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Recently, studies of high-order harmonic generation (HHG) from atoms driven by bichromatic
counter-rotating circularly polarized laser fields have received considerable attention for this process
could be a potential source of coherent circularly polarized extreme ultraviolet (XUV) and soft-x-ray
beams in a tabletop-scale setup. In this paper, we address the problem with molecular targets and
perform a detailed quantum study of the H+

2 molecule in bichromatic (ω0, 2ω0) counter-rotating
circular polarized laser fields where we adopt wavelengths (790 and 395 nm) and intensities (2×1014

W/cm2) reported in a recent experiment [K. M. Dorney et al., Phys. Rev. Lett. 119, 063201 (2017)].
Here, we demonstrate appropriate conditions to produce perfectly circular polarized harmonics.
The calculated radiation spectrum contains doublets of left and right circularly polarized harmonics
which display perfect circular polarization with use of the trapezoidal pulse shape, and substantial
deviations from perfect circular polarization with use of the sine-squared pulse shape. We also study
in detail short- and long-cycle counter-rotating circularly polarized driving pulses with a time delay
between the two driving fields, ω0 and 2ω0. These time delayed circularly polarized driving pulses
are applied to H atoms and H+

2 molecules, and in both atomic and molecular cases we conclude a
zero time delay corresponds to the highest HHG intensity for short pulses. For longer pulses there
are no distinct differences in HHG intensities between the zero and non-zero time delays if the latter
are within a few optical cycles of the fundamental frequency.

I. INTRODUCTION9

High-order harmonic generation (HHG) is an attrac-10

tive table-top source of coherent, bright, and tunable11

extreme ultraviolet (XUV) and soft X-ray radiation12

with applications in coherent diffractive imaging, ultra-13

fast holography, and time resolved measurements [1–6].14

Moreover, circularly polarized HHG may find additional15

applications in nanolithography, ultrafast spin dynamics,16

and magnetic circular dichroism [1, 7–16].17

However, until recently bright HHG was limited to lin-18

ear polarization due to the difficulty of controlling ellip-19

tically and circularly polarized harmonics and their effi-20

ciency. When an atom or molecule is driven by a laser21

field with slightly elliptical polarization, the electron has22

some probability of re-colliding with its parent ion it was23

initially released from, and this results in the generation24

of harmonics with slight elliptical polarization. A direct25

approach for generating circularly polarized HHG was26

suggested 22 years ago [17, 18], and recently measured27

by Fleischer et al. [7]. In this scheme, circularly polar-28

ized HHG are driven by co-propagating circularly polar-29

ized bichromatic fields that rotate in opposite directions30

(counter-rotating) and interact with argon gas. This ex-31

periment [7] opened up the possibility and motivation of32

generating bright circularly polarized HHG comparable33
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to the flux efficiency of linearly polarized HHG. Remark-34

able progress has been achieved recently in the generation35

and control of the circularly polarized harmonic radiation36

[1, 7, 12, 14, 19–23].37

The primary characteristics of the HHG spectra pro-38

duced by counter-rotating bichromatic circularly polar-39

ized laser fields can be described in terms of the energy40

and angular momentum conservation, which gives rise to41

a doublet structure of the HHG spectra. The right peak42

in the doublet has a circular polarization with the same43

helicity as the driving field with the higher frequency, the44

left peak has a circular polarization with the same helicity45

as the driving field with the lower frequency [1, 7–16, 24].46

However, this is a simplified picture based on the assump-47

tion that both circularly polarized driving fields are pure48

monochromatic and the HHG process is not affected by49

the resonances.50

For a more realistic case of pulsed driving fields in-51

teracting with atoms or molecules described in full di-52

mensionality, the question about the degree of circular53

polarization of the harmonics within each doublet still54

remains open. Barreau et al. [14] recently explored the55

depolarization and ellipticity of high harmonics driven56

by ultrashort bichromatic circularly polarized fields, and57

showed deviations from perfect circular polarization. We58

also partially addressed this problem and uncovered the59

degree of circular polarization in the harmonic radiation60

for diatomic molecules subject to bichromatic counter-61

rotating circularly polarized intense laser fields [15, 16].62

Our detailed investigations in Ref. [15] described the dis-63

tinct differences in the nonlinear optical responses for64
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homonuclear (H+
2 and N2) and heteronuclear (CO) di-65

