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Jahn and Teller used degenerate perturbation theory to prove that open shell molecules with
symmetry Jahn-Teller distort. In that vein, we have developed a perturbative approach to comput-
ing Jahn-Teller distortions in Kohn-Sham density functional theory, starting from a symmetrized
molecule with an electronic shell closed by fractional occupation numbers. The resulting highly
symmetric state is an energy extremum but not necessarily a minimum. Using second-order per-
turbation theory, we find the changes in geometry that occur when the symmetry of the electron
density is broken to form a state with integer occupation numbers. This methodology allows us to
retain many of the computational benefits of working in higher symmetry. As a demonstration, we
solve the resulting equations for ten electrons in a superatom-like harmonic oscillator potential.

I. INTRODUCTION

Jahn and Teller showed that, except for linear
molecules, any open shell molecule with symmetry will
distort into a lower symmetry [1]. While these distortions
are typically small, they play an important role in molec-
ular and material properties. Jahn-Teller (JT) distor-
tions affect the spacing of orbital eigenvalues, magnetism
[2, 3], optical properties [4, 5], and ligand exchange rates
[6], and can also play a role in high-temperature super-
conductivity [7–9].
While Jahn and Teller’s original proof used degen-

erate perturbation theory (PT) to find the first-order
energy associated with symmetry breaking nuclear dis-
placements, no such perturbative description of the JT
effect has been developed for Kohn-Sham (KS) [10] den-
sity functional theory (DFT) [11]. The fact that such a
method has not previously been formalized is likely in
part because degenerate PT for KS DFT was only re-
cently fully developed [12–14]. However, a PT approach
for KS DFT would both make a close connection with the
original work of Jahn and Teller and allow higher symme-
try to be used in molecular geometry optimizations and
self-consistent field (SCF) calculations, vastly improving
their computational efficiency.
The challenge in translating a perturbative descrip-

tion of the JT effect to KS DFT stems from the nonlin-
ear Coulomb and exchange-correlation (XC) potentials,
which break the symmetry of the KS potential unless the
electron density is totally symmetric under the molecule’s
point group. In an open shell molecule, the electron den-
sity is not totally symmetric, but it can be symmetrized
by using fractional occupation numbers, which also sta-
bilizes the symmetric geometry.
By Janak’s theorem [15], such fractionally occupied

states are energy extrema, because the first derivative of
energy as electrons are moved from one orbital to another
is equal to the difference of their eigenvalues. However,
the second derivative of energy is typically not zero, and
in prior work, we have shown that fractionally-occupied
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solutions can be energy saddle points [13, 14]. If this
is the case, PT can be used to shift the electrons into
a configuration that lowers the energy. This breaks the
symmetry of the electron density, and the nuclei respond
by breaking the symmetry of the external potential. On
the other hand, even if the fractionally occupied state is
an energy minimum, moving to an integer occupied state
may be desirable for other reasons [16–18].

In this framework, JT distortions appear at second or-
der in degenerate PT as displacements that keep the ge-
ometry optimized as the occupation numbers change. We
find that in some ways, the JT problem behaves in the
reverse manner of a typical perturbation theory prob-
lem. While typically, the perturbing potential selects a
particular basis from linear combinations of degenerate
orbitals, here, the initial basis of degenerate orbitals picks
out particular nuclear displacements from a symmetry-
equivalent set.

In Sec. II, we begin with background on KS DFT, frac-
tional occupation numbers, and geometry optimizations,
then develop our main equation for calculating JT dis-
tortions. In Sec. III, we demonstrate how this equation is
simplified by symmetry. In Sec. IV, we apply our equa-
tions to a toy model reminiscent of the jellium super-
atom model of metal clusters [19] including five fraction-
ally occupied d states that are degenerate due to spheri-
cal symmetry and a fractionally occupied s state that is
“accidentally” degenerate due to a conserved symmetric
tensor [20]. Conclusions follow in Sec. V.

