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We identify circumstances where the effective descriptions of microscopic physical systems leads
to a self-consistent reduced dynamics for truncated subset of the original variables. The effective
Hamiltonian involves unusual Poisson brackets that bring in non-commutative geometry. In idealized
models of ring molecules, we find time crystal behavior is widespread.

INTRODUCTION

In applications of mechanics, including quantum me-
chanics, we often consider complex systems, where com-
plete solutions of the underlying “fundamental” equa-
tions is both impractical and unnecessary to describe
appropriate observations accurately. For example, prac-
tical chemistry, including even precision first-principles
quantum chemistry, is never concerned with the behavior
of the subnuclear quarks and gluons. Instead, we often
focus on a few key variables, and construct a so-called
effective theory for those. Such effective theories can be-
come complicated and non-local, even for fairly simple
systems [1]. But in many circumstances, when there is
a separation of scales, we can treat the reduced set of
variables as a conventional dynamical system in its own
right, governed by an energy conserving Lagrangian or
Hamiltonian, in a useful approximation. The structure of
that emergent description can display qualitatively new
features, notably including reduced dimensionality, man-
ifested through unconventional Poisson brackets.

In constructing a description of the dynamics of a sys-
tem with a given configuration space, it is usual to intro-
duce momenta dual to each position degree of freedom
[2, 3]. That procedure leads to an initial value prob-
lem, and a space of solution trajectories (phase space),
with twice the dimension of the configuration space. Fol-
lowing the general principles of Lagrangian mechanics,
one carries out this construction by introducing terms
quadratic in the velocities (generalized mass terms). Log-
ically, however, that construction is neither the most gen-
eral nor the minimal possibility for an emergent effective
theory. When symmetries allow it, one may introduce
terms linear in the velocities, in addition to quadratic.
Heuristically, one might expect that such terms dominate
at low velocities. Following that thought, we can con-

sider dropping the quadratic terms. Then the momenta
become functions of the co-ordinates, rather than inde-
pendent variables. Thus the dimension of phase space is
reduced and the dynamics becomes described by a trun-
cated effective theory. Truncated dynamics occurs in the
description of rapidly rotating rigid bodies, where it un-
derlies the peculiarities of gyroscopic motion. Here two
coordinates describing the orientation of the body rela-
tive to the axis of rotation are conjugate. The dynami-
cal equations can still be put in Hamiltonian form, but
one will have unusual Poisson brackets [3, 4]. Hence-
forth we will refer to this scenario as “gyropic dynam-
ics”. Upon quantization gyropic dynamics brings in non-
commutative geometry [5] and, as shown here, gyropic
dynamics is hospitable to mechanical time crystals [6, 7]
(for a review on time crystals, see [8]).

GYROPIC DYNAMICS

There are several known examples in which gyropic dy-
namics applies. We now briefly survey known cases, and
- importantly - identify a mechanism which opens up the
possibility of a large new class of physically interesting
examples.

To bring in appropriate equations, we begin with the
simple case of two coordinate variables x, y and the La-
grangian

L =
m

2
(ẋ2 + ẏ2) − Bẋy − V (x, y) . (1)

This L governs planar motion of a unit charged particle in
a magnetic field ~B = ẑB. It is a well-studied problem [9],
but we now view it from a perspective that illuminates
our more general considerations:

Formally, we may anticipate that if B >> mv, where v
is the velocity, then the first term in (1) is small compared
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to the second. (Note that ẋy ∼ −xẏ up to a total time
derivative; the apparent asymmetry between coordinates
in Eqn. (1) is a gauge artifact.) If we boldly consider
m→ 0, then we find

px =
∂L

∂ẋ
= −By

H = V (x,−px
B

)

{x, y} = − 1

B
(2)

where {x, px} = 1 is the Poisson bracket. Here y must
be considered as a derived quantity, simply expressing
−px/B. In the quantum theory this bracket becomes
[x, px] = i = −B[x, y], implicating non-commutative ge-
ometry [5, 10].