atomic molecules subject to circularly polarized intense66

laser fields. Mainly, for heteronuclear (CO) diatomic67

molecules where the laser fields are propagated along68

the molecular (z) axis and circularly polarized on the69

perpendicular x − y plane causes a nonsymmetric time-70

dependent displacement of the electron density along the71

molecular axis thus inducing an oscillating dipole mo-72

ment in the z direction, although the force from the laser73

fields does not have a projection on the z axis. Oscilla-74

tions of the dipole moment along the molecular axis re-75

sults in the generation of even-order harmonics, linearly76

polarized in the same z direction. In Ref. [16], we reveal77

that electron recollisions in molecular systems can be con-78

trolled through tailored bichromatic counter-rotating cir-79

cularly polarized intense laser fields. Also, we show how80

excited-state resonances alter the ellipticity and phase of81

the generated harmonic peaks [16].82

In this work, we investigate the appropriate conditions83

to provide perfect circular polarization of the harmon-84

ics generated in diatomic molecular targets subject to85

bichromatic counter-rotating circularly polarized intense86

laser fields. Our calculations of the HHG spectrum re-87

veal that the doublets of left and right circularly polar-88

ized harmonics display perfect circular polarization with89

the use of the trapezoidal pulse shape, and substantially90

deviate from perfect circular polarization with the use91

of the sine-squared pulse shape. We also study in de-92

tail short and long counter-rotating circularly polarized93

pulses with the time delay between the two driving fields94

with the carrier frequencies ω0 and 2ω0. These time de-95

layed circularly polarized driving pulses are applied to H96

atoms and H+
2 molecules, and in both cases we conclude97

that the zero time delay results in the highest HHG in-98

tensity for short pulses. For longer pulses, we uncover99

there are no distinct differences in the HHG intensities100

between the zero and non-zero time delays, if the time101

delay is within two optical cycles of the fundamental fre-102

quency ω0.103

The organization of this paper is as follows. In Sec. II104

we briefly discuss our theoretical and computational ap-105

proach for general treatment of the multiphoton dynam-106

ics of diatomic molecular systems subject to bichromatic107

counter-rotating circularly polarized intense laser fields.108

In Sec. III we study the HHG of H+
2 molecules driven109

by different bichromatic (ω0, 2ω0) counter-rotating circu-110

lar polarized laser pulse shapes (sine-squared and trape-111

zoidal). The HHG spectra exhibit a distinct doublet112

structure, and the harmonics within each doublet pos-113

sess circular polarizations with opposite handedness. We114

provide a proof and necessary conditions for perfect cir-115

cular polarization and opposite handedness of the har-116

monics within the doublets by calculating their elliptic-117

ity and phase parameters from the dipole acceleration118

data for below-, near-, and above-threshold HHG regions.119

In Sec. IV we investigate HHG by time-delayed few-120

cycle counter-rotating sine-squared pulses first applied121

to atoms (H), and then to molecules (H+
2 ). We uncover122

there are no advantages when using non-zero time delays123

between the counter-rotating fields to increase HHG in-124

tensities compared to the zero time delay. Section V125

contains concluding remarks.126

II. THEORY AND NUMERICAL TECHNIQUES127

To calculate the HHG spectra, we solve the time-128

dependent Schrödinger equation for the H+
2 molecule129

in the bichromatic counter-rotating circularly polarized130

laser fields. The initial wave function is an unperturbed131

eigenfunction of H+
2 . For our calculations, we select the132

ground (1σg) electronic state. The nuclei are fixed at133

their positions, and the nuclear motion is not taken into134

account. To describe the diatomic molecular ion H+
2 , we135

make use of the prolate spheroidal coordinates ξ, η, and136

ϕ which are related to the Cartesian coordinates x, y,137

and z as follows [25]:138

x = a
√

(ξ2 − 1)(1− η2) cosϕ,

y = a
√

(ξ2 − 1)(1− η2) sinϕ,

z = aξη (1 ≤ ξ <∞,−1 ≤ η ≤ 1).

(1)

In Eq. (1) we assume that the molecular axis is directed139

along the z axis, and the nuclei are located on this axis140

at the positions −a and a, so the internuclear separation141

R = 2a. The internuclear distance for the H+
2 (Re =142

2.00a0) molecule is fixed at its equilibrium distance Re.143

A. Generalized pseudospectral method and144

solution of time-independent eigenvalue problem145

First, we solve the unperturbed eigenvalue problem146

and obtain the eigenvalues and eigenfunctions:147

[

−1

2
∇2 + U(ξ, η)

]

Ψn(ξ, η, ϕ) = EnΨn(ξ, η, ϕ). (2)

Here the kinetic energy operator in the prolate spheroidal148

coordinates reads as:149

−1

2
∇2 = − 1

2a2
1

(ξ2 − η2)

[

∂

∂ξ
(ξ2 − 1)

∂

∂ξ

+
∂

∂η
(1− η2)

∂

∂η
+

ξ2 − η2

(ξ2 − 1)(1− η2)

∂2

∂ϕ2

]

,

(3)

and the Coulomb interaction with the nuclei is as follows:150

U(ξ, η) = − (Z1 + Z2)ξ + (Z2 − Z1)η

a(ξ2 − η2)
. (4)

Here Z1 and Z2 are the charges of the left and right151

nucleus, respectively. For H+
2 , Z1 = Z2 = 1; for the152

hydrogen atom, one can choose Z1 = 1 and Z2 = 0.153

For the unperturbed molecule, the projection m of the154

angular momentum onto the molecular axis is conserved.155
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Thus the wave function Ψ(ξ, η, ϕ) can be represented in156

a separable form,157

Ψn(ξ, η, ϕ) = Ψ(m)
n (ξ, η) exp(imϕ), (5)

and separate eigenvalues problems for different |m| are158

obtained,159

− 1

2a2
1

(ξ2 − η2)

[

∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η

− m2

ξ2 − 1
− m2

1− η2

]

Ψ(m)
n −

[

Z1

a(ξ + η)
+

Z2

a(ξ − η)

]

Ψ(m)
n

= E(m)
n Ψ(m)

n .

(6)

To solve Eq. (6), we use the generalized pseudospectral160

(GPS) method. Note that the exact eigenfunction ψm161

behaves as (ξ2−1)|m|/2(1−η2)|m|/2 in the vicinity of the162

nuclei; for odd |m|, this is a nonanalytical function of the163

coordinates. Straightforward numerical differentiation of164

such a function could result in significant loss of accuracy.165

We circumvent this difficulty by choosing a special map-166

ping transformation within the GPS method [26]. Other167

details of the GPS method in prolate spheroidal coordi-168

nates can be found in Refs. [15, 16, 27–31].169

Solving the eigenvalue problem (6) for different even170

and odd m, we obtain unperturbed energy values and171

eigenstates of H+
2 , which are used as initial states for time172

propagation as well as for construction of propagation173

matrices.174

B. Solution of the time-dependent Schrödinger175

equation in bichromatic circularly polarized laser176

pulses177

The time-dependent Schrödinger equation in the178

bichromatic circularly polarized laser pulses is solved by179

means of the split-operator method in the energy repre-180

sentation [15, 16, 27–32]. We employ the following split-181

operator, second-order short-time propagation formula:182

Ψ(t+∆t) = exp

(

−i1
2
∆tH0

)

× exp

[

−i∆tVext(r, t+
1

2
∆t)

]

× exp

(

−i1
2
∆tH0

)

+O((∆t)3).