II. DERIVATION OF THE METHOD

The total energy of a molecule, E, can be written as a
sum of the electronic energy, Ee, and the nuclear-nuclear
interaction energy, En. In KS DFT, Ee is a functional of
the electron density, ρ, so that

E[ρ] = Ee[ρ] + En. (1)

En is a function of the nuclear charges an positions, which
we denote ZI and RI . The vector RI has components
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Rα
I , where α can be x, y, or z. We can then write

En =
1

2

∑

I 6=J

ZIZJ

|RI −RJ |
. (2)

Likewise, the nuclear potential is

V (r) =
∑

I

ZI

|r−RI |
. (3)

The electron density in KS DFT is built from noninter-
acting molecular orbitals, φi. Janak introduced orbital
occupation numbers, ni, where where 0 ≤ ni ≤ 1 [15], so
that the electron density is given by

ρ(r) =
∑

i

niφ
∗
i (r)φi(r), (4)

and the electronic energy becomes

Ee[ρ] =
∑

i

ni〈φi| −
1

2
∇2 − V (r)|φi〉+ EKS [ρ], (5)

where EKS [ρ], is the (direct) Coulomb plus exchange-
correlation energy as a functional of ρ.
The condition that Ee is stationary with respect to the

orbitals leads to the KS equation

HKS|φi〉 = ǫi|φi〉 (6)

HKS = −1

2
∇2 − V (r) + νks(r), (7)

where νks is the combined Coulomb and XC potential,
which is the functional derivative of EKS , and ǫi, the
orbital eigenvalue, is a Lagrange multiplier that enforces
orthonormality.
Whereas in standard quantum mechanics, symmetries

of the external potential create degeneracy in the Hamil-
tonian, the nonlinear Coulomb and XC potentials of stan-
dard density functionals only assign HKS a particular
symmetry if it is present in both the external potential
and the electron density.
If the molecule is closed-shell, meaning that all orbitals

corresponding to any given irreducible representation of
the symmetry group (irrep) are fully occupied, the elec-
tron density has the same symmetry as V (r), and HKS

has the same degeneracies as the true Hamiltonian. Us-
ing fractional occupation numbers, it is possible to turn
an open shell system into one that is quasi-closed by
equally dividing the available electrons between orbitals
within the shell.
The advantage of a closed or quasi-closed shell is that

symmetry can be exploited by solving the SCF equations
in a basis of symmetry adapted orbitals and optimizing
the geometry in symmetry adapted coordinates. The ge-
ometry is optimized when the total energy is stationary
with respect to nuclear coordinates, so that

0 =
∂E

∂Rα
A

= −
∑

i

ni〈φi|
∂V (r)

∂Rα
A

|φi〉+
∂En

∂Rα
A

. (8)

In closed-shell molecules, the electron density is to-
tally symmetric, and breaking the nuclear symmetry
along any given direction must be energetically equiva-
lent to breaking it along any other direction related by a
group transformation. Therefore, a closed-shell molecule
does not Jahn-Teller distort. If the shell is artificially
closed by fractional occupation numbers, finding the true,
Jahn-Teller distorted geometry requires transforming the
quasi-closed shell solution into an open shell solution. We
will do this by relating the changes in a molecule’s geom-
etry to changes in its orbital occupation numbers.

A. Maintaining an optimized geometry

According to Janak’s theorem [15], the derivative of
energy with respect to an orbital occupation number is
equal to the orbital’s eigenvalue. However, if the nuclear
positions are allowed to move as a function of the ni, the
full derivative of E is

∂E

∂ni
= ǫi −

∑

Aα





∑

j

nj〈φj |
∂V (r)

∂Rα
A

|φj〉 −
∂En

∂Rα
A





∂Rα
A

∂ni
.

(9)

By Eq. (8), the term in parenthesis is equal to zero at a
stationary point of geometry, but in general, it will not
remain so if the occupation numbers are changed. If we
wish to remain at a stationary point as the occupation
numbers are changed, we must hold the term in paren-
thesis equal to zero, which we can do by allowing the
nuclear coordinates to move. To accomplish this, we set
the derivative of the term in parenthesis with respect to
occupation to zero, yielding the equation

−〈φj |
∂V (r)

∂Rα
A

|φj〉 − 2Re
∑

k

nk〈φk|
∂V (r)

∂Rα
A

|∂φk

∂nj
〉+

∑

Bβ

[

−
∑

k

nk

(

2Re〈φk|
∂V (r)

∂Rα
A

| ∂φk

∂Rβ
B

〉−

〈φk|
∂2V (r)

∂Rα
A∂R

β
B

|φk〉
)

+
∂2En

∂Rα
AR

β
B

]

∂Rβ
B

∂nj
= 0.

