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Penning traps, with their ability to control planar crystals of tens to hundreds of ions, are versa-
tile quantum simulators. Thermal occupations of the motional drumhead modes, transverse to the
plane of the ion crystal, degrade the quality of quantum simulations. Laser cooling using electro-
magnetically induced transparency (EIT cooling) is attractive as an efficient way to quickly initialize
the drumhead modes to near ground-state occupations. We numerically investigate the efficiency of
EIT cooling of planar ion crystals in a Penning trap, accounting for complications arising from the
nature of the trap and from the simultaneous cooling of multiple ions. We show that, in spite of
challenges, the large bandwidth of drumhead modes (hundreds of kilohertz) can be rapidly cooled to
near ground-state occupations within a few hundred microseconds. Our predictions for the center-
of-mass mode include a cooling time constant of tens of microseconds and an enhancement of the
cooling rate with increasing number of ions. Successful experimental demonstrations of EIT cooling
in the NIST Penning trap [E. Jordan, K. A. Gilmore, A. Shankar, A. Safavi-Naini, M. J. Holland, and
J. J. Bollinger, “Near ground-state cooling of two-dimensional trapped-ion crystals with more than
100 ions”, (2018), accompanying paper submitted to Phys. Rev. Lett.] validate our predictions.

I. INTRODUCTION

Trapped ions have rapidly evolved to become a lead-
ing platform for quantum computing, quantum simula-
tion and metrology [1, 2]. Specifically, ions stored in
Penning traps have been demonstrated to be ideal for
analog quantum simulation as well as quantum-enhanced
sensing, in part because large ion crystals are routinely
formed and controlled in this device [3–5]. For example,
planar crystals of tens to hundreds of 9Be+ ions have been
used to simulate spin-spin as well as spin-boson models
including the Ising [6, 7], transverse-field Ising, as well
as Dicke models [8, 9]. Quantum information studies
on the growth of entanglement [10] as well as investiga-
tions on preparing ground states of exotic Hamiltonians
[8, 9] have shown that exciting many-body physics can be
studied with this versatile quantum simulator. In addi-
tion, ions in Penning traps serve as excellent motion sen-
sors capable of resolving, in a single experimental trial,
motional amplitudes smaller than the zero-point fluctu-
ations of the normal modes dictating the motion trans-
verse to the crystal plane [11], thus enabling the detection
of extremely weak forces and electric fields.

For implementing these protocols with the NIST Pen-
ning trap, the spin is encoded in two hyperfine ground
states of 9Be+ [3]. Spin-spin interactions are mediated by
the motional drumhead modes, transverse to the crystal
plane, that arise from the interplay of the trap poten-
tial and the inter-ion Coulomb repulsion, with the spin-
motion coupling generated using suitable drive lasers [6].
As a result, excess thermal energy in these normal modes
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adversely affects the science protocol being investigated,
higlighting the need for sub-Doppler, near ground-state
cooling. For example, the fidelity of preparing the ground
state of the Dicke model is significantly reduced by the
thermal occupation of n̄ ≈ 6 of the center-of-mass (COM)
mode, which is close to the Doppler cooling limit [8, 9].
Estimates show that the fidelity significantly improves if
the COM mode is cooled down to n̄ ≈ 0. Further, near
ground-state cooling should also greatly improve the mo-
tion sensing capability of this platform.

Electromagnetically induced transparency (EIT)
promises a path for cooling the entire bandwidth of
drumhead modes close to their ground states. In
contrast to sideband cooling where the modes are cooled
one-by-one by sweeping the two-photon detuning across
the bandwidth of modes, EIT cooling can potentially
cool the full bandwidth of modes in a single experimental
application with no time-varying parameters, allowing
for simpler implementation and faster cooling. The
naive expectation comes from the well understood
physics of EIT cooling of a single trapped ion [12], which
we now recall briefly. The ion is assumed to have a
closed three-level electronic manifold consisting of two
long-lived states, such as the hyperfine ground states
of 9Be+, and an excited state (see Fig. 2(b)). Two
strong dressing lasers couple the long-lived states to the
excited state and are equally blue detuned from their
respective transitions. EIT cooling can be understood
by considering the absorption of a fictitious weak probe
coupling one of the long-lived states to the excited
state. As shown in Fig. 1, the steady-state absorption
spectrum has a unique profile as the probe detuning ∆P

is swept, with the absorption exactly vanishing when
the probe detuning equals the dressing detuning ∆D.
A sharp peak immediately follows this transparency
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point and the separation between this peak and the
transparency point can be tuned using the dressing
laser powers. For a trapped ion, the motion-adding and
motion-removing sidebands of the dressing lasers serve
as weak probes that sample this absorption spectrum.
Tuning the separation between the sharp peak and the
transparency point to match the motional frequency
causes the motion-removing sideband to be strongly
enhanced and the motion-adding sideband to be strongly
suppressed, leading to highly efficient cooling. In the
Penning trap, by tuning this separation to coincide
with the frequency of the COM mode, which is the
highest frequency drumhead mode, all the drumhead
modes have highly asymmetric motion-removing and
motion-adding sidebands, which should produce efficient
cooling over the full bandwidth of these modes. In
this paper, we theoretically investigate this idea under
realistic experimental conditions employed in the NIST
Penning trap.

FIG. 1. (color online) EIT absorption spectrum with laser pa-
rameters relevant to the NIST EIT cooling experiment. Two
strong dressing lasers, with equal Rabi frequencies and equal
detunings from their respective transitions, couple two long-
lived states to an excited state in a closed three-level system.
The absorption from a weak probe is plotted as the probe de-
tuning ∆P is scanned across the dressing detuning ∆D. The
motion-removing (blue impulses) and motion-adding (red im-
pulses) sidebands can be interpreted as weak probes that sam-
ple this spectrum. Inset: Close-up near (∆P −∆D)/2π = 0,
with a magnified y-axis, showing the zero at the transparency
point as well as the asymmetry in the spectrum on either side
of this point. The blue dashed line is a mirror image of the
spectrum on the blue-detuned side, drawn on the red-detuned
side to highlight the asymmetric growth of the absorption
away from the transparency point. The dressing lasers have
equal detuning ∆D/2π ≡ ∆0/2π = 360 MHz, and equal Rabi
frequency Ωopt(∆

0)/2π ≈ 33.9 MHz. The Rabi frequency of
the weak probe is ΩP = 0.05 Ωopt(∆

0). The decay rates from
the excited state to the two long-lived states are Γ1/2π = 6
MHz, Γ2/2π = 12 MHz. (See the discussion in Section II and
Eq. (14) for a detailed explanation of the parameters.)

The unique challenges confronted in implementing EIT

cooling in a Penning trap further motivate our theoretical
study of the prospects for its success. First, ions stored in
a Penning trap are constantly revolving around the trap
center and therefore, in general, experience time-varying
Doppler shifts on the applied dressing lasers. Second, ex-
perimental constraints as well as a compromise between
the speed of cooling and the final temperature dictate
that the timescales for the electronic and motional de-
grees of freedom may not be sufficiently well separated
to adiabatically eliminate the electronic degrees of free-
dom, as was done in the initial analysis of trapped-ion
EIT cooling [12, 13]. Third, although EIT cooling has
been used to cool all the radial modes of a linear chain of
up to 18 ions [14], the dynamics of simultaneously EIT
cooling several tens to hundreds of normal modes that
can interact via the applied lasers is not well understood
and could be very different from the single-ion case.