Eqn. (2) defines a perfectly sensible one-dimensional ef-
fective theory, with the equations of motion

ẋ = − 1

B

∂

∂y
V (x, y)

ẏ =
1

B

∂

∂x
V (x, y). (3)

Physically, we have simply reproduced the Hall effect
[11, 12], whereby in a strong magnetic field the parti-
cle moves perpendicular to the local electric field, with
velocity E/B.

Now we can assess the nature of the approximation.
That is not entirely straightforward, because dropping
the terms of highest order in time derivatives in the fun-
damental equations of motion is a delicate operation,
even when their coefficients are small. It is rather differ-
ent in the classical and quantum theories. In the classical
theory based on Eqn. (1), as m/B → 0, and momentar-
ily ignoring V , the particle makes circular orbits with
cyclotron radius r ∼ mv/B. Thus at any fixed veloc-
ity the orbits become very tight, and they are traversed
very rapidly. If we do not resolve that small-scale motion
around the orbit center, then the residual drift motion of
the center itself is described by Eqns. (2, 3). We also
see that we should require |∇V | << B/mv. This classic
problem of drift motion has been studied in great depth,
and higher-order corrections have been computed [11].

The quantum theory is simpler to discuss, conceptu-
ally. Here B/m defines the energy splitting between Lan-
dau bands, and the effective theory describes dynamics
within a single Landau band [9, 12].

In the general case, with xj as the configuration vari-
ables, we may consider the Lagrangian [2–4].

L(x) = M jk(x)ẋj ẋk + Jj(x)ẋj − V (x) . (4)

If we put M = 0, then the equations of motion become

F klẋl = − ∂V

∂xk

F kl ≡ ∂kJ l − ∂lJk (5)

If the antisymmetric tensor F kl is non-singular, this is
a well-defined dynamical system. In this case we can
proceed as before, obtaining reduced dynamics for small
enough velocities and smooth enough potentials. More
generally, Darboux’s theorem [3] states that locally, when
the configuration space is even dimensional, we can in-
troduce coordinates that render F into a canonical form
wherein its only non-zero entries are antisymmetric 2×2
blocks equal to the Pauli matrices iσ2 along the diagonal.
For small enough velocities we can then use reduced dy-
namics within the non-singular subspace, and bring in M
as a perturbation, to govern dynamics for a complemen-
tary set of variables. We may also consider a converse sit-
uation, where M has some very small eigenvalues, which
we can approximate to zero, leaving J to govern part of
the low-energy dynamics.

Classic examples of gyropic dynamics include the mo-
tion of vortices in a perfect fluid [13] and the restricted
three-body problem, where the mass of one body goes to
zero [14]. In addition,

• Gyropic dynamics also governs the motion of elastic
filaments embedded in a vortical viscous fluid. Locally,
we have an analogue of gyroscopic forces, where the vor-
ticity provides an effective rotation [4].

• Gyropic dynamics also occurs in the description of
a charged particle moving in the field of a magnetic
monopole (of arbitrary strength) [4]. Indeed, for fixed
distance from the pole this may be considered as a folded-
up version of Eqn. (1). While true magnetic monopoles
seem hard to come by, a charged particle embedded in the
field of a solenoid, forming a rigid system, also embodies
this Lagrangian structure. In effect, the particle carries
around, in its neighborhood, the field a fixed monopole
would provide.

• Berry phases [15, 16] frequently arise in effective theo-
ries, due to the geometry of the low-energy configuration
space. Notable examples include the quantization of di-
atomic molecules and the fractional quantum Hall effect
[12]. They provide terms of precisely the form Jk(x)ẋk,
as envisaged in Eqn. (4). Alternatively, we may say that
they provide emergent (non-electromagnetic) magnetic
fields. Combining this observation with the preceding
one, we may anticipate that effective theories for mobile
electrons or nuclear motion in molecules containing long
chiral polymer chains will support significant J terms and
thus, in appropriate circumstances, behavior governed by
gyropic dynamics.