(10)

This is a matrix equation in the indices A and B, having
dimension equal to the number of nuclear coordinates.
The matrix enclosed in square brackets is the Hessian of
the electron-electron interaction energy with respect to

the nuclear coordinates, Hαβ
AB .

Using the definition of ρ(r) from Eq. (4), we can make
the substitutions

∂ρ(r)

∂nj
≡ φ∗

j (r)φj(r) + 2Re
∑

k

φ∗
k(r)

∂φk(r)

∂nj
(11)

∂ρ(r)

∂Rβ
B

≡ 2Re
∑

k

nkφ
∗
k(r)

∂φ∗
k(r)

∂Rβ
B

, (12)
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so that the Hessian becomes

Hαβ
AB = −

∫

∂V (r)

∂Rα
A

∂ρ(r)

∂Rβ
B

+
∂2V (r)

∂Rα
A∂R

β
B

ρ(r)dr +
∂2En

∂Rα
A∂R

β
B

,

(13)

and we can invert it to solve Eq. (10), giving us

∂Rβ
B

∂nj
=
∑

Aα

[

H−1
]αβ

AB

∫

∂ρ(r)

∂nj

∂V (r)

∂Rα
A

dr, (14)

where H−1 is the matrix inverse of H.
To obtain the derivatives of ρ(r) in Eqs. (13) and (14),

we can use PT. In PT, a function or operator f is ex-
panded order-by-order in terms of some parameter, λ, in
the manner f = f (0)+λf (1)+λ2f (2)+ . . . The first-order
quantity f (1) is the first derivative of f with respect to
λ. If we choose the occupation number nj as our per-
turbation parameter, then for the nuclear potential, we
have

V (1) ≡
∑

Aα

∂V (r)

∂Rα
A

∂Rα
A

∂nj
. (15)

For the density, the chain rule tells us,

ρ(1)(r) ≡
∑

Aα

∂ρ(r)

∂Rα
A

∂Rα
A

∂nj
+

∂ρ(r)

∂nj
, (16)

and again, from the chain rule, the first-derivative of the
Coulomb plus XC potential is

ν
(1)
ks (r) ≡

∫

δνks(r)

δρ(r′)
ρ(1)(r′)dr′. (17)

Because the systems we are interested in are degener-
ate, the first-order density has two parts: one from the
standard occupied-virtual mixing of coupled-perturbed
Kohn-Sham [21–23], and one from mixing of orbitals
within the degenerate space. At first-order, PT says

〈φi|V (1)(r) + ν
(1)
ks (r)|φk〉 = (ǫk − ǫi)〈φi|φ(1)

k 〉+ ǫ
(1)
i δik,

(18)
which implies that the off-diagonal matrix elements of
the first-order perturbing potential vanish when ǫi = ǫk.

Substituting in the definitions of ν
(1)
ks (r) and V (1)(r),

we get

〈φi|
∑

Aα

(

∂V (r)

∂Rα
A

+

∫

δνks(r)

δρ(r′)

∂ρ(r′)

∂Rα
A

dr′
)

∂Rα
A

∂nj

+

∫

δνks(r)

δρ(r′)

∂ρ(r′)

∂nj
dr′|φk〉 = ǫ

(1)
i δik,

(19)

for any degenerate φi and φj . Equations (14) and (19)
must be solved simultaneously, along with the coupled-
perturbed Kohn-Sham equations.