At the outset, we summarize the major predictions
from our study. Under typical experimental conditions,
EIT cooling leads to near ground-state occupancies for
all the drumhead modes, spread over a bandwidth of
hundreds of kilohertz, of large ion crystals in a Penning
trap. The cooling of the COM mode has a time constant
of few tens of µs. Further, under suitable experimental
conditions, the cooling rate of the COM mode increases
with the number of ions in the crystal. This latter result
leads us to predict that the measured cooling of multi-ion
crystals will be faster than the rate expected if the ions
cooled independently. These predictions have been veri-
fied by the successful demonstration of EIT cooling with
more than 100 ions [15], where significant sub-Doppler
cooling, strongly suggestive of near-ground state cooling,
has been observed over the full bandwidth of drumhead
modes. Quantitative measurements on the COM mode
reveal occupations of n̄ ≈ 0.3±0.2, and a measured cool-
ing constant τ ≈ 28 µs. The measured cooling rate is
faster than the expected single-ion rate under the same
experimental conditions.

This paper is organized as follows. In Section II, we
describe the NIST Penning trap and proceed to set up
the master equation for the EIT cooling of multiple ions.
In Section III, we use a toy model of a single revolving
ion to illustrate the degrading effects of the time-varying
Doppler shifts as well as demonstrate the invalidity of
the adiabatic elimination procedure in our system. In
Section IV, we first build a Gaussian model for approxi-
mately studying the cooling dynamics for multiple ions,
and demonstrate the near-ground state cooling of the
COM mode for crystals with up to N = 37 ions. By com-
paring the cooling transients from our Gaussian model to
full density matrix calculations for a single ion, we show
the build-up of beyond Gaussian correlations between the
system degrees of freedom, which we are able to repro-
duce by systematically extending our approximate model
beyond the Gaussian regime. Our improved model pre-
dicts a surprising enhancement in the cooling rate of the
COM mode with increasing number of ions that is not
captured by the Gaussian model. In Section V, we show
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how EIT cooling works efficiently over the full bandwidth
of drumhead modes of crystals with as many as 120 ions,
resulting in near ground state occupancies for all these
modes. In Section VI, we briefly demonstrate the ex-
pected robustness of EIT cooling to small misalignments
of the dressing lasers. We conclude with a brief summary
in Section VII, where we also discuss possible future ex-
tensions of our work.

II. MODELING THE EXPERIMENT

A. NIST Penning trap

The NIST Penning trap is used to routinely produce,
control and manipulate planar ion crystals of tens to hun-
dreds of 9Be+ ions [3]. A static electric quadrupole field
is used to achieve transverse confinement, while the addi-
tion of a strong transverse magnetic field ensures radial
confinement. Potentials applied to electrodes arranged
symmetrically around the z-axis generate the required
electric fields and a superconducting magnet produces
a strong magnetic field of 4.46 T. The E × B drift of
the ions arising from the combination of the magnetic
field and the azimuthally symmetric electric fields causes
the ions to revolve around the trap center. The fre-
quency of the crystal rotation can be precisely controlled
and stabilized by applying a weak rotating potential on
the electrodes. Typically, this ‘rotating wall’ potential
is used to stabilize the rotation frequency of the crystal
to ωr/2π = 180 kHz. When the radial confinement is
weak compared to the transverse confinement, the ions
form a 2D planar crystal with an approximate triangu-
lar lattice (see Fig. 2 for an illustration). The strength
of the transverse harmonic confinement is characterized
by a trapping frequency that is also the frequency of the
transverse center-of-mass (COM) mode, ωCOM, of the ion
crystal. A planar ion crystal with N ions has 3N normal
modes of motion, 2N of which are in-plane modes super-
posed on the crystal rotation, and N of which are drum-
head modes transverse to the crystal plane. The COM
mode is the highest-frequency drumhead mode. For the
experiments we model here, ωCOM/2π ≈ 1.57−1.59 MHz,
tunable using trap parameters.

B. Master equation model

We consider singly-charged positive ions with a closed
three-level electronic structure loaded in a Penning trap
(see Fig. 2). The two hyperfine ground states of each
ion are labeled |g1〉 and |g2〉. Two EIT lasers are respec-
tively blue-detuned from the |g1〉 ↔ |e〉 and |g2〉 ↔ |e〉
transitions, where |e〉 is an excited state separated from
the two ground states by optical frequencies. The two
EIT lasers are incident on the planar ion crystal at an-
gles ±θ with respect to the plane of the crystal, which we
take to be the x-y plane. The {|e〉 , |g1〉 , |g2〉} manifold

is a closed system, with decay rates of Γ1 and Γ2 for the
|e〉 → |g1〉 and |e〉 → |g2〉 pathways respectively. We will
adopt the shorthand notation σαβ to denote the internal
state operator |α〉 〈β|.

FIG. 2. (color online) Experimental setup to cool ions in a
Penning trap using electromagnetically induced transparency
(EIT). Two EIT lasers address the ion crystal at angles ±θ
with respect to the x-axis, with one driving the |g1〉 ↔ |e〉
transition and the other driving the |g2〉 ↔ |e〉 transition in
a blue-detuned regime (∆ > 0). The curved arrow indicates
the rotation direction in the x-y plane.

In the Schrödinger picture, the Hamiltonian for the
interaction of the EIT lasers with a single ion is HS =
HS

0 +HS
1 (t), where

HS
0 = −

∑
µ

(
ωe − ωgµ

)
σgµgµ (1)

and

HS
1 (t) =

∑
µ

Ωµ
2

(
ei(kµ·r(t)−ωµt)σegµ + H.c.

)
, (2)

where the index µ = 1, 2 accounts for the two ground
states and the two EIT lasers coupling them to |e〉. Here,
ωe−ωgµ are the |gµ〉 ↔ |e〉 transition frequencies, Ωµ are
the Rabi frequencies for the laser-ion interaction, and ωµ
and kµ are the angular frequencies and propagation vec-
tors for the two EIT lasers. Eventually, we will describe
the motion along the z-direction using a set of quantized
normal modes, and add the self-energy terms associated
with these quantum harmonic oscillators to the interac-
tion Hamiltonian. Throughout this paper, we have set
h̄ = 1, unless we explicitly specify otherwise.

Since any given ion in the Penning trap is undergoing
a coherent rotation in the x-y plane, its position r(t) is

r(t) =

(
x(0) +

∫ t

0

dt′vx(t′)

)
x̂

+

(
y(0) +

∫ t

0

dt′vy(t′)

)
ŷ + z(t)ẑ, (3)
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Here we are neglecting any thermal motion in the plane
of the ion crystal and assume vx(t′) and vy(t′) arise from
the coherent circular motion caused by the E ×B drift,
which is the dominant in-plane motion. We assume that
the laser beams are propagating in the x-z plane, so that
k1 = k1,xx̂ + k1,z ẑ and k2 = k2,xx̂ + k2,z ẑ.

We then transform to an interaction picture with a
time-dependent ‘free evolution’ Hamiltonian HS

f (t) given
by

HS
f (t) =−

∑
µ

{ωµ − kµ,xvx(t)}σgµgµ . (4)

The interaction picture transformation is very similar to
the usual case with a time-independent free evolution
Hamiltonian because HS

f (t), HS
f (t′) commute at all times

t, t′. The interaction Hamiltonian in this frame, given by

the transformation HI(t) = ei
∫ t
0
dt′HS

f (t′)(HS
0 + HS

1 (t) −
HS
f (t))e−i

∫ t
0
dt′HS

f (t′), is

HI(t)=
∑
µ

∆µ(t)σgµgµ

+
∑
µ

Ωµ
2

{
eikµ,xx(0)eikµ,zz(t)σegµ + H.c.