(7)

Here ∆t is the time propagation step, H0 is the unper-183

turbed electronic Hamiltonian which includes the kinetic184

energy and interaction with the nuclei, Vext(r, t) is the185

term due to the coupling to the bichromatic circularly186

polarized external fields, in the following form:187

Vext(r, t) = [E1(t) +E2(t)] · r. (8)

The laser electric-field strengths E1(t) and E2(t) refer to188

the two frequency components of the bichromatic field.189

The field-free propagator exp(−i 12∆tH0) in Eq. (7) is190

time-independent; it is calculated only once before the191

time propagation process begins. The external field prop-192

agator exp(−i∆tVext) is time dependent and must be cal-193

culated at each time step. However, this operation is not194

time-consuming, because the external field propagator195

is diagonal in the coordinate (ξ, η, ϕ) representation like196

any multiplication operator in the GPS method.197

As a function of the azimuthal angle ϕ, Ψ(t) can be198

expanded in Fourier series:199

Ψ(t) =

∞
∑

m=−∞

exp(imϕ)Ψ(m)(t). (9)

Then the total field-free propagator can be expressed200

through the propagators corresponding to the specific an-201

gular momentum projections [Eqs. (5), (6), and (9)]:202

exp

(

−i1
2
∆tH0

)

Ψ(t)

=

∞
∑

m=−∞

exp(imϕ) exp

(

−i1
2
∆tH

(m)
0

)

Ψ(m)(t).

(10)

The partial propagators exp(−i 12∆tH
(m)
0 ) are calculated203

by the spectral expansion204

exp

(

−i1
2
∆tH

(m)
0

)

=
∑

n

exp

(

−i1
2
∆tE(m)

n

)

|Ψ(m)
n 〉〈Ψ(m)

n |,
(11)

where eigenstates Ψ
(m)
n and energies E

(m)
n are obtained205

by solving the eigenvalue problem (6) for a real symmet-206

ric matrix (upon GPS discretization of H
(m)
0 ). Equa-207

tion (10) is very useful for the calculations where the208

angular momentum projection is not conserved: in the209

matrix-vector product, it allows several matrices of a210

smaller dimension (partial propagators) to be used rather211

than one matrix of large dimension (full propagator).212

Before applying the partial field-free propagators at213

each time step, the wave function must be converted214

from the full coordinate representation to the angular215

momentum projection representation; this is done by the216

fast Fourier transform (FFT) with respect to the coor-217

dinate ϕ. This operation is performed by the hardware-218

optimized FFT routines and not time-consuming either.219

In what follows, we shall assume that the laser fields220

E1(t) and E2(t) propagate along the z axis and have cir-221

cular polarizations on the x− y plane. We first consider222

the sine-squared laser pulse for counter-rotating fields223

E1(t) and E2(t) which has the following form:224

E1(t) =
1√
2
F0f(t) [êx cos(ω0t) + êy sin(ω0t)] , (12)
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FIG. 1. (Color online) Time-dependent (a) sine-squared and
(b) trapezoidal electric field of the driving laser pulse (time-
delay τ = 0). The red dotted and blue dashed lines represent
the electric field in the x and y direction, respectively. The
laser pulses (a) and (b) have a duration of 17 optical cycles
(∼ 45 fs) for the ω0 (790 nm) component and 34 optical cycles
(∼ 45 fs) for the 2ω0 (395 nm) component. Both frequency
components have the same peak field strength corresponding
to the intensity of 2× 1014 W/cm2.

225

E2(t) =
1√
2
F0f(t+ τ) {êx cos[2ω0(t+ τ)]

−êy sin[2ω0(t+ τ)]} ,
(13)

where τ presents the time delay between the two pulses,226

E1(t) and E2(t). Since the dipole approximation is well227

justified in the near infrared wavelength region, the fields228

are assumed uniform in space. In Eqs. (12) and (13), F0229

is the peak electric field strength (we use the same peak230

field strength for both fields), the carrier frequencies of231

the first and second fields are ω0 and 2ω0, respectively,232

and f(t) represents the temporal pulse envelope,233

f(t) = sin2
πt

T
, (14)

where T is the total pulse duration (again, the same for234

both fields).235236

In our calculations, we use the carrier wavelengths237

790 nm for the field E1(t) (ω0 = 0.0576 a.u.= 1.57 eV)238

and 395 nm for the field E2(t) (2ω0 = 0.1152 a.u.=239

3.14 eV), respectively. The peak field strength F0 cor-240

responds to the intensity 2 × 1014 W/cm2. The pulse241

duration is chosen as T = 34π/ω0, that is 17 optical cy-242

cles of the field with the wavelength 790 nm or 34 optical243

cycles of the field with the wavelength 395 nm. One cycle244

of the ω0 and 2ω0 fields are 2.64 and 1.32 fs, respectively.245

The next pulse envelope shape we consider has a flat246

top and ramps described by the sin2 function. The du-247

ration of each ramp is equal to 4 optical cycles of the248

790 nm field while the duration of the flat central part is249

equal to 9 optical cycles:250

f(t) =































sin2
(

ω0t

16

)

, 0 ≤ t <
8π

ω0
;

1,
8π

ω0
≤ t ≤ T − 8π

ω0
;

sin2
(

ω0(T − t)

16

)

, T − 8π

ω0
< t ≤ T.