B. Removing off diagonal elements between

accidentally degenerate orbitals

In degenerate PT, the off-diagonal elements of the per-
turbing potential between degenerate orbitals must be
eliminated. In a previous work [14], we showed that these
matrix elements behave differently in KS DFT when they
are between orbitals from the same irrep than when they
are between orbitals from different irreps. Because de-
generate orbitals from different irreps tend to have dif-
ferent occupation numbers, they cannot be eliminated by
a zeroth-order rotation within the degenerate subspace.
Doing so would change the electron density, destroying
the SCF solution. Instead, they must be eliminated with
a first-order unitary transformation.
Finding this transformation does not involve symmetry

considerations. Let us begin by explicitly separating out
∂ρ/∂nj and ∂ρ/∂Rα

Ainto two parts each. First, we have

U
j(1) and U

A(1), which involve first-order unitary trans-
formations between degenerate orbitals. Second, we have
the remainder, which we write asDρ/Dnj andDρ/DRα

A.
We can then write the derivatives of the density as

∂ρ(r)

∂nj
=

Dρ(r)

Dnj
+ 2Re

∑

kl

nmU
j(1)
lm φ∗

l (r)φm(r) (20)

∂ρ(r)

∂Rα
A

=
Dρ(r)

DRα
A

+ 2Re
∑

kl

nmU
Aα(1)
lm φ∗

l (r)φm(r). (21)

With this definition, and using the anti-hermitian prop-
erties of a first-order unitary transformation, we find that
Eq. (19) separates into independent equations for UA(1)

and U
j(1),

〈φi|
∂V (r)

∂Rα
A

+

∫

δνks(r)

δρ(r′)

Dρ(r′)

DRα
A

dr′|φk〉

= −Re
∑

lm

U
Aα(1)
lm (nm − nl)

×〈φi|
∫

δνks(r)

δρ(r′)
φ∗
l (r

′)φm(r′)dr′|φk〉,

(22)

〈φi|
∫

δνks(r)

δρ(r′)

Dρ(r′)

Dnj
|φk〉 = −Re

∑

lm

U
j(1)
lm (nm − nl)

×〈φi|
∫

δνks(r)

δρ(r′)
φ∗
l (r

′)φm(r′)dr′|φk〉.
(23)

The solution to Eqs. (22) and (23) can be found by in-
verting matrices with the composite indices lm and ik,
having dimension equal to the number of accidentally
degenerate orbitals squared. In essence, we are simply

setting U
j(1)
lm and U

A(1)
lm to whatever values we need to

remove unwanted matrix elements.
In addition to removing off-diagonal elements between

accidentally degenerate orbitals, we must ensure that we
do not introduce new off-diagonal elements when φi and
φk are from the same irrep. We can do this by using a
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zeroth-order unitary transformation

〈φi|U(0)†

∫

δνks(r)

δρ(r′)
φ∗
l (r

′)φm(r′)dr′U(0)|φk〉 = Ciδij ,

(24)
where Ci is some constant.
This transformation only can either be thought of as

acting on the bra and ket 〈φi| and |φk〉, or on φ∗
l and

φm and only mixes orbitals from within an irrep. If we
allow it to act on φ∗

l and φm, we can absorb it into the
first-order unitary transformations, so that

U
Aα(1)
lm →

∑

ab

U
(0)∗
al U

Aα(1)
ab U

(0)
bm (25)

U
j(1)
lm →

∑

ab

U
(0)∗
al U

j(1)
ab U

(0)
bm, (26)

which is simply the rule for a coordinate transformation
of matrices. Finding U

A(1) and U
j(1) then becomes a

two-step process: first, find a unitary transformation that
diagonalizes φl∗φm within each irrep. Second, solve equa-
tions (22) and (23) and transform these matrices using
the first unitary transformation.

III. SIMPLIFICATIONS FROM SYMMETRY

A. Symmetry adapted coordinates

The use of symmetry adapted nuclear coordinates and
orbitals greatly simplifies the equations we have devel-
oped. We can begin by noting that symmetry adapted
nuclear coordinates diagonalize the Hessian of the total
energy with respect to nuclear displacements. This has
the effect of decoupling the coordinates in Eq. (14), turn-
ing it into a series of independent scalar equations.
It can be shown that the Hessian is diagonal in this

basis by expanding the molecule’s energy to second-order
in nuclear coordinates to get

E ≈ E(0) +
∑

Aα

∂E

∂Rα
A

δRβ
B +

1

2

∑

AαBβ

∂2E

∂Rα
A∂R

β
B

δRα
AδR

β
B

= E(0) +
∑

Aα

∂E

∂Rα
A

δRα
A +

1

2

∑

AαBβ

Hαβ
ABδR

α
AδR

β
B.