}
, (5)

where ∆µ(t) = ∆0
µ−kµ,xvx(t) are the effective detunings

of the EIT lasers as seen by the ion, with ∆0
µ = ωµ−(ωe−

ωgµ). For an ion with initial position {x(0), y(0)}, the x-
component of the velocity is vx(t) = ωr(y(0) cosωrt −
x(0) sinωrt), where ωr is the angular frequency of the
rotating wall potential.

To perform EIT cooling, we tune the EIT lasers to sat-
isfy the two-photon resonance on the blue-detuned side
[12], i.e. ∆0

1 = ∆0
2 ≡ ∆0 > 0. Further, the lasers are

aligned such that their difference wavevector lies along
the z-axis. This implies k2,x = k1,x and k2,z ≈ −k1,z.
However, we will develop the theory without these two
simplifications, and only apply these conditions numer-
ically. For N ions in the Penning trap, the interaction
Hamiltonian generalizes straightforwardly as a sum over
all ions.

The equilibrium crystal configuration results from the
balance of the trap potential and the inter-ion Coulomb
repulsion. The transverse motion of the N ions about
their equilibrium positions are not independent, instead
being described by a set of N collective normal modes
with frequencies ωn, n = 1, 2, . . . , N and amplitudesMjn

at each ion j. The frequencies ωn and the column vectors
of the matrix M are respectively obtained as the eigen-
values and eigenvectors of the potential energy matrix
associated with the coupled transverse harmonic motion
of the ions [16]. The transverse displacement of any ion j
can be expressed in terms of the N quantized drumhead
modes of the ion crystal as

zj(t) =

N∑
n=1

√
h̄

2Mωn
Mjn

(
bne
−iωnt + b†ne

iωnt
)
, (6)

where b†n, bn are the creation and annihilation operators
for the normal mode n.

The time-dependent exponentials in Eq. (6) can be re-
cast as self-energy terms, leading to the total interaction
Hamiltonian

HI(t)=
∑
n

ωnb
†
nbn +

∑
j,µ

∆µ,j(t)σ
j
gµgµ

+
∑
j,µ

1

2

{
Ωµ,je

ikµ,zzjσjegµ + H.c.
}
, (7)

where the displacement operators zj are now simply zj =∑
n

√
h̄/2MωnMjn

(
bn + b†n

)
.

Here, the instantaneous detunings experienced by each
ion is different, depending on the x-component of the
ion’s velocity at that time point. In writing Eq. (7),
the complex phase factors associated with the initial po-
sitions of the ions have been absorbed into the (now
complex) Rabi frequencies. Further, for large ion crys-
tals, the spatial profile of the EIT lasers over the ex-
tent of the crystal may be important, and therefore
Ω1(2),j ≡ Ω0

1(2) (xj(t), yj(t)) × eik1(2),xxj(0), i.e. the am-

plitude of the Rabi frequency is in general a function of
the instantaneous in-plane position of the rotating ion.

Spontaneous emission from the excited level |e〉 to
the two ground states is accounted for using dissipa-
tion terms written in Lindblad form, i.e. for any
jump operator O, the dissipation term takes the form
D[O]ρ = OρO† − 1

2O
†Oρ− 1

2ρO
†O, where ρ is the den-

sity matrix of the system at hand. Since we are inter-
ested in the effect on the motion along the z-direction,
the dissipation terms must account for the recoil momen-
tum along the z-axis due to spontaneous emission [17].
Therefore, the Lindblad term for ion j, including recoil
associated with spontaneous decay of |e〉 to |gµ〉, is

Dµ,jρ = Γµ

{∫ 1

−1

duNµ(u)σjgµee
−iksczjuρeiksczjuσjegµ

−1

2
σjeeρ−

1

2
ρσjee

}
, (8)

where Γµ is the spontaneous decay rate of |e〉 → |gµ〉,
ksc is the wavevector associated with the spontaneously
emitted photon, u = cos θsc, with θsc the angle between
ksc and the z-axis, and Nµ(u) is the normalized dipole
radiation pattern associated with the transition. Finally,
the master equation for EIT cooling of N ions in a Pen-
ning trap is given by

ρ̇ = −i[HI(t), ρ] +
∑
j,µ

Dµ,jρ, (9)

where HI(t) and Dµ,jρ are as in Eq. (7) and Eq. (8)
respectively.

Lamb-Dicke regime

When the condition 〈(kµ,zzj)2〉1/2 � 1 is satisfied for
every ion, the motion is in the Lamb-Dicke regime [18]
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and the master equation can be expanded in a series ex-
pansion in kµ,zzj [12]. In our setup, the angles ±θ are
such that the z-components kµ,z are (a) not too large
to cause beyond Lamb-Dicke regime dynamics, and (b)
not too small that the cooling is weak. For any wavevec-
tor, it is useful to recast its coupling to the z-motion in
terms of the Lamb-Dicke parameters associated with the
drumhead modes as

kzzj =

N∑
i=1

ηkzn Mjn(bn + b†n), (10)

where ηkzn = kz

√
h̄

2Mωn
is the Lamb-Dicke parameter

[18] for mode n, associated with a wavevector whose z-
component is kz. Expanding the master equation Eq. (9)
up to second-order in the Lamb-Dicke parameters results
in

ρ̇ = L0ρ+ L1ρ+ L2ρ. (11)

Here,

L0ρ= −i[H0(t), ρ] +
∑
µ,j

ΓµD[σjgµe]ρ,

L1ρ= −i[H1, ρ],

L2ρ= −i[H2, ρ] +K2ρ, (12)

with

H0(t) =
∑
n

ωnb
†
nbn +

∑
j,µ

∆µ,j(t)σ
j
gµgµ

+
∑
j,µ

Ωµ,j
2

σjegµ + H.c.,

H1 =
∑
j,n,µ

iλµjnΩµ,j

2
Xnσ

j
egµ + H.c.,

H2 = −
∑
j,n,k,µ

λµjnλ
µ
jkΩµ,j

4
XnXkσ

j
egµ + H.c.,

K2ρ =
∑
j,n,k,µ

Γµ
2
〈u2〉egµλsc

jnλ
sc
jk ×

σjgµe (2XnρXk −XnXkρ− ρXnXk)σjegµ , (13)

where Xn = bn+b†n and λµjn = η
kµ,z
n Mjn, λsc

jn = ηkscn Mjn

are dimensionless electronic-motional coupling strengths.
The quantity 〈u2〉egµ is the variance of u = cos θsc taken
with respect to the dipole radiation patternNegµ(u) asso-
ciated with the |e〉 → |gµ〉 decay. The master equation,
Eq. (11), is the starting point for our analysis of EIT
cooling of ions in the Penning trap.

