Lieb–Robinson bound [57]. Furthermore, in the
range of 1 ≤ λf ≤ 3, the propagation velocity increases
with λf in such a way that the points come close to 2vs.
This feature can be attributed to the fact that the quench
actually creates some elementary excitations at Ep � J ,
where the Bogoliubov excitations behave as phonons, be-
cause the energy deviation is relatively small (See Fig. 4).

In contrast, in the range of 3 < λf ≤ 5, the mean
propagation velocity significantly deviates from 2vs. In
this regime, elementary excitations with Ep ∼ J can be
generated because the energy deviation per particle is
comparable to J as seen in Fig. 4. In addition, the com-
puted propagation velocity has a large estimation error
of the linear fitting. The large error is actually due to an
exceptional point in, e.g., Cd(t) at dE = 3 and λf = 4 (see
Fig. 6) that the maximum peak arises after the growth of
the minimum one. Similar points also appear at λf = 5.

We conclude this subsection with comments on a pre-
vious study on similar quench dynamics of the 2D Bose-
Hubbard model, which uses a time-dependent variational
Monte-Carlo approach [64]. In Ref. [64], Carleo and
coworkers calculated the density-density correlation func-
tion in a weakly-interacting regime starting from a su-
perfluid ground state at n̄ = 1. Figure 2(b) of Ref. [64]
implies an unphysical result that the propagation veloc-
ity is much greater than twice the maximum one of the
elementary excitation in the regime. While it seems to

-0.1
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FIG. 8: Density-density correlation spreading after the
sudden quench from the Mott-insulator state at λf = 2.
The green square indicates the minimum peak of the cor-
relation signal. The relative vector d = (dx, dy), Euclidean
distance dE, and offset of correlation ∆d take values of
(dx, dy; dE; ∆d) = (0, 1; 1.00; 0), (1, 1; 1.41; 1), (0, 2; 2.00; 2),
(1, 2; 2.24; 3), (2, 2; 2.83; 4), (0, 3; 3.00; 5), (1, 3; 3.16; 6),
(2, 3; 3.617), (0, 4; 4.00; 8) from the bottom to top, respec-
tively. In the TWA simulation, we sampled nmc = 10000
initial conditions according to Eq. (7).

contradict the Lieb–Robinson bound, the crucial reason
of such a fast propagation has not been mentioned in
their paper. To characterize the wavefront motion of the
correlation on the square lattice, in Ref. [64], the propa-
gation velocity was evaluated in terms of the Manhattan
distance dM ≡ |dx|+|dy| [64, 78]. It is worth emphasizing
that if we redefine v̄p by the Manhattan distance instead
of the Euclidean one in our TWA results, it leads to a
similar fast propagation as in Ref. [64]. Hence, we argue
that the fast propagation beyond twice the maximum ve-
locity seen in Ref. [64] is actually due to the unsuitable
choice of the distance to define a propagation velocity.

B. Quench from a Mott-insulator state across a
quantum phase transition

We now discuss a sudden quench from a Mott-
insulator state and keep track of density-density correla-
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FIG. 9: Extracted peak times from the correlation signals at
(a) λf = 2 and (b) λf = 4 quenched from the Mott-insulator
state. The vertical and horizontal axes indicate the peak time
and Euclidean distance, respectively.

tion spreading, which occurs inside a weakly interacting
regime. Note that the initial state corresponds to the
ground state of the system at λ =∞.

Figure 8 displays the TWA simulation of the density-
density correlation after the sudden quench from the
Mott-insulator state with n̄ = 10 at λf = 2 and M = 202.
For the simulation, we utilize the approximate Wigner
function (7). In the result, we can observe a different
behavior from the case of the coherent state that a wave
packet propagates as a single-peak signal with no fine
oscillation in the correlation function. In this case, the
velocity of the wave packet can be directly estimated from
the activation time of the minimum peak itself. In Fig. 9,
we extract the peak times from the correlation signals at
λf = 2 and λf = 4, respectively. In Fig. 10, we show
the propagation velocity v̄p extracted from Fig. 9 as a
function of λf and compare it with the results for the co-
herent state. Figure 10 reveals that v̄p is approximately
independent of λf in contrast to the coherent-state case.