(27)

Because the electron density has the same symmetry as
the nuclei, E is invariant under a group operation on the
nuclei. Therefore, each term in its Taylor series must be
invariant under a group operation as well. This implies
that the eigenvalues of H are equal within each irrep, and
it follows that H is diagonalized by symmetry-adapted
coordinates.
We will refer to the symmetry adapted nuclear coor-

dinates with the convention Sm
tγ , where the greek index

(γ in this case) runs over irreps, the index t distinguishes
different sets of coordinates that transform as γ, and m
picks out a specific element of the representation.

Likewise, we will refer to symmetry adapted molecular
orbitals as φm

sγ , where again, s distinguishes different sets
of orbitals that transform as γ (e.g. 2p and 3p orbitals,
which cannot be group-theoretically distinguished). As
with the nuclear coordinates, the symmetry adapted or-
bitals can be produced from a unitary transformation on
the original orbitals. In this notation, Eq. (14) becomes

∂Sl
tγ

∂nm
uσ

=
1

Htγ

∫

∂ρ(r)

∂nm
uσ

∂V (r)

∂Sl
tγ

dr, (28)

where we have now used only one index for H because it
is diagonal. Because the eigenvalues of the Hessian are
equal within each irrep, we have additionally removed
the superscript m. This will become important in the
section below, because we will diagonalize V (1) by mixing
nuclear coordinates from within an irrep, which leaves the
Hessian unchanged.

B. Diagonalizing the nuclear potential

Symmetry also simplifies the diagonalization of the
perturbing potential within the degenerate subspace for
Eq. (19). Typically, this would be done by applying a uni-
tary transformation that mixes the degenerate orbitals
[24]. However, in this case, the perturbing potential is un-
known because it depends on the nuclear displacements
given by ∂Sl

tγ/∂nj from Eq. (14). Further complicating
matters, the perturbing Coulomb and XC potentials de-
pend on the first-order orbitals, which are also unknown
until the perturbation equations are solved.
To find a remedy for this, we will begin by looking

at only the perturbing nuclear potential. Later, we will
see that once it is diagonalized, this will automatically
diagonalize Coulomb and XC potentials as well, but for
the moment, we will simply ignore them.
We start by noting that there is some unitary transfor-

mationU that diagonalizes the perturbing nuclear poten-
tial within a given irrep. This is done by rotating orbitals
from within that iirrep into one another to create a new,
equivalent basis.
Next, take the expectation value of an operator, Om

α ,
belonging to an iirrep α, in this basis. Because O

m
α be-

longs to an irreducible representation of the symmetry
group, like U, it does not mix orbitals from different ir-
reps. Since neither U nor Om

α mix orbitals from different
irreps, we can combine them into a single operator that
also belongs to α. In other words,

〈φl
tγ |U†

O
l
αU|φn

uβ〉 = 〈φl
tγ |
(

U
†
O

m
α U

)

α
|φn

uβ〉. (29)

O
′m
α =

(

U
†
O

m
α U

)

α
(30)

Because this new operator also belongs to α, it can
be written as a linear combination of operators from the
original representation of α as

O
′m
α =

∑

n

U
mn
α O

n
α (31)
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Now we apply this result to the nuclear perturbing po-
tential, ∂V/∂Sj

uβ , which is an operator that transforms
according to the irreducible representation β of the sym-
metry group. Again, because the unitary transformation
we applied to diagonalize it does not mix irreps, we can
write it as the coordinate transformation

∂V

∂Sq
uβ

→
∑

k

U
qk
β

∂V

∂Sk
uβ

. (32)

The interpretation of this operation is straightforward:
in a given point group, there are many symmetry equiva-
lent directions. A Jahn-Teller distortion in one particular
direction is indistinguishable from a Jahn-Teller distor-
tion in another symmetry equivalent direction. By choos-
ing a coordinate system in which the nuclear perturbing
potential is diagonal, we are allowing the orbital basis
we have chosen to pick out compatible directions for our
molecule to distort along out of the symmetry equivalent
set.
In general, the number of off-diagonal matrix ele-

ments that we wish to set equal to zero is different from
the number of rotation angles between the various Sk

uβ .
Therefore, the number of unknown parameters is differ-
ent from the number of equations that can by generated
by requiring the off diagonal matrix elements to vanish.