C. Parameters from the NIST EIT cooling
experiment

In the NIST EIT cooling experiment with 9Be+ ions,
the transverse magnetic field of B = 4.46 T leads to a
splitting of 124 GHz between the 2s2S1/2(mJ = −1/2)

and 2s2S1/2(mJ = +1/2) levels [3], labeled as |g1〉 and
|g2〉 respectively. The |g1〉 ↔ |e〉 transition frequency
is ωg1e/2π ≈ 957 THz. The two EIT lasers, with σ+

and π polarizations are oriented at ±10◦ with respect to
the x-axis and respectively couple the |g1〉 and |g2〉 levels
to the excited level 2p2P3/2(mJ = +1/2), labeled as |e〉.
They are blue detuned with equal detuning ∆0 from their
respective transitions by hundreds of megahertz. These
lasers generate sufficient power to give Rabi frequencies
of tens of megahertz. The beam diameters (≈ 1 mm)
of the EIT lasers are large compared to the diameters
of the ion crystals (≤ 300 µm) so that we can assume
constant laser intensities over the spatial extent of the
crystal. The decay rates out of |e〉 are Γ1/2π ≈ 6 MHz
and Γ2/2π ≈ 12 MHz, with 〈u2〉eg1 = 2/5 and 〈u2〉eg2 =
1/5.

In all the calculations in this paper, we operate at
the expected optimum EIT cooling condition for the
COM mode of a stationary ion [12] given by Ω2

1 + Ω2
2 =

4ωCOM(ωCOM +∆0), and assume equal Rabi frequencies,
i.e. Ω1 = Ω2 = Ωopt, so that

Ωopt(∆
0) =

√
2ωCOM(ωCOM + ∆0), (14)

where we use the value ωCOM/2π = 1.59 MHz. Fur-
ther, we assume the rotation frequency of the crystal is
ωr/2π = 180 kHz.

III. A SINGLE REVOLVING ION

A. Time-varying Doppler shifts

A toy model of a single ion revolving around the trap
center in the x-y plane can shed light on the impact of the
in-plane motion on the cooling of the transverse motion.
We recall that the circular in-plane motion of the ion
causes a sinusoidally modulated Doppler shift, with the
precise form of the modulation detailed in the paragraph
immediately following Eq. (5). For a single ion, we are
able to perform full density matrix computations using
the master equation, Eq. (11).

We set the detuning ∆0/2π ≈ 180 MHz, and operate
with equal Rabi frequencies Ωopt(∆

0) given by Eq. (14).
We assume that a preceding Doppler cooling stage initial-
izes the transverse motion of the ion to a thermal state
with n̄ = 5. Typically, EIT cooling is applied after ini-
tializing the ion(s) in |g1〉 by optical pumping. Figure 3
shows the decrease in the thermal occupation n̄ with time
as the EIT lasers address a single revolving ion, for dif-
ferent distances of the ion from the trap center. For a
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FIG. 3. (color online) Cooling of the transverse motion over
time, for a single ion revolving around the trap center at dif-
ferent radii. The cooling is slower at larger radii because of
time-varying Doppler shifts modulating the detunings of the
EIT lasers as seen by the ion. Inset: The steady-state occupa-
tion also increases with distance from the trap center. Here,
∆0/2π = 180 MHz, Ω1/2π = Ω2/2π = Ωopt(∆

0)/2π ≈ 24
MHz.

detuning∼ 180 MHz, the ion experiences effective red de-
tunings for parts of its trajectory for a radius r >∼ 50 µm.
Consequently, the ion undergoes heating in these regions,
leading to slower cooling and higher final occupancies at
larger radii (see inset of Fig. 3). Therefore, sufficiently
large detunings have to be used, so that ions at the outer
boundary of large crystals still experience an effective
blue detuning of the EIT lasers.

B. Timescale for internal dynamics

An ion located at the trap center experiences no
Doppler shifts, and hence, we could argue that analyt-
ical expressions derived elsewhere [12] for EIT cooling of
a single ion might be valid in such a situation. With
the EIT wavevectors making an angle of ±10◦ with the
x-axis, the Lamb-Dicke parameters are ηk1,z ≈ −ηk2,z ≈
0.066. Combined with the typical Rabi frequencies used
in the experiment, in the range of tens of megahertz, the
wide separation of electronic and motion timescales de-
manded by an adiabatic elimination procedure is not sat-
isfied in our system [12]. Figure 4 shows the disagreement
between the cooling curves obtained with (black dashed
line) and without (red solid line) adiabatic elimination of
the electronic degrees of freedom (DOF) for an ion at the
trap center. The insufficient separation of timescales can
also be seen qualitatively by simultaneously examining
the transient dynamics of the population, in say, |g1〉, on
a common time axis, as shown in Fig. 4.
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FIG. 4. (color online) Cooling curve for an ion at the trap
center that experiences no Doppler shifts. The separation
of the timescales for the electronic and motional degrees of
freedom is not large enough to validate the adiabatic elimi-
nation of the electronic degrees of freedom. The cooling is
therefore much slower than the result predicted from such
an elimination procedure [12]. Here, ∆0/2π = 180 MHz,
Ω1/2π = Ω2/2π = Ωopt(∆

0)/2π ≈ 24 MHz.

IV. EIT COOLING OF MULTIPLE IONS

The NIST Penning trap routinely stores and manipu-
lates tens to hundreds of ions. Since the density matrix,
now consisting of the electronic degrees of freedom of
all the ions and their drumhead modes, scales exponen-
tially in the ion number, full density matrix solutions are
impossible, and we are forced to resort to approximate
techniques.

From the master equation, Eq. (11), we write down
the equations of motion for the means of all the system
operators (first order moments) and the products of op-
erator pairs (second order moments). In general, these
equations will couple to higher order moments, for exam-
ple, means of products of triplets of operators, and so on.
We truncate the hierarchy at second order by neglecting
all cumulants higher than means and covariances, and
close the set of equations by approximating higher order
moments using sums of products of first and second order
moments [19, 20]. As an example, for a product of three
operators this would imply

〈ABC〉 ≈ 〈AB〉〈C〉+〈AC〉〈B〉+〈BC〉〈A〉−2〈A〉〈B〉〈C〉.
(15)

Here 〈. . .〉 denotes the mean value of an operator or
product of operators. We will refer to the equations ob-
tained for the first and second order moments using this
truncation scheme as the Gaussian model (GM), since the
scheme neglects third and higher order cumulants. We
note, however, that we factorize second order moments
involving the electronic degrees of freedom of different
ions of the type 〈σjαβσkγδ〉 as 〈σjαβ〉〈σkγδ〉 for j 6= k. The
equations arising from this cumulant expansion approach
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are detailed in Appendix A. We briefly describe how we
numerically solve these equations in Appendix B.

A. Results from the Gaussian model

We set the detuning ∆0/2π = 360 MHz, which ensures
that the cooling rate for a single revolving ion does not
change appreciably over the spatial extent of the small
crystals we consider here. Figure 5 shows the cooling of
the COM mode for crystals with N = 1, 2, 19 and 37 ions.
For N = 1, 2 we simply take the ion(s) to be revolving at
a distance of 20 µm from the trap center, and diametri-
cally opposite each other in the N = 2 case. In the case of
multi-ion crystals (N > 2), the equilibrium configuration
of the crystal and the mode frequencies and eigenvectors
are solved for following the procedure in Ref. [16]. We
assume that a preceding Doppler cooling stage initial-
izes the COM mode to a thermal state with n̄ = 5. We
choose the initial n̄ of the remaining drumhead modes as-
suming that they are initially in thermal equilibrium with
the COM mode. Qualitatively, the COM mode rapidly
cools to near ground-state occupations within 100 mi-
croseconds. However, the cooling curves for the different
crystals are nearly identical, showing that the net cooling
rate of the COM mode, within the Gaussian framework,
is approximately independent of the number of ions. For
the multi-ion crystals, we observe an initial heating effect
that is also observed experimentally [15]. We attribute
the initial heating to transient electronic transitions until
the electronic state of the ions reaches close to the steady
state, at which point the cooling begins.
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N = 2
N = 19
N = 37

FIG. 5. (color online) Cooling curves for the center-of-mass
(COM) mode for crystals with different ion numbers, calcu-
lated using the Gaussian model (GM), showing rapid near
ground-state cooling within 100 µs. However, the cooling
rates are almost identical for all of these crystals. Here,
∆0/2π = 360 MHz, Ω1/2π = Ω2/2π = Ωopt(∆

0)/2π ≈ 33.9
MHz.