(15)

In what follows, we shall call the pulse with this envelope251

the trapezoidal pulse. The total pulse duration for both252

the sine-squared (14) and trapezoidal (15) envelopes is253

45 fs. The circularly polarized laser pulses in the x and y254

domain (Ex and Ey) are shown in Figs. 1(a) and 1(b) for255

both the sine-squared (14) and trapezoidal (15) envelope256

shapes considered.257258

The dipole interaction potentials in the length gauge259

have the following expressions in the prolate spheroidal260

coordinates:261

E1(t) · r =
a√
2
F0f(t)

√

(ξ2 − 1)(1− η2)

× cos(ϕ− ω0t),
(16)

262

E2(t) · r =
a√
2
F0f(t+ τ)

√

(ξ2 − 1)(1− η2)

× cos[ϕ+ 2ω0(t+ τ)].
(17)

To obtain converged HHG spectra for the laser field263

parameters used in the calculations, we set the grid size264

(for ξ, η, and ϕ coordinates, respectively) to 192×48×48265

and use 4096 time steps per one 395 nm (ω0) optical cycle266

in the time propagation process. The spatial and tem-267

poral grid parameters have been varied to make sure all268

the results are fully converged. The linear dimension of269

the box where the time-dependent equations are solved270

is chosen as 45 a.u. to ensure accurate description of all271

important physics for the laser field parameters used in272

the calculations; between 30 and 45 a.u. we apply an ab-273

sorber which smoothly brings down the propagated wave274

functions without spurious reflections from the boundary.275

The HHG power spectra can be investigated accurately276

once the time-dependent wave function Ψ(ξ, η, ϕ, t) is277

available. We calculate the expectation values of the in-278

duced dipole acceleration in the x, y, and z directions:279

ax(t) = 〈Ψ(ξ, η, ϕ, t)|∂U(ξ, η)

∂x
|Ψ(ξ, η, ϕ, t)〉

+ E1x(t) + E2x(t),
(18)
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FIG. 2. (Color online) HHG spectrum Stot(ω) as well as contributions Sx(ω) and Sy(ω) from the x and y projections of the
dipole acceleration for the H+

2 molecule subject to the counter-rotating circularly polarized sine-squared laser pulses. Circularly
polarized harmonic doublets (a) up to ∼H80, (b) in the below- and near-threshold region (H1-H26), (c) in the above-threshold
plateau region (H27-H53), and (d) in the above-threshold plateau and near cutoff region (H54-H80). The laser pulses have a
time duration of 17 optical cycles (∼ 45 fs) of frequency ω0 (wavelength 790 nm) and 34 optical cycles (∼ 45 fs) of frequency
2ω0 (wavelength 395 nm). The black solid, red dotted, and blue dashed lines represent the HHG spectrum in the Stot(ω),
Sx(ω), and Sy(ω) domains, respectively. The green vertical dashed line indicates the corresponding ionization threshold (Ip)
of the 1σg molecular orbital (H19.13). Filled maroon circles and filled teal squares indicate the positions of the peaks with the
frequencies (3nc+1)ω0 and (3nc+2)ω0, respectively. The separation between the peaks within each doublet is ω0, and different
doublets are separated by 3ω0. Both bichromatic frequency components have the same peak field strength corresponding to
the intensity of 2× 1014 W/cm2.

280

ay(t) = 〈Ψ(ξ, η, ϕ, t)|∂U(ξ, η)

∂y
|Ψ(ξ, η, ϕ, t)〉

+ E1y(t) + E2y(t),

(19)

281

az(t) = 〈Ψ(ξ, η, ϕ, t)|∂U(ξ, η)

∂z
|Ψ(ξ, η, ϕ, t)〉. (20)

Then the power spectrum S(ω) (spectral density of the282

radiation energy) can be obtained by the Fourier trans-283

formation of the time-dependent dipole accelerations,284

Sx(ω) =
2

3πc3

∣

∣

∣

∣

∫ ∞

−∞

ax(t) exp(iωt)dt

∣

∣

∣

∣

2

, (21)

285

Sy(ω) =
2

3πc3

∣

∣

∣

∣

∫ ∞

−∞

ay(t) exp(iωt)dt

∣

∣

∣

∣

2

, (22)

286

Sz(ω) =
2

3πc3

∣

∣

∣

∣

∫ ∞

−∞

az(t) exp(iωt)dt

∣

∣

∣

∣

2

, (23)

287

Stot(ω) = Sx(ω) + Sy(ω) + Sz(ω). (24)

We note that for the homonuclear diatomic molecule H+
2288

initially in the state with the definite parity and laser289

fields polarized in the plane perpendicular to the molec-290

ular (z) axis, the contribution Sz(ω) vanishes.291

III. CIRCULARLY POLARIZED HIGH-ORDER292

HARMONICS, ELLIPTICITY, AND RELATIVE293

PHASE SHIFT IN H+

2 MOLECULES294

The structure of the HHG spectra can be described295

in terms of the energy and angular momentum con-296

servation in the process of absorption of the driving297
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fields photons and emission of the harmonic photon298