One approach to finding the matrix U
qk
β in light of this

difficulty is to minimize the sum of the squares of the off
diagonal matrix elements, which results in the equation

∂

∂Uqk
β

∑

i>j

(

∑

k

U
qk
β 〈φi

tγ |
∂V

∂Sk
uβ

|φj
tγ〉
)2

= 0. (33)

Taking the derivative, we find that the Uqk
β are the zero-

eigenvectors of the matrix with indices p, k

∑

i>j

〈φi
tγ |

∂V

∂Sp
uβ

|φj
tγ〉〈φj

tγ |
∂V

∂Sk
uβ

|φi
tγ〉, (34)

for every u, β and for the t and γ at the Fermi level. If the
Fermi level spans multiple t or γ, the zero-eigenvectors
of the largest irrep can be used, and unitary transfor-
mations can be applied to orbitals in the other irreps
to diagonalize the potential. Note that the number of
zero-eigenvectors is usually smaller than the dimension
of the matrix in Eq (34). This is what we should expect,
because for a given β, we are picking out a subset of co-
ordinates that excludes symmetry-equivalent directions.

C. Diagonalizing the Coulomb and XC potentials

Once the first-order nuclear potential is diagonalized
within the degenerate subspace, symmetry requirements
force the first-order Coulomb and XC potentials to auto-
matically be diagonalized as well. To prove this, we will
first look at the symmetry of the unperturbed potentials,

and then determine how changes in the electron density
affect this symmetry.
Because the unperturbed density is quasi-closed shell,

νks(r) belongs to the totally symmetric representation of
the point-group. Potentials belonging to the totally sym-
metric representation are automatically diagonal within a
given irreducible representation. If we change the orbital
occupation numbers at the Fermi-level, the nuclear coor-
dinates move slightly in response. The full first derivative
of the density with respect to occupation numbers from
Eq. (11) is

ρ(1)(r) =
∑

cσv

∂ρ(r)

∂Sv
cσ

∂Sv
cσ

∂nm
sγ

+
∂ρ(r)

∂nm
sγ

, (35)

and the response of the Coulomb and XC potentail is
given by Eq. (17).
The Coulomb and XC kernel, δνks(r)/δρ(r

′), which

appears in ν
(1)
ks , has the same symmetry as νks(r). The

off-diagonal matrix elements of ν
(1)
ks are therefore deter-

mined by the symmetries of ρ(1) .
To determine the symmetries of ρ(1), we can employ

first-order PT, which tells us [25]

ρ(1) = 2Re
∑

aµibνj

(naµ − nbν)φ
∗j
bνφ

i
aµ

〈φj
bν |V (1) + ν

(1)
ks |φi

aµ〉
ǫaµ − ǫbν

+ρ
(1)
degen + φ∗m

sγ (r)φm
sγ(r),

(36)

where, ρ
(1)
degen is the contribution to the density from de-

generate PT described in Section II B,

ρ
(1)
degen = Re

∑

mn
sγtβ

(nsγ − ntβ)
(

U
n(1)mn
sγtβ

+
∑

cσv

U
C(1)mn
sγtβ

∂Sv
cσ

∂nm
sγ

)

φ∗m
sγ φn

tβ ,

(37)

and as in Eq. (15), for compactness we have defined

V (1) ≡
∑

cσv

∂V (r)

∂Sv
cσ

∂Sv
cσ

∂nm
sγ

. (38)

The initial occupation numbers within any irrep are
equal, as are the eigenvalues, so we have labeled each
with only two indices, e.g. naµ and ǫaµ. An extra index
appears in ∂Sν

cσ/∂n
m
sγ , because we are shifting the occu-

pation numbers away from the totally symmetric config-
uration.
We showed in the previous section how ρ

(1)
degen can

be diagonalized, which leaves only the first and third
term on the right-hand side of Eq. (36) that need to
be investigated. Before tackling the first term, which
involves a sum over states, let us look at the third
term, φ∗m

sγ (r)φm
sγ(r). It is easy to show that this term

is diagonal within any degenerate shell by rewriting its
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matrix elements as the inner product of two product-
representation vectors,