B. Benchmarking the Gaussian Model: Single-ion
results

Since we are able to perform full density matrix (DM)
computations in the single-ion case, we proceed to com-
pare the cooling transients from the GM with the full DM
results. Figure 6 shows the cooling curves from the GM
(black, dashed) and the full DM calculation (red, solid)
for a single revolving ion at r = 0, 20, 40 and 60 µm
from the trap center, with ∆0/2π = 360 MHz. While
both models qualitatively indicate that the cooling rate
is roughly the same at these different radii, the cooling
rate obtained from the GM is quantitatively very differ-
ent from the full DM result. This indicates that keeping
track of only means and covariances is not sufficient to
accurately capture the cooling curve.
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SM
GM

full DM

FIG. 6. (color online) Cooling curve for a single revolving
ion, located at r = 0, 20, 40 and 60 µm from the trap center,
computed using three numerical approaches: (i) Time evolu-
tion of the full density matrix (full DM), (ii) the Gaussian
model (GM) and (iii) the Sampling model (SM) using 2096
trajectories. The cooling curves from the GM do not agree
with the full DM curves. However, sampling the initial noise
systematically (SM) accounts for beyond-Gaussian properties
of the phase-space distribution of the system degrees of free-
dom, and reproduces the full DM curves very well. Here,
∆0/2π = 360 MHz, Ω1/2π = Ω2/2π = Ωopt(∆

0)/2π ≈ 33.9
MHz.

The GM assumes that in the combined phase space
of all the system degrees of freedom (DOF), the joint
(quasi)-probability distribution of these DOF remains
Gaussian at all times. In reality, while the initial distri-
bution is Gaussian, evolution under the subsequent dy-
namics generally distorts the distribution so that it is
no longer Gaussian at later times. A systematic way to
capture this effect is to construct moments by averaging
the evolution of the corresponding phase space variables
(or products of variables) over a large number of tra-
jectories, where the initial conditions of these variables
in each trajectory are chosen randomly from their initial
distribution (see Table I). Such a sampling and averaging
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procedure captures the build-up of non-trivial third and
higher order cumulants that are neglected in the GM.
We note that this approach is in the same spirit as the
Truncated Wigner Approximation (TWA) used in calcu-
lating the dynamics of spin-spin and spin-boson models
[21–24]. Moreover, we track separate phase space vari-
ables corresponding to system operators as well as op-
erator pairs, and evolve these variables using the same
equations of motion as in the GM (Appendix A), but for
many trajectories. We thereby perform beyond mean-
field calculations [24] that capture those contributions to
the covariances between system operators which develop
as a result of the subsequent diffusive-dissipative dynam-
ics. We refer to this method as the Sampling model (SM).
Table I summarizes the implementational differences be-
tween the Gaussian and the beyond-Gaussian Sampling
model.

Model Trajectories Initial condition

Gaussian (GM) 1
〈bn〉(0) = 0,

〈b†nbn〉(0) = n̄n(0)

Sampling (SM) Many
Re{〈bn〉(0)} = Gaus(0,

√
n̄n/2),

Im{〈bn〉(0)} = Gaus(0,
√
n̄n/2),

〈b†nbn(0)〉 = |〈bn〉(0)|2

TABLE I. Implementational differences between the Gaus-
sian and Sampling models. Here Gaus(0, σ) is a Gaussian
distributed random variable with zero mean and standard de-
viation σ, and n̄n are the initial thermal mode occupations.
In the sampling model, the quantity 〈A〉 simply denotes the
value of the respective phase space variable in that trajec-
tory, and is not the mean value of the operator A. Instead,
the mean value of A is given by the average of 〈A〉 over many
trajectories with random initial conditions drawn from the
initial phase space distribution. We note that we only sam-
ple the initial thermal distribution of the normal modes, and
initialize the electronic DOF in the same way as in the GM,
i.e. 〈σjαβ〉 = 1 when α = β = g1.

In Fig. 6 we show the cooling curves from the SM
along with the full DM as well as GM results for the sin-
gle revolving ion. Since the SM involves averaging over
multiple trajectories with randomly drawn initial con-
ditions, the cooling curves are shown as 1-σ confidence
intervals instead of a line plot. The SM cooling curves
agree very well with the full DM result, indicating that
beyond-Gaussian correlations develop during the cooling
process that lower the cooling rate.

C. Results from the Sampling model

The SM predicts that the cooling rate of the COM
mode increases with the number of ions N in the crystal.
In Fig. 7, we plot the cooling curve for the COM mode
for crystals with N = 1, 2, 19 and 37 ions. The cooling
is faster in the N = 2 case than in the single ion case,

and even faster in the 19 and 37 ion crystals. The inset
shows the ratio of the cooling rate RN of an N -ion crys-
tal to the rate R1 for a single ion. With the parameters
used, and for these small crystals, the cooling rate scales
as ∼ N0.3, highlighting that EIT cooling of multiple ions
cannot be explained trivially as the net cooling result-
ing from the individual ions. Rather, the N -dependency
of the cooling rate indicates the intrinsic many-body na-
ture of this problem. We note, however, that for fixed
laser parameters, the adverse effects of the time-varying
Doppler shifts is expected to slow down the cooling en-
hancement with increasing N as ions are added further
from the trap center. Moreover, with different laser pa-
rameters, the scaling with N could also vary. Finally,
the rapid nature of EIT cooling is evident from the time
constant τ ≈ 21 µs for the cooling curve of the 37 ion
crystal.
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FIG. 7. (color online) Cooling curves for the center-of-mass
(COM) mode for crystals with different ion numbers, calcu-
lated using the Sampling model (SM) with 2048 trajectories.
The SM predicts that the cooling rate increases with ion num-
ber N . The cooling curves from the GM (Fig. 5) are also
shown for comparison, where the N -dependency of the cool-
ing rate does not manifest. Inset: Cooling rate of an N -ion
crystal RN relative to the single-ion rate R1 extracted from
the SM (markers). A power-law fit (solid line) shows that the
cooling rate scales as ∼ N0.3 for the parameters used. Here,
∆0/2π = 360 MHz, Ω1/2π = Ω2/2π = Ωopt(∆

0)/2π ≈ 33.9
MHz.

V. COOLING OVER THE FULL BANDWIDTH

The full bandwidth of drumhead modes are typically
cooled to near ground-state occupancies in a single ex-
perimental application of EIT cooling with a fixed set of
parameters. In Fig. 8(a), we show the cooling transients
for all the tranverse modes of a 37-ion crystal, calculated
using the SM. The bandwidth B of the drumhead modes
is B/2π ≈ 185 kHz. All the modes are observed to reach
near ground-state occupations within 100 microseconds.
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FIG. 8. (color online) (a) Cooling curves for all the drumhead
modes of a 37-ion crystal with bandwidth B/2π ≈ 185 kHz,
computed using the SM, showing efficient cooling within 100
µs. Here, ∆0/2π = 360 MHz, Ω1 = Ω2 = Ωopt(∆

0) ≈ 33.9
MHz. (b) GM cooling curves for all the drumhead modes of
a 120-ion crystal with bandwidth B/2π ≈ 376 kHz, showing
near ground-state, steady-state occupations of all the modes
after few hundred microseconds of EIT cooling. Note that
the y-axis is plotted in logscale. Here, ∆0/2π = 400 MHz,
Ω1/2π = Ω2/2π = Ωopt(∆

0)/2π ≈ 35.7 MHz. The same
rotating wall frequency, ωr/2π = 180 kHz was used in both
cases.