TOY MODEL OF MOLECULAR RING

In each of these examples we encounter unconventional
Poisson brackets [3, 4]. We now apply these idea to a class
of highly idealized models of ring molecules. We envisage
a system of N rigid rods of fixed lengths, described by
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the orientation vectors

ni =
ri+1 − ri
|ri+1 − ri|

(i = 1, ..., N) (6)

which form a closed chain, so

N∑
i=1

lini = 0 , (7)

where the li are lengths. The ni will be our dynamical
variables. These are meant to supply caricature models
of low-energy configurations of a ring molecule withN co-
valent structures - which might be single bonds, or longer
polymer chains - loosely hinged together. At this point
we are not proposing a model for any specific molecule;
rather our goal is to illustrate gyropic dynamics in a sim-
ple, transparent, readily generalizable form.

Inspired by our preceding discussion, let us adopt the
Poisson brackets [4]

{nai , nbj} = li ε
abcδijnci (i, j = 1, ..., N) (8)

(Of course only two components of each ni are indepen-
dent, but to keep the notation simple we abstain from re-
moving the redundancy explicitly.) We assume that the
Hamiltonian depends only on the relative orientations of
the ni, i.e. that it is a function of the double product

ni · nj/lilj

and the triple product

ni · (nj × nk)/lilj lk

or more generally that it has vanishing brackets with the
generator of rotations

N∑
i=1

lini

This insures that Eqn. (7) is consistent with the equa-
tions of motion. For ease of presentation we will hence-
forth set all the li = 1. Models of this sort could be
realized as electromechanical systems, as sketched above.

Let us first consider N = 3, and the Hamiltonian

H1 = −
3∑

i=1

ai ni · ni+1 (9)

(understanding n4 ≡ n1). With the Poisson bracket (8)
it leads to the equations

d
dtn1 = n1 × (a1n2 + a3n3)

d
dtn2 = n2 × (a2n3 + a1n1)

d
dtn3 = n3 × (a3n1 + a2n2)

(10)

FIG. 1: For generic parameter values (a1, a2, a3) the
time crystal solution of equation (10) describes rotation
around an axis, with direction determined by the
parameters.

while the closure condition Eqn. (7)

n1 + n2 + n3 = 0 (11)

insures that the three vertices x1, x2 and x3 constitute
the corners of an equilateral triangle. For a1 = a2 = a3
we have a time independent solution, but elementary lin-
ear algebra shows that for generic values of ai the right
hand sides of equations (10) cannot all vanish simultane-
ously. The solution, which is unique up to time transla-
tion, describes an equilateral triangle rotating around an
axis that is on the plane of the triangle. The axis goes
through the center of the triangle and points in a direc-
tion that is determined by the parameters (a1, a2, a3) as
shown in Figure 1: The solution describes a mechanical
(classical) time crystal, in the sense of [6]. (Here we will
refer to mechanical time crystals, to avoid confusion with
the distinct, though related, notion of many-body time
crystals [7, 17–19].)

Similarly, we find that the combination of the Poisson
bracket (8) and the Hamiltonian

H2 = −
N∑
i=2

bi ni · (ni−1 × ni+1) (12)

with N = 3 supports a mechanical time crystal. Here
the equilateral triangle rotates around an axis that goes
thru the center of the triangle and is normal to its plane,
as shown in Figure 2. Furthermore, when we combine
the two Hamiltonians into a single one H = H1 + H2,
we obtain a mechanical time crystal that in the case of
an equilateral triangle (N = 3) rotates around a generic
axis which passes through the geometric center. The di-
rection of the axis together with the speed and orienta-
tion of the rotation are determined by the parameters;
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FIG. 2: For N = 3 the time crystal described by the
Hamiltonian (12) rotates around an axis which is
normal to its plane, the direction of rotation is
determined by the sign(s) of bi.