[1, 6, 7, 13, 15–17, 24, 33]. The energy conservation299

gives ωc = (n1+2n2)ω0 for the frequency ωc of the emit-300

ted photon after absorption of n1 photons of frequency301

ω0 and n2 photons of frequency 2ω0. The angular mo-302

mentum conservation requires n2 = n1 ± 1 or n2 = n1303

for the circularly-polarized counter-rotating driving fields304

E1 and E2. However, for the quantum systems with in-305

version symmetry such as atoms and homonuclear di-306

atomic molecules, emission of dipole radiation is for-307

bidden in the case n2 = n1 due to parity restrictions.308

Then the emitted photon frequency can be represented309

as ωc = (3nc + 3/2)ω0 ± ω0/2, nc being a positive in-310

teger number. This gives rise to a doublet structure of311

the HHG spectrum, with the frequency differences 3ω0312

between the adjacent doublets and ω0 between the pho-313

ton emission peaks within the same doublet. The right314

[(3nc + 2)ω0] peak in the doublet has a circular polar-315

ization with the same helicity as the driving field with316

the higher frequency (E2), the left [(3nc + 1)ω0] peak317

has a circular polarization with the same helicity as the318

driving field with the lower frequency (E1). The HHG319

spectrum consists of both odd and even harmonics of320

the lowest frequency ω0 except for the harmonic orders321

that are multiples of 3. In what follows, we will denote322

the harmonic peaks in the HHG spectrum by their order323

with respect to the lowest frequency ω0. We should em-324

phasize that the selection rules and corresponding struc-325

ture of the HHG spectrum described above are only valid326

for atoms and homonuclear diatomic molecules when the327

angular momentum quantization axis can be chosen per-328

pendicular to the polarization plane of the laser fields.329

For diatomic molecules, it means perpendicular orienta-330

tion of the molecular axis with respect to the polariza-331

tion plane. Discussion of other possible situations can be332

found elsewhere; for example, see Ref. [34] for the case333

of nonplanar molecules and Ref. [35] for the choice of the334

quantization axis in the atomic case.335

In Figs. 2(a)-(d), we present the HHG spectrum of336

H+
2 for the sine-squared (14) driving laser pulse shown337

in Fig. 1(a). The calculated HHG spectra for H+
2 in338

Figs. 2(a)-(d), respectively, show that the peak positions339

match well with those predicted by the selection rules and340

specified above. The spectrum displays circularly polar-341

ized harmonics up to the 80th harmonic order (H80).342

The ionization threshold (Ip) for the initially occupied343

1σg molecular orbital is marked with the green dashed344

vertical line at ∼H19 (19.13ω0). Figure 2(b) shows the345

below- and near-threshold region (H1-H26). As one can346

see, the spectrum exhibits a clear doublet structure with347

the spacing between the main peaks equal to 3ω0 and348

subpeak separation of ω0. According to the general con-349

siderations discussed above, the components of the dou-350

blet (subpeaks within each main peak) must have circular351

polarization opposite to each other. Figures 2(c) and (d)352

show the above-threshold circularly polarized harmon-353

ics up to H80. In Fig. 2(c), starting at the doublet peak354

H49/H50, the contributions Sx(ω) and Sy(ω) to the total355

HHG spectrum from the x and y projections of the dipole356

acceleration are not well overlapped near the peak posi-357

tions in the frequency domain, thus causing broadening358

of the peaks and deviation from perfect circular polar-359

ization. In Figs. 2(c) and (d), we see this phenomenon360

occurs for the doublets lying higher than H49/H50 in the361

plateau and near cutoff regions.362

The generation of high-order harmonics by bichromatic363

counter-rotating circularly polarized laser fields results in364

harmonic doublets, where in each doublet the harmonics365

are circularly polarized with opposite handedness. How-366

ever, this argument assumes that the driving-field fre-367

quency components are perfectly monochromatic. In re-368

ality, the laser pulse has a finite duration, hence the har-369

monic peaks have a finite width, and polarization may370

even vary even on the frequency range corresponding371

to the same harmonic peak. Also, our recent studies372

[15, 16] show that near-resonant radiation from excited373

states may also alter the polarization properties of the374

HHG spectrum in the below-threshold region. Here, we375

calculate the polarization properties of the harmonic ra-376

diation explicitly from the dipole acceleration data and377

show to what extent the harmonic peaks within the same378

doublet possess circular polarization with left and right379

handedness.380381382

Suppose we have a monochromatic field with the com-383

ponents along x and y:384

Fx = a cos(ωt),

Fy = b cos(ωt+ β).
(25)

Generally, the field amplitudes along x and y are different385

(with their ratio ryx = b/a), and there is a phase shift β386

between the field oscillations in x and y directions. Actu-387

ally, Eq. (25) represents an elliptically polarized field; the388

orientation of the ellipse in the x − y plane depends on389

the parameters ryx and β. The angle α which determines390

the orientation of one of the ellipse axes with respect to391

the x-axis is calculated as:392

α = −1

2
arctan

(

r2yx sin(2β)

1 + r2yx cos(2β)

)

. (26)

The second axis has the orientation angle α + π/2. As-393

suming the first axis to be the major axis of the ellipse,394

the ellipticity parameter is calculated as follows:395

ǫ =

√

sin2 α+ r2yx sin
2(α+ β)

cos2 α+ r2yx cos
2(α + β)

(27)

If the calculated ellipticity parameter ǫ appears greater396

than unity, then the first axis is actually the minor axis,397

and the ellipticity parameter is given by 1/ǫ. From398

the Fourier transform of the induced dipole acceleration399

(which represents the harmonic field), one can obtain the400

parameters ryx and β and calculate the ellipticity for the401

specific frequency ω. The circular polarization (ǫ = 1) is402

only possible if β = ±π/2 and ryx = 1.403404
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FIG. 3. (Color online) Ellipticity of the harmonic radiation
from H+

2 as a function of the harmonic order: (a) below- and
near-threshold region (H1-H26), (b) above-threshold plateau
region (H27-H53), and (c) above-threshold plateau and near
cutoff region (H54-H80). The sine-squared laser pulse param-
eters used are the same as those in Figs. 1(a) and 2. The filled
maroon circles and filled teal squares mark the peak positions
of the harmonics (3nc + 1)ω0 and (3nc + 2)ω0, respectively,
within each doublet.