The computational complexity of a single trajectory in
the SM scales as N3 with the number of ions N , thereby
making trajectory computations for large crystals (>∼ 60)
untractable. However, the GM and SM will result in the
same steady-state results since they only differ in the ini-
tial conditions, and eventually dissipation leads to the
system of equations losing memory of its initial condi-
tions. Therefore, the GM can be used to study the final
temperatures that result from EIT cooling of large ion
crystals, as shown in Fig. 8(b) for a 120-ion crystal. From
initial occupations in the range n̄ ≈ 5− 7, all the modes
are cooled down to n̄ < 0.1, showing the efficient cooling
over the full bandwidth of drumhead modes, which in this
case is B/2π ≈ 376 kHz. We note that the experimen-
tally observed occupations are expected to be somewhat
higher than the steady-state values attained here because

of the approximate model used in the simulations. Al-
though the GM cooling transients are not completely re-
liable, they nevertheless indicate that a few hundred mi-
croseconds of EIT cooling is sufficient to achieve these
very low occupations.

VI. SENSITIVITY TO LASER ALIGNMENT

In modeling the EIT cooling in Sections III, IV and
V, we have assumed that the lasers are perfectly aligned,
i.e. k2,x = k1,x, so that their difference wavevector is
along the z-axis. In practice, a small misalignment of the
EIT lasers could result in a component of the difference
wavevector along the in-plane x-axis, because k2,x 6= k1,x.
As a result, the detunings of these dressing lasers are now
modulated unequally by Doppler shifts arising from the
large amplitude in-plane rotation of the ion crystal, so
that the instantaneous detunings of the two lasers as seen
by the ion, ∆µ(t) = ∆0

µ − kµ,xvx(t) with µ = 1, 2, are no
longer identical.

We study the effect of such a misalignment by consid-
ering a single ion revolving at different distances r from
the trap center. We introduce a small misalignment δθ

that modifies the perfectly aligned k2 → k
(m)
2 such that,

k
(m)
2,x = k2,x cos δθ + k2,z sin δθ (16)

k
(m)
2,z = k2,z cos δθ − k2,x sin δθ,

where the subscript (m) denotes the misaligned k2 vector.

FIG. 9. (color online) Steady-state occupation as a function
of the misalignment angle δθ for a single ion revolving around
the trap center at different radii. The final occupation is not
very sensitive to small misalignments (δθ ≤ 1◦) of the EIT
wavevectors. Here, ∆0/2π = 400 MHz, Ω1/2π = Ω2/2π =
Ωopt(∆

0)/2π ≈ 35.7 MHz.

Figure 9 shows the final steady-state occupation n̄ of
a single ion revolving around the trap center at different
radii r, as the misalignment angle δθ is varied. We set
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the detuning ∆0/2π = 400 MHz, which ensures that for
r ≤ 110 µm, the revolving ion experiences effective blue
detuning throughout its trajectory. The steady-state n̄
begins to significantly increase only when |δθ| >∼ 1◦, at
which point the plot still indicates n̄ � 1. As r varies
from 25 µm to 75 µm, the sensitivity to δθ also increases
with r. For r = 100 µm, the ion experiences only small
blue detunings for parts of its trajectory, resulting in in-
efficient cooling in these regions even with perfect align-
ment. As a result, the final temperature is not very sen-
sitive to small misalignments such that |δθ| <∼ 0.5◦. How-
ever, the final temperature grows sharply as |δθ| increases
beyond this value.

In the NIST EIT cooling experiment, the misalignment
between the two EIT wavevectors was estimated to be <
0.2◦ [15], ensuring that the cooling is negligibly affected
by the in-plane crystal rotation. We note, however, that
our analysis of the laser misalignment does not consider
the potential adverse effect of the EIT lasers on the in-
plane modes, which in turn could degrade the cooling of
the drumhead modes. Such an analysis might result in a
more stringent restriction on the tolerable range of δθ.

VII. CONCLUSION

Our numerical study shows that EIT cooling is a ro-
bust technique for cooling all the drumhead modes of
two-dimensional ion crystals in Penning traps to near
ground-state occupancies. EIT cooling relies on quan-
tum interference effects for its operation, and prior to our
work, the chances for its success, dependent on delicate
cancellations of absorption amplitudes, in a challenging
setting such as a Penning trap were very uncertain. Mul-
tiple factors could have potentially led to the failure of
EIT cooling, namely, Doppler shifts, insufficient separa-
tion of electronic and motional timescales, as well as si-
multaneous cooling of multiple ions. Our predictions for
the success of EIT cooling have been validated by the
successul experimental demonstration of EIT cooling of
crystals with more than 100 ions in the NIST Penning
trap [15]. Quantitative measurements of the cooling rate
and final occupation of the COM mode, as well as quali-
tative features observed over the full bandwidth of modes
are consistent with the expectations from our numerical
study. These theoretical and experimental results high-
light the robustness of EIT cooling and make it an at-
tractive scheme to cool large chains or arrays of trapped
ions in other settings [25, 26].

In the future, an important aspect to investigate is
the effect of higher-order anharmonic terms in the trap
potential, and more importantly, in the Coulomb inter-
action. These anharmonic terms not only result in addi-
tional coupling of the different drumhead modes to each
other, but also couple these modes to the thermal motion
associated with the in-plane modes. An understanding of
these anharmonic couplings, at least for small ion crys-
tals, will provide great insight into whether EIT cooling

of the drumhead modes can also indirectly cool the in-
plane modes, and also conversely, how the temperature
of the in-plane modes could limit the achievable drum-
head mode temperatures as well as cooling rates. Finally,
while we have numerically observed and also found ex-
perimental support for the enhancement in the cooling
rate with the number of ions, an intuitive explanation
for this surprising feature will greatly illuminate the role
played by many-body physics in the cooling dynamics.
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Appendix A: Equations of motion for first and
second order moments

We classify the moments into three categories: inter-
nal, external and hybrid moments. These are listed in
Table II. For brevity, here we write down only the equa-
tions of motion (EOM) for the moments not marked with
a # in Table II, from which the remaining EOM can be
obtained by exchanging g1 ↔ g2.

Type Moments

Internal
〈σjg1g1〉, 〈σ

j
g1g2〉, 〈σ

j
g1e〉,

〈σjg2g2〉
#, 〈σjg2e〉

#

External 〈bn〉, 〈bnbk〉, 〈b†nbk〉

Hybrid
〈bnσjg1g1〉, 〈bnσ

j
g1g2〉, 〈bnσ

j
g1e〉

〈bnσjg2g1〉
#, 〈bnσjg2g2〉

#, 〈bnσjg2e〉
#

〈bnσjeg1〉, 〈bnσ
j
eg2〉

#

TABLE II. List of moments classified according to the na-
ture of the operators involved. The equations for the mo-
ments marked with a # can be derived trivially by exchang-
ing g1 ↔ g2 in the appropriate equations of motion for the
other moments.
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In Table III, we introduce a set of “partial sums” that
not only simplify the notation, but also speed up the
computation time by identifying recurring summations
and evaluating them only once per time step.