This qualitative difference can be understood as fol-
lows. The Mott insulator state has much larger energy
deviation than that of the coherent state as shown in
Fig. 11. This means that the Bogoliubov excitations,
which are elementary excitations of the system in the
presence of condensates, are no longer relevant to such
high-energy dynamics. The sudden quench kicks single-
particle excitations with various momenta from the initial
density configuration of the Mott insulator state. The
absence of the fine oscillation inside the wave packet can
be regarded as reflecting an incoherent motion joined by
many single-particle excitations. In addition, the single-
particle picture can also explain the nearly constant ve-
locity of the correlation spreading. Specifically, within
the Hartree–Fock approximation for the Bose particles,
the group velocity of the single-particle excitation is in-
dependent of U because the interaction effect poses only
a constant shift to the non-interacting band [79]. In Ap-
pendix B, we will verify this property by applying the
Hartree–Fock approximation to the two-particle Green’s
function of bosons.
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FIG. 10: Final interaction dependence of the mean propaga-
tion velocity v̄p (red circle). The blue square represents the
result of the case of the coherent state shown in Fig. 6. The
vertical bar indicates the normal estimation error of the linear
fitting of the peak times.

Coherent state

Mott insulator

FIG. 11: Energy deviation ∆E/(MJ) of the Mott-insulator
state from the ground state energy per site of the Hamiltonian
at λ = λf (red-dashed line). The blue-solid line (same as the
one in Fig. 4) represents the energy deviation when the system
is initially prepared in the coherent state.

V. CONCLUSIONS

In conclusions, we studied the time evolution of the
2D and 3D Bose-Hubbard models after a sudden quench
to a weakly interacting regime by using the semiclassical
TWA method. We applied the TWA to analyze the redis-
tribution dynamics of the kinetic and onsite-interaction
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energies after a quench from the singly-occupied Mott in-
sulator state in the 3D Bose-Hubbard model. It was re-
ported that our semiclassical result agrees very well with
the experimental one without any fitting parameter.

We also studied the density-density correlation spread-
ing after a sudden quench in the 2D Bose-Hubbard model
at a large filling factor. We numerically showed that
when the system is initially prepared in the coherent
state, then the mean propagation velocity of the correla-
tion wave packet strongly depends on the final interaction
strength reflecting the properties of the low-energy ele-
mentary excitation in the weakly interacting regime. In
contrast, we found that when the initial quantum state is
the Mott insulator state, then the mean propagation ve-
locity is almost independent of the final interaction. We
also provided a physical interpretation to such a result in
terms of the property of the high-energy single-particle
excitations.

In a future work, we will develop a similar semiclas-
sical approach making it possible to examine correla-
tion spreading in strongly-correlated regime of the Bose-
Hubbard system. For the purpose, we will generalize the
SU(N)TWA method originally made for interacting spin
systems [39, 42].

VI. ACKNOWLEDGEMENT

We thank Anatoli Polkovnikov for fruitful discussions.
We also thank Shimpei Goto for his early collabora-
tion to this work. The authors thank the Yukawa In-
stitute for Theoretical Physics (YITP) at Kyoto Uni-
versity, where this work was initiated during the YITP
workshop on “Quantum Thermodynamics: Thermaliza-
tion and Fluctuations”. This work was supported by
KAKENHI from Japan Society for the Promotion of
Science (No. 18K03492, No. 18H05228, No. 25220711,
No. 17H06138, No. 18H05405), the Impulsing Paradigm
Change through Disruptive Technologies (ImPACT) pro-
gram, CREST from Japan Science and Technology
Agency No. JPMJCR1673, and the Matsuo Foundation.
M. K. was supported by Grant-in-Aid for JSPS Research
Fellow Grant Number JP16J07240.

Appendix A: The Wigner–Weyl transform in the
coherent-state phase space

In this appendix, we supplement the detailed deriva-
tion of the Wigner–Weyl transform of the kinetic-energy
operator, the onsite-interaction operator, and the Bose-
Hubbard Hamiltonian, i.e., KW , OW , and HW = KW +
OW , and show their explicit forms. One of the simplest
ways to derive them is to use the Bopp-operator repre-

sentation of âj and â†j [26], which replaces the quantum-
mechanical operators with the corresponding phase-space
operators acting on classical functions in the coherent-

state phase space such that

âj → αj +
1

2

∂

∂α∗j
, â†j → α∗j −

1

2

∂

∂αj
. (A1)

We can also obtain the same classical functions through
directly evaluating the definition of the Wigner–Weyl
transform [26], i.e.,

ΩW (~α∗, ~α) =
1

2M

∫
d~η∗d~η

〈
~α− ~η

2

∣∣∣∣ Ω̂ ∣∣∣∣~α+
~η

2

〉

× exp

1

2

∑
j

(
η∗jαj − ηjα∗j

)
=

∫
d~η∗d~η Tr{Ω̂D̂(~η)}e

∑
j(η
∗
jαj−α∗j ηj),

where D̂(~α) = e
∑
j αj â

†
j−α∗j âj is the displacement opera-

tor with a complex vector ~α. In this appendix, the former
approach based on the Bopp operators is adopted to ob-
tain KW , OW , and HW .