In Figs. 3 (ellipticity) and 4 (phase shift), the filled ma-405

roon circles and filled teal squares indicate the positions406

of harmonic peaks within each doublet [(3nc + 1)ω0 and407

(3nc + 2)ω0, respectively]. The circular polarization of408

the harmonics marked with the teal squares has the same409

handedness (right-helicity) as that of the driving field410

E2(t), and the harmonics marked with the maroon cir-411

cles are polarized with the same handedness (left-helicity)412

as the driving field E1(t) for the sine-squared pulse (14)413

shown in Fig. 1(a).414
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FIG. 4. (Color online) Phase shift between the x and y com-
ponents of the harmonic field from H+

2 as a function of the
harmonic order: (a) below- and near-threshold region (H1-
H26), (b) above-threshold plateau region (H27-H53), and (c)
above-threshold plateau and near cutoff region (H54-H80).
The sine-squared laser pulse parameters used are the same
as those in Figs. 1(a) and 2. The filled maroon circles and
filled teal squares mark the peak positions of the harmonics
(3nc+1)ω0 and (3nc+2)ω0, respectively, within each doublet.

Figures 3(a) and 4(a) show the ellipticity and phase415

shift, respectively, of the below- and near-threshold har-416

monics in the HHG spectrum of the H+
2 molecule (Fig. 2).417

As one can see, for the below- and near-threshold har-418

monics, the ellipticity [Fig. 3(a)] is near unity and the419

phases [Fig. 4(a) ] are very close to ±π/2, indicating cir-420

cular polarizations with left and right handedness. In421

Figs. 3(b) and 4(b), for the above-threshold harmonics in422

the plateau region, the ellipticity and phases start to de-423

viate from perfect circular polarization. As we mentioned424
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FIG. 5. (Color online) HHG spectrum Stot(ω) as well as contributions Sx(ω) and Sy(ω) from the x and y projections of the
dipole acceleration for the H+

2 molecule subject to the counter-rotating circularly polarized trapezoidal laser pulses. Circularly
polarized harmonic doublets (a) up to ∼H80, (b) in the below- and near-threshold region (H1-H26), (c) in the above-threshold
plateau region (H27-H53), and (d) in the above-threshold plateau and near cutoff region (H54-H80). The laser pulses have a
time duration of 17 optical cycles (∼ 45 fs) of frequency ω0 (wavelength 790 nm) and 34 optical cycles (∼ 45 fs) of frequency
2ω0 (wavelength 395 nm). The black solid, red dotted, and blue dashed lines represent the HHG spectrum in the Stot(ω),
Sx(ω), and Sy(ω) domains, respectively. The green vertical dashed line indicates the corresponding ionization threshold (Ip)
of the 1σg molecular orbital (H19.13). Filled maroon circles and filled teal squares indicate the positions of the peaks with the
frequencies (3nc+1)ω0 and (3nc+2)ω0, respectively. The separation between the peaks within each doublet is ω0, and different
doublets are separated by 3ω0. Both bichromatic frequency components have the same peak field strength corresponding to
the intensity of 2× 1014 W/cm2.

above when discussing Figs. 2(c) and (d), starting at the425

doublet peak H49/H50, the Sx(ω) and Sy(ω) contribu-426

tions to the total HHG spectrum are not well overlapped427

for the frequencies corresponding to the peak positions.428

This reflects alterations in the ellipticity and phase for429

the harmonics higher than H49/H50, eventually result-430

ing in substantial deviation of the generated harmonics431

from perfect circular polarization in the above-threshold432

plateau [Figs. 3(b) and 4(b)] and near cutoff [Figs. 3(c)433

and 4(c)] regions.434435436

In Figs. 5(a)-(d), we present the HHG spectrum of437

H+
2 for the trapezoidal (15) driving laser pulse shown438

in Fig. 1(b). The calculated harmonic peak positions439

match well with those predicted by the selection rules440

and specified above. The spectrum in Fig. 5(a) displays441

circularly polarized harmonics up to the 80th harmonic442

order (H80). The ionization threshold (Ip) for the ini-443

tially occupied 1σg molecular orbital is marked with the444

green dashed vertical line at∼H19 (19.13ω0). Figure 5(b)445

shows the below- and near-threshold region (H1-H26).446

As one can see, the spectrum exhibits a clear doublet447

structure with the spacing between the main peaks equal448

to 3ω0 and subpeak separation of ω0. Figures 5(c) and449

(d) show the above-threshold plateau and near-cutoff re-450

gions, respectively. The trapezoidal driving laser pulse451

[Fig. 1(b)] is more monochromatic (spectral width is452

narrower) than the sine-squared laser pulse [Fig. 1(a)].453

Consequently, the harmonic peaks in Figs. 5(a)-(d) are454

narrower (and higher by 1-2 orders of magnitude) than455

those for the sine-squared pulse in Figs. 2(a)-(d). The456

contributions to the total HHG signal from the x and y457

projections of the dipole acceleration are well overlapped458

around the peak positions in Figs. 5(b)-(d), and this is459

a necessary condition for the perfect circular polariza-460

tion of the generated harmonics. Strictly speaking, the461

selection rules discussed above are applied to perfectly462

monochromatic counter-rotating fields with the frequen-463

cies ω0 and 2ω0. The trapezoidal pulse shape (15) pro-464

vides a better approximation of the monochromatic field465

than the sine-squared shape (14). This is the reason the466
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FIG. 6. (Color online) Ellipticity of the harmonic radiation
from H+