Symbol Definition

PXµ,j
∑
m λ

µ
jm〈Xm〉

PXXµ,j
∑
l,m λ

µ
jlλ

µ
jm〈XlXm〉

PbXµ,jn
∑
m λ

µ
jm〈bnXm〉

PdXµ,jn
∑
m λ

µ
jm〈b

†
nXm〉

PXσαµ,j

∑
m λ

µ
jm〈Xmσ

j
α〉

PXσαµ,[qj]

∑
m λ

µ
qm〈Xmσjα〉

TABLE III. Definition of partial sums to simplify notation
and speed up computation.

1. Internal moments

d

dt
〈σjg1g1〉 = − i

2

(
Ω∗1,j〈σjg1e〉 − c.c.

)
+ Γ1

(
1− 〈σjg1g1〉 − 〈σjg2g2〉

)
− 1

2

(
Ω∗1,jP

Xσg1e
1,j + c.c.

)
+
i

4

{
Ω∗1,j

(
PXX1,j 〈σjg1e〉+ 2PX1,jP

Xσg1e
1,j − 2(PX1,j)2〈σjg1e〉

)
− c.c.

}
(A1)

d

dt
〈σjg1g2〉 = i (∆1,j(t)−∆2,j(t)) 〈σjg1g2〉+

iΩ1,j

2
〈σjg2e〉∗ −

iΩ∗2,j
2
〈σjg1e〉 −

Ω1,j

2
PXσeg21,j −

Ω∗2,j
2
PXσg1e2,j

− iΩ1,j

4

(
PXX1,j 〈σjg2e〉∗ + 2PX1,jP

Xσeg2
1,j − 2(PX1,j)2〈σjg2e〉∗

)
+
iΩ∗2,j

4

(
PXX2,j 〈σjg1e〉+ 2PX2,jP

Xσg1e
2,j − 2(PX2,j)2〈σjg1e〉

)
(A2)

d

dt
〈σjg1e〉 = −

(
Γ

2
− i∆1,j(t)

)
〈σjg1e〉 −

iΩ1,j

2

(
2〈σjg1g1〉+ 〈σjg2g2〉 − 1

)
− iΩ2,j

2
〈σjg1g2〉

+
Ω1,j

2

(
2PXσg1g11,j + PXσg2g21,j − PX1,j

)
+

Ω2,j

2
PXσg1g22,j

+
iΩ1,j

4

(
PXX1,j (2〈σjg1g1〉+ 〈σjg2g2〉 − 1) + 2PX1,j(2P

Xσg1g1
1,j + PXσg2g21,j − PX1,j)− 2(PX1,j)2(2〈σjg1g1〉+ 〈σjg2g2〉 − 1)

)
+
iΩ2,j

4

(
PXX2,j 〈σjg1g2〉+ 2PX2,jP

Xσg1g2
2,j − 2(PX1,j)2〈σjg1g2〉

)
(A3)

2. External moments

In the following equations, the index µ takes on values 1, 2 to account for the two EIT lasers.

d

dt
〈bn〉 = −iωn〈bn〉 −

∑
µ,j

λµjn
2

(
Ω∗µ,j〈σjgµe〉 − c.c.

)
+
∑
µ,j

iλµj,n
2

(
Ω∗µ,jP

Xσgµe
µ,j + c.c.

)
(A4)

d

dt
〈bnbk〉 = −i(ωn + ωk)〈bnbk〉 −

∑
µ,j

Γµ〈u2〉egµλsc
µ,jnλ

sc
µ,jk(1− 〈σjg1g1〉 − 〈σjg2g2〉)

−
∑
µ,j

λµj,n
2

(
Ω∗µ,j〈bkσjgµe〉 − Ωµ,j〈bkσjegµ〉

)
+ n↔ k

+
∑
µ,j

λµj,n
2

(
Ω∗µ,j

{
(PdXµ,jk)∗〈σjgµe〉+ PXµ,j〈bkσjgµe〉+ PXσgµeµ,j 〈bk〉 − 2PXµ,j〈σjgµe〉〈bk〉

}
+ Ωµ,j

{
gµe→ egµ

})
+ n↔ k

(A5)
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d

dt
〈b†nbk〉 = −i(ωk − ωn)〈b†nbk〉+

∑
µ,j

Γµ〈u2〉egµλsc
µ,jnλ

sc
µ,jk(1− 〈σjg1g1〉 − 〈σjg2g2〉)

+
∑
µ,j

λµj,n
2

(
Ω∗µ,j〈bkσjgµe〉 − Ωµ,j〈bkσjegµ〉

)
−
∑
µ,j

λµj,k
2

(
Ω∗µ,j〈bnσjegµ〉∗ − Ωµ,j〈bnσjgµe〉∗

)
−
∑
µ,j

λµj,n
2

(
Ω∗µ,j

{
(PdXµ,jk)∗〈σjgµe〉+ PXµ,j〈bkσjgµe〉+ PXσgµeµ,j 〈bk〉 − 2PXµ,j〈σjgµe〉〈bk〉

}
+ Ωµ,j

{
gµe→ egµ

})
+
∑
µ,j

λµj,k
2

(
Ω∗µ,j

{
PdXµ,jn〈σjgµe〉+ PXµ,j〈bnσjegµ〉∗ + PXσgµeµ,j 〈bn〉∗ − 2PXµ,j〈σjgµe〉〈bn〉∗

}
+ Ωµ,j

{
gµe→ egµ

})
(A6)

3. Hybrid moments

Table IV introduces some additional partial sums, now
over the ions instead of the modes, that will further aid
in compact presentation and faster computation by iden-
tification of recurring summations.

Symbol Definition

QL1
jn −

∑
µ,q 6=j

λµq,n
2

(
Ω∗µ,q〈σqgµe〉 − c.c.

)
QL2(1),σα
jn

∑
µ,q 6=j

iλµqn
2
PXσαµ,[qj]

(
Ω∗µ,q〈σqgµe〉+ c.c.

)
QL2(2)
jn

∑
µ,q 6=j

iλµqn
2

(
Ω∗µ,qP

Xσgµe
µ,q + c.c.

)
QL2(3)
jn

∑
µ,q 6=j

iλµqn
2
PXµ,q

(
Ω∗µ,q〈σqgµe〉+ c.c.