For given operator products, here we particularly

choose â†j âk (for j 6= k), â†j âj , and â†j â
†
j âj âj , the Bopp

operators map them into corresponding classical func-
tions as follows:

â†j âk → α∗jαk, (for j 6= k) (A2)

â†j âj →
(
α∗j −

1

2

∂

∂αj

)(
αj +

1

2

∂

∂α∗j

)
1

= |αj |2 −
1

2
, (A3)

â†j â
†
j âj âj →

(
α∗j −

1

2

∂

∂αj

)(
α∗j −

1

2

∂

∂αj

)
α2
j

= |αj |4 − 2|αj |2 +
1

2
. (A4)

Using the above results, we obtain the following classical
functions corresponding K̂, Ô, and Ĥ:

KW = −J
∑
〈jk〉

[
α∗jαk + c.c.

]
, (A5)

OW =
U

2

∑
j

[
|αj |4 − 2|αj |2 +

1

2

]
, (A6)

HW = −J
∑
〈jk〉

[
α∗jαk + c.c.

]
+
U

2

∑
j

[
|αj |4 − 2|αj |2 +

1

2

]
= KW +OW . (A7)

Appendix B: Hartree–Fock approximation for the
two-particle Green’s function

According to Ref. [80], we apply the Hartree–Fock ap-
proximation (HFA) to the two-particle Green’s function
in the Bose-Hubbard model. We assume that the system
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has a spatially uniform density: 〈n̂j(0)〉 = 〈n̂j(t)〉 = n̄.
To simplify the following discussion, we deal with the 1D
system. The main result of this appendix [Eq. (B2)] is
independent of the dimensionality.

We consider the one- and two-particle Green’s function
of the lattice bosons,

Gj,j′(t, t
′) =

1

i

〈
T
{
âj(t)â

†
j′(t
′)
}〉

,

G
(2)
j1,j2,j′1,j

′
2
(t1, t2, t

′
1, t
′
2) =

1

i2

〈
T
{
âj1(t1)âj2(t2)â†j′2

(t′2)â†j′1
(t′1)

}〉
,

where T {· · · } indicates a chronological-time ordering for
operator products inside the bracket. From the Heisen-
berg equation for âj(t), Gj,j′(t, t

′) obeys the following
equation of motion:

i~
∂

∂t
Gj,j′(t, t

′) + JGj+1,j′(t, t
′) + JGj−1,j′(t, t

′)

− iU G
(2)
j,j,j′,j(t, t1, t

′, t1 + δ)
∣∣∣
t1=t

= ~δ(t− t′)δj,j′

where δ is a positive and infinitesimal shift.

In the HFA, G
(2)
j,j,j′,j(t, t1, t

′, t1 + δ) is factorized into
two parts as follows:

G
(2)
j,j,j′,j(t, t1, t

′, t1 + δ) = Gj,j′(t, t
′)Gj,j(t1, t1 + δ)

+ Gj,j(t, t1 + δ)Gj,j′(t1, t
′).

This treatment can be regarded as a mean-field approx-
imation, where any correlations between two indistin-
guishable bosons are neglected [80]. At t1 = t, we find
that

Gj,j(t, t1 + δ) = Gj,j(t1, t1 + δ) = −i〈n̂j(t)〉 = −in̄.

Thus, the equation of motion results in a closed equation:

{
i~
∂

∂t
− 2Un̄

}
Gj,j′(t, t

′) (B1)

+ JGj+1,j′(t, t
′) + JGj−1,j′(t, t

′) = ~δ(t− t′)δj,j′ .

This equation means a constant shift of the pole of the
one-particle Green’s function as

εfree(p)→ εfree(p) + 2Un̄, (B2)

where εfree(p) = −2Jcos(pdlat/~) is the single-particle
dispersion at U = 0. This result says that the interaction
does not change the group velocity of the single-particle
excitation within the HFA.
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267 (2012).

[2] C. Gross and I. Bloch, Science 357, 995 (2017).
[3] W. Hofstetter and T. Qin, J. Phys. B: At. Mol. Opt.

Phys. 51, 082001 (2018).
[4] S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I.

Bloch, N. V. Prokof’ev, B. Svistunov, and M. Troyer,
Nat. Phys. 6, 998 (2010).

[5] M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P.
Schauß, C. Gross, L. Mazza, M. C. Baũls, I. Bloch, and
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Schollwöck, J. Eisert, and I. Bloch, Nat. Phys. 8, 325
(2012).

[7] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P.
Schauß, T. Fukuhara, C. Gross, I. Bloch, C. Kollath,
and S. Kuhr, Nature 481, 484 (2012).

[8] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M.
Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D.
Greif, and M. Greiner, Nature 545, 462 (2017).

[9] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalat-
tore, Rev. Mod. Phys. 83, 863 (2011).

[10] J. Eisert, M. Friesdorf, and C. Gogolin, Nat. Phys. 11,
124 (2015).

[11] M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch,
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