〈φn
aσ |φ∗m

sγ φm
sγ |φp

aσ〉 = 〈φm
sγφ

n
aσ|φm

sγφ
p
aσ〉. (39)

The two product-representation vectors can be de-
composed into their irreducible representations, using
Clebsch-Gordan coefficients, as

〈tαq|φm
sγφ

p
aσ〉 = 〈tαq|γm;σp〉fsγaσ(r), (40)

where the right-hand side is a Clebsch-Gordan coefficient
multiplied by a radial function, fsγaσ(r). The index t
picks out a particular copy of α if the irreducible repre-
sentation α appears more than once in γmσp.
Because of the orthogonality of different irreducible

representations, the inner product between the two vec-
tors becomes

∑

tαq

〈γm;σp|tαq〉〈tαq|γm;σn〉
∫

fsγaσ(r)
2dr. (41)

One of the orthogonality relations of Clebsch-Gordan co-
efficients tells us that

∑

tαq

〈σn; γm|tαq〉〈tαq|σp; γj〉 = δnpδnj , (42)

and employing this, we are left with

〈φm
sγφ

p
aσ |φm

sγφ
n
aσ〉 = δmmδnp

∫

fsγaσ(r)
2dr, (43)

which is clearly diagonal in the indices n and p.
The remaining terms in Eq. (36) are complicated by

the fact that there is an implicit dependence of ρ(1) on it-

self, through the term ν
(1)
ks on the right-hand side. If this

term is moved to the left-hand side, ρ(1) can be found
through a matrix inversion [25], although typically, an
iterative process is used instead. Looking more closely at
the iterative process will give us insight into the symme-
try of the first-order density and KS potential.
We can express the iterative solution for the first-

order density like so: define the potential VN to be

−V (1)+ν
(1)
ksN , where ν

(1)
ksN is the first-order Coulomb and

XC potential generated after N iterations, and νks0 = 0.
We can then write

ρ
(1)
N+1 = 2Re

∑

aµibνj

(naµ − nbν)φ
∗j
bνφ

i
aµ

〈φj
bν |VN |φi

aµ〉
ǫaµ − ǫbν

+ρ
(1)
degen + φ∗m

sγ φm
sγ .

(44)

After obtaining, the density ρ
(1)
N+1, it is then used to gen-

erate ν
(1)
ksN+1, and the process is repeated. In the limit

that N → ∞, the result is a geometric series, which con-
verges to the appropriate matrix inverse to produce ρ(1).
We will show that if VN is diagonal within the degen-

erate subspace, then VN+1 is as well. Because V0 = V (1),

which we have already diagonalized, we then have a proof
by induction.
The potential VN can be written in terms of compo-

nents that transform according to different irreducible
representations of the symmetry group, which we label
Vq
Ntβ, using the same notation as for the orbitals and nu-

clear coordinates. The matrix elements of Vq
Ntβ can be

obtained from the Wigner-Eckart theorem as
∑

k

〈kνj|βq;µi〉〈φbν ||VNtβ ||φaµ〉k, (45)

which is a sum over products of Clebsch-Gordan co-
efficients and reduced matrix elements. The Clebsch-
Gordan coefficients project the product-representation of
Vq
Ntβ and φi

aµ onto the irreductible representation ν.

The matrix elements of Vq
Ntβ are integrals of a prod-

uct of three functions: two orbitals and a potential. But
because Vq

Ntβ commutes with the position operator, the
ordering of these three functions in the integrand is ar-
bitrary. Therefore, as Jahn and Teller did [1], we can
equivalently write our matrix elements in such a way that
we project the product representation of φ∗j

bνφ
i
aµ onto the

irreducible representation β. Doing so, Eq. (45) becomes
∑

k

〈kβq|νj;µi〉〈φbν ||VNtβ ||φaµ〉k. (46)

We can substitute this expression for the matrix ele-
ments into Eq. (44) and project the entire thing onto its
irreducible components to get

∑

aµibνj
tβqk

〈sαr|νj