2 as a function of the harmonic order: (a) below- and
near-threshold region (H1-H26), (b) above-threshold plateau
region (H27-H53), and (c) above-threshold plateau and near
cutoff region (H54-H80). The trapezoidal laser pulse parame-
ters used are the same as those in Figs. 1(b) and 5. The filled
maroon circles and filled teal squares mark the peak positions
of the harmonics (3nc + 1)ω0 and (3nc + 2)ω0, respectively,
within each doublet.

sine-squared driving laser pulse does not show the per-467

fect circular polarization predicted by the theory but the468

trapezoidal pulse gives rise to perfect circular polariza-469

tion throughout the entire photon energy range of the470

calculated HHG spectrum. To prove quantitatively, next471

we will calculate the ellipticity (27) and phase shift of the472

harmonics shown in Figs. 5(a)-(d).473

Figures 6 and 7 show the ellipticity and phase shift474

between the x and y components of the radiation field,475

respectively, for the harmonics in the HHG spectrum476
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FIG. 7. (Color online) Phase shift between the x and y com-
ponents of the harmonic field from H+

2 as a function of the
harmonic order: (a) below- and near-threshold region (H1-
H26), (b) above-threshold plateau region (H27-H53), and (c)
above-threshold plateau and near cutoff region (H54-H80).
The trapezoidal laser pulse parameters used are the same
as those in Figs. 1(b) and 5. The filled maroon circles and
filled teal squares mark the peak positions of the harmonics
(3nc+1)ω0 and (3nc+2)ω0, respectively, within each doublet.

of Fig. 5. As one can see, for the below-, near-, and477

above-threshold harmonics, the ellipticity [Fig. 6(a-c)] is478

near unity and the phases [Fig. 7(a-c) ] are very close to479

±π/2, indicating perfect circular polarizations with left480

and right handedness throughout the HHG spectrum (≤481

H80). The trapezoidal laser pulse shape (15) reveals bet-482

ter results for a perfectly circular polarized HHG spec-483

trum, compared to the sine-squared laser pulse shape484

(14).485
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FIG. 8. (Color online) HHG spectrum S(ω) of the hydro-
gen atom subject to the counter-rotating few-cycle circularly
polarized sine-squared laser pulses. The pulse durations mea-
sured in optical cycles of the frequency ω0 are N1 = 3 and
N2 = 2 for the ω0 and 2ω0 fields, respectively. Both bichro-
matic frequency components have the same peak intensity
1 × 1014 W/cm2. The harmonic photon energy range shown
is 1 to 5.5 a.u. Solid (black) line: τ = 0 (zero time delay),
dashed (red) line: τ = T0 (positive time delay (Eq. 13) corre-
sponds to the 2ω0 field arriving first.)

IV. TIME DELAYED COUNTER-ROTATING486

FEW-CYCLE DRIVING LASER PULSES487

APPLIED TO H+

2 MOLECULES488

Here, we will investigate HHG by time-delayed few-489

cycle counter-rotating sine-squared laser pulses (14) first490

applied to atoms (H), and then to molecules (H+
2 ). In491

both cases, we obtain the accurate wave functions by492

solving the full-dimensional time-dependent Schrödinger493

equation (TDSE), as described above in Sec. II (for the H494

atom case, the electric charge Z2 is set to zero in Eq. (4)).495

In the calculations for the hydrogen atom, we adopt the496

carrier wavelengths 1600 nm (ω0=0.0285 a.u.=0.78 eV)497

and 800 nm (2ω0=0.0570 a.u.=1.56 eV) and the pulse498

durations T1,2 = 2πN1,2/ω0 where N1 = 3 and N2 = 2499

for the 1600 nm and 800 nm fields, respectively. The peak500

intensities for both fields are equal to 1 × 1014 W/cm2.501

All these parameters are the same as used in a recent502

theoretical investigation of the model hydrogen atom [36],503

except our pulse shape is sine-squared while the Gaussian504

pulse shape is used in Ref. [36].505506507

Figure 8 shows the HHG spectrum of the H atom for508

the sine-squared (14) driving laser pulse with a zero time509

delay (τ = 0) and a one-optical cycle time delay (τ = T0,510

where T0 = 2π/ω0) on the harmonic photon energy range511

1 to 5.5 a.u. A positive time delay (Eq. 13) corresponds512

to the 2ω0 field arriving first. In Fig. 8, the solid (black)513

line is for a zero time delay, and the dashed (red) line514

corresponds to a time delay of τ = T0. As one can see,515

throughout the energy range 1−2.3 a.u. where the HHG516

signal is the strongest, the zero time delay between the517

pulses delivers the largest harmonic yield. In this respect,518

our results are different from those of Ref. [36] where the519

harmonic yield is enhanced when a time delay is intro-520
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FIG. 9. (Color online) HHG spectrum S(ω) of the H+

2

molecule subject to the counter-rotating few-cycle circularly
polarized sine-squared laser pulses. The pulse duration is 2
optical cycles of the frequency ω0 and peak intensity is 2×1014

W/cm2 for both bichromatic components. Solid (black) line:
τ = 0 (zero time delay), dotted (red) line: τ = 1.32 fs (pos-
itive time delay corresponds to the 2ω0 field arriving first),
and dashed (blue) line: τ = −1.32 fs (negative time delay
corresponds to the ω0 field arriving first). The green vertical
dashed line indicates the ionization threshold (Ip) of the 1σg

molecular orbital.