)
TABLE IV. Additional partial sums, over the ions rather than
modes, to simplify notation and speed up computation.

d

dt
〈bnσjg1g1〉 = −iωn〈bnσjg1g1〉 −

i

2

(
Ω∗1,j〈bnσjg1e〉 − Ω1,j〈bnσjeg1〉

)
+ Γ1

(
〈bn〉 − 〈bnσjg1g1〉 − 〈bnσjg2g2〉

)
−

Ω∗1,jλ
1
j,n

2
〈σjg1e〉

−1

2

{
Ω∗1,j

(
(PdX1,jn)∗〈σjg1e〉+ PX1,j〈bnσjg1e〉+ P

Xσg1e
1,j 〈bn〉 − 2PX1,j〈bn〉〈σjg1e〉

)
+ Ω1,j

(
g1e→ eg1

)}
+QL1

jn 〈σjg1g1〉

+
iΩ∗1,jλ

1
jn

2
PXσg1e1,j +

i

4

{
Ω∗1,j

(
PXX1,j 〈bnσjg1e〉+ 2(PdX1,jn)∗PXσg1e1,j − 2(PX1,j)2〈bn〉〈σjg1e〉

)
− Ω1,j

(
g1e→ eg1

)}
+QL2(1),σg1g1

jn +
(
QL2(2)
jn −QL2(3)

jn

)
〈σjg1g1〉 (A7)

d

dt
〈bnσjg1g2〉 = i (∆1,j(t)−∆2,j(t)− ωn) 〈bnσjg1g2〉+

iΩ1,j

2
〈bnσjeg2〉 −

iΩ∗2,j
2
〈bnσjg1e〉 −

Ω∗2,jλ
2
jn

2
〈σjg1e〉

−Ω1,j

2

(
(PdX1,jn)∗〈σjg2e〉∗ + PX1,j〈bnσjeg2〉+ P

Xσeg2
1,j 〈bn〉 − 2PX1,j〈bn〉〈σjg2e〉∗

)
−

Ω∗2,j
2

(
(PdX2,jn)∗〈σjg1e〉+ PX2,j〈bnσjg1e〉+ P

Xσg1e
2,j 〈bn〉 − 2PX2,j〈bn〉〈σjg1e〉

)
+QL1

jn 〈σjg1g2〉

+
iΩ∗2,jλ

2
jn

2
PXσg1e2,j − iΩ1,j

4

(
PXX1,j 〈bnσjeg2〉+ 2(PdX1,jn)∗PXσeg21,j − 2(PX1,j)2〈bn〉〈σjg2e〉∗

)
+
iΩ2,j

4

(
PXX2,j 〈bnσjg1e〉+ 2(PdX2,jn)∗PXσg1e2,j − 2(PX2,j)2〈bn〉〈σjg1e〉

)
+QL2(1),σg1g2

jn +
(
QL2(2)
jn −QL2(3)

jn

)
〈σjg1g2〉 (A8)
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d

dt
〈bnσjg1e〉 = −

(
Γ

2
− i (∆1,j(t)− ωn)

)
〈bnσjg1e〉 −

iΩ1,j

2

(
2〈bnσjg1g1〉+ 〈bnσjg2g2〉 − 〈bn〉

)
− iΩ2,j

2
〈bnσjg1g2〉

+
Ω1,j

2

{
2
(

(PdX1,jn)∗〈σjg1g1〉∗ + PX1,j〈bnσjg1g1〉+ P
Xσg1g1
1,j 〈bn〉 − 2PX1,j〈bn〉〈σjg1g1〉∗

)
+
(
g1g1 → g2g2

)
− (PdX1,jn)∗

}
+

Ω1,jλ
1
jn

2
〈σjg1g1〉+

Ω2,jλ
2
jn

2
〈σjg1g2〉+

Ω2,j

2

(
(PdX2,jn)∗〈σjg1g2〉+ PX2,j〈bnσjg1g2〉+ P

Xσg1g2
2,j 〈bn〉 − 2PX2,j〈bn〉〈σjg1g2〉

)
+QL1

jn 〈σjg1e〉

+
iΩ1,j

4

{
2
(
PXX1,j 〈bnσjg1g1〉+ 2(PdX1,jn)∗PXσg1g11,j − 2(PX1,j)2〈bn〉〈σjg1g1〉

)
+
(
g1g1 → g2g2

)
−
(
PXX1,j 〈bn〉+ 2PdX1,jn)∗PX1,j − 2(PX1,j)2〈bn〉

)}
+
iΩ1,jλ

1
jn

2
PXσg1g11,j +

iΩ2,jλ
2
jn

2
PXσg1g22,j

+
iΩ2,j

4

(
PXX2,j 〈bnσjg1g2〉+ 2(PdX2,jn)∗PXσg1g22,j − 2(PX2,j)2〈bn〉〈σjg1g2〉

)
+QL2(1),σg1e

jn +
(
QL2(2)
jn −QL2(3)

jn

)
〈σjg1e〉 (A9)

d

dt
〈bnσjeg1〉 = −

(
Γ

2
+ i (∆1,j(t) + ωn)

)
〈bnσjeg1〉+

iΩ∗1,j
2

(
2〈bnσjg1g1〉+ 〈bnσjg2g2〉 − 〈bn〉

)
+
iΩ∗2,j

2
〈bnσjg2g1〉

+
Ω∗1,j

2

{
2
(

(PdX1,jn)∗〈σjg1g1〉∗ + PX1,j〈bnσjg1g1〉+ P
Xσg1g1
1,j 〈bn〉 − 2PX1,j〈bn〉〈σjg1g1〉∗

)
+
(
g1g1 → g2g2

)
− (PdX1,jn)∗

}
+

Ω∗1,jλ
1
jn

2

(
〈σjg1g1〉+ 〈σjg2g2〉 − 1

)
+

Ω∗2,j
2

(
(PdX2,jn)∗〈σjg1g2〉∗ + PX2,j〈bnσjg2g1〉+ P

Xσg2g1
2,j 〈bn〉 − 2PX2,j〈bn〉〈σjg1g2〉∗

)
+QL1

jn 〈σjg1e〉∗

− iΩ1,j

4

{
2
(
PXX1,j 〈bnσjg1g1〉+ 2(PdX1,jn)∗PXσg1g11,j − 2(PX1,j)2〈bn〉〈σjg1g1〉

)
+
(
g1g1 → g2g2

)
−
(
PXX1,j 〈bn〉+ 2PdX1,jn)∗PX1,j − 2(PX1,j)2〈bn〉

)}
−
iΩ∗1,jλ

1
jn

2

(
PXσg1g11,j + PXσg2g21,j − PX1,j

)
−
iΩ∗2,j

4

(
PXX2,j 〈bnσjg2g1〉+ 2(PdX2,jn)∗PXσg2g12,j − 2(PX2,j)2〈bn〉〈σjg1g2〉∗

)
+QL2(1),σeg1

jn +
(
QL2(2)
jn −QL2(3)

jn

)
〈σjg1e〉∗ (A10)

Appendix B: Numerical solution of Gaussian and
Sampling Models

We note that the Gaussian and Sampling models use
the same equations, but only differ in the initial condi-
tions. We have written a C++ program to numerically
evolve the dynamical equations derived in Appendix A.
We extensively employ matrix and vector data structures
from Eigen [29], a C++ template library, to store the
first and second order moments as well as parameters
related to the crystal configuration, normal modes and
electronic-motional coupling strengths. We use a ran-
dom number generator from the GNU Scientific Library
(GSL) [30] to sample the initial conditions in the Sam-
pling Model (SM).

We use a simple second-order explicit Runge-Kutta
(RK2) method to numerically integrate our dynamical

equations. As we mention in Appendix A, to speed up
the computation, we identify recurring summations and
compute these ‘partial sums’ only once per time step. In
addition, in the GM, we use openMP [31] to parallelize
the computation of the right-hand-side of the RK2 equa-
tions at each time step. In the case of the SM, we find
it more convenient to simply parallelize the different tra-
jectories, again with openMP, with different initial con-
ditions for each trajectory.

The computational complexity of the GM, or equiva-
lently, a single trajectory in the SM, scales as N3 with
the number of ions. We are able to run GM computations
with ∼ 70 ions in a few hours, using 8 parallel threads on
a 4.2 GHz Quad Core Intel(R) i7 processor. For larger ion
numbers, and especially for the SM computations even
with few tens of ions, we employ several tens to more
than a hundred cores on the JILA Terra cluster. These
latter computations can take up to 3-4 days.
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