FIG. 3: A linear combination of the Hamiltonians (9),
(12) rotates the triangular mechanical time crystal
around a generic axis.

see Figure 3. Note that when a triangle rotates around
a generic axis it is usually subject to precession. There
is no conserved angular momentum manifest in such mo-
tions. That fact does not constitute a physical contra-
diction, because the effective degrees of freedom we have
retained can exchange angular momentum with the de-
grees of freedom that were integrated out.

An interesting geometric structure emerges when we
consider H2, N = 4. Without real loss of generality, we
can take just one non-vanishing term, b1 = −1. To mini-

FIG. 4: For N = 4 the time crystal described by the
Hamiltonian (12) is a tetragonal disphenoid that rotates
around its symmetry axis; the ration of the length of the
two blue segments to the four red segments is 2 :

√
3.

The direction of rotation is determined by the sign of bi.

mize the energy, we should maximize the (signed) volume
subtended by the unit vectors n1,n2,n3, subject to the
condition that n1 + n2 + n3 is a unit vector. Perhaps
surprisingly, these do not form the edges of a regular
tetrahedron, but rather the edges of a remarkable fig-
ure known as the tetragonal disphenoid , whose faces are
isosceles triangles with edge lengths in the proportions√

3 :
√

3 : 2 [20]. Unlike regular tetrahedron, tetragonal
disphenoids can tesselate space. They can also be con-
structed by simple foldings of A4 paper [21]. As shown
in Figure 4, the structure rotates around its symmetry
axis thus defining a mechanical time crystal.

There is a simple reason why, in this general frame-
work, the minimum energy states typically rotate around
an axis, thus forming a mechanical time crystal. The
equations of motion for our reduced Poisson brackets read

d

dt
ni = ni ×

∂H
∂ni

(i = 1, ..., N) (13)

while energy minimization, subject to Eqn. (7), requires

∂H∗

∂ni
= 0

H∗ ≡ H − λ ·
N∑
i=1

lini (14)

where λ is a Lagrange multiplier three-vector. Thus
Eqn. (13) becomes

d

dt
ni = ni × λ (i = 1, ..., N). (15)

Thus we find a kind of precession of orientation vectors
which is analogous to spin precession in an applied mag-
netic field. Here the “magnetic field” is an emergent con-
sequence of interactions.
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DISCUSSION

In summary, we have motivated the possibility of re-
duced dynamics emerging in effective theories of material
systems, and analyzed mathematically a class of toy mod-
els akin to idealized ring molecules that embodies such
dynamics. The models exhibit, by virtue of interactions,
a kind of emergent precession, and exemplify mechanical
time crystals.

We close by mentioning a known molecular phe-
nomenon which touches the circle of ideas discussed here.
Many aromatic molecules display large diamagnetic re-
sponse, which can be interpreted heuristically as a quan-
tum manifestation of electron current flow that appears
in a semiclassical treatment of the dynamics. In fact, the
ability to sustain a diamagnetic (diaptropic) ring current
in the presence of an external magnetic field is among
the defining characteristics of aromatic ring molecules
[22, 23]. In the absence of a magnetic field the two direc-
tions of electron current flow represent degenerate states.
The ground state, a positive superposition of those two,
is static, but it is only separated by a small amount from
the negative superposition, since the overlap interaction
energy matrix element is very small. A significant mag-
netic field prefers one direction of flow energetically, and
its influence overwhelms the interaction. In the limit of
very large molecules the overlap goes to zero, and any
reasonable observation will collapse the system onto one
direction of flow. (This embodies the essence of spon-
taneous symmetry breaking.). Now if we consider the
balance of angular momentum, it is clear that the nu-
clear backbone must counter-rotate. The effective theory
for nuclear motion, integrating out the electrons, must
capture this counter-rotation, along the lines we have
described above. This provides an intuitive “existence
proof” for what is plausibly a widespread phenomenon
in ring molecules: the emergence of effective gyropic dy-
namics and, in a semiclassical account, mechanical time
crystals.
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