duced, compared to the zero time delay case. For few-521

cycle laser pulses, however, the results strongly depend522

on the pulse envelope, thus a direct comparison between523

our results and those of Ref. [36] would be incorrect since524

different pulse shapes are used.525

For our second case, we investigate HHG by the H+
2526

molecule subject to the time-delayed few-cycle counter-527

rotating sine-squared laser pulses (14). Here, we will528

make use of the carrier wavelengths 790 and 395 nm and529

peak intensity 2× 1014 W/cm2 for both fields, as shown530

in Figs. 1(a) and 2. We choose the same pulse duration531

of T = 4π/ω0 for both bichromatic components, that is 2532

optical cycles of the field with the wavelength 790 nm and533

4 optical cycles of the field with the wavelength 395 nm.534

One cycle of the ω0 and 2ω0 fields has a duration of 2.64535

and 1.32 fs, respectively. In Fig. 9, we present the HHG536

spectra of the H+
2 molecule for the time delays τ = 0,537

±1.32 fs [Eqs. (12) and (13)]. Positive (negative) time538

delays (Eq. 13) correspond to the 2ω0 (ω0) field arriving539

first. In Fig. 9, the solid (black) line, dotted (red) line,540

and dashed (blue) line have time delays τ = 0, τ = 1.32541

fs, and τ = −1.32 fs, respectively. The spectrum displays542

circularly polarized harmonics up to the 80th harmonic543

order (H80). The ionization threshold (Ip) for the ini-544

tially occupied 1σg molecular orbital is marked with the545

green dashed vertical line at ∼H19 (19.13ω0). Figure 9546

clearly displays a zero time delay (τ = 0, solid (black)547

line) has the largest HHG intensity throughout the spec-548

trum, except for harmonic orders H47–H52, where the549

negative time delay (τ = −1.32 fs, dashed (blue) line)550

has the greater HHG intensity. Such results are actually551

understandable. A circularly polarized pulse alone can-552

not generate high-order harmonics because of the angular553
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momentum conservation; one needs two counter-rotating554

pulses for this process (see discussion at the beginning of555

Sec. III). Obviously, the highest harmonic yield can be556

achieved when the overlap area of the two pulses in the557

time domain contains their peak intensity regions. For558

the symmetric pulses studied here, it corresponds to the559

zero time delay between the pulses.560

We have also investigated several longer pulse dura-561

tions (T = 6π/ω0, T = 10π/ω0, and T = 34π/ω0) for562

counter-rotating sine-squared laser pulses (14) with dif-563

ferent time delays applied (not shown here). We conclude564

that for longer pulses there are no distinct differences in565

the HHG intensities between the zero and non-zero time566

delays in the range τ = ±1.37...± 4.11 fs.567

V. CONCLUSION568

In this paper, we have presented a detailed investiga-569

tion and analysis of H+
2 diatomic molecules and H atoms570

subject to bichromatic counter-rotating circularly polar-571

ized intense laser fields. The generated high-order har-572

monic spectrum exhibits a doublet structure where the573

harmonics within the same doublet have opposite (left574

and right) circular polarizations.575

We found that qualitatively different nonlinear opti-576

cal responses and dynamics are predicted for bichro-577

matic counter-rotating sine-squared and trapezoidal578

pulse shapes. First, the sine-squared pulse, because of its579

larger bandwidth in the frequency domain, does not pro-580

duce perfect circularly polarized harmonics. At the same581

time, the trapezoidal pulse provides a better approxima-582

tion of the monochromatic field than the sine-squared583

pulse and produces perfect circularly polarized harmon-584

ics. Second, the contributions to the total HHG signal585

from the x and y projections of the dipole acceleration586

are well overlapped around the peak positions when the587

trapezoidal pulse shape is used; this is not the case for588

the sine-squared pulse. We also note that the harmonic589

peaks generated by the trapezoidal pulse are much nar-590

rower in the frequency domain and 1-2 orders of magni-591

tude higher compared to the harmonics generated by the592

sine-squared pulse while the emitted radiation energies593

are comparable.594

We have also investigated the effect of the time delay595

between the ω0 and 2ω0 components of the driving laser596

pulse on HHG by H atoms and H+
2 molecules. Our full-597

dimensional calculations for the hydrogen atom reveal598

that the zero time delay between the ω0 and 2ω0 com-599

ponents delivers the largest harmonic yield. This obser-600

vation is intuitively understandable because isolated cir-601

cularly polarized pulses cannot generate high-order har-602

monics due to the angular momentum conservation, even603

if we have two such pulses with counter-rotating polar-604

ization vectors but separated by a substantial time inter-605

val. One needs well overlapped counter-rotating pulses606

to generate harmonics, and the higher the intensity of607

the driving field in the overlap area, the larger harmonic608

yield can be expected.609

In the study of the time delay effect on HHG by H+
2610

molecules, we have performed calculations for several611

short and long pulse durations. The results generally612

confirm our findings for the hydrogen atom. When con-613

sidering short pulses (< T = 6π/ω0), the zero time delay614

corresponds to the highest HHG intensity. For longer615

pulses (> T = 6π/ω0), we find no visible effect of the616

time delay and no distinct differences in the HHG in-617

tensities between the cases of the zero and non-zero time618

delays, if the latter do not exceed two optical cycles of the619

fundamental frequency. Our findings can help to deter-620

mine appropriate conditions for perfect circular polariza-621

tion of the generated harmonics which can be applied to622

advanced studies of chiral-sensitive light-matter interac-623

tions such as circular dichroism, ultrafast magnetization624

and spin dynamics in the future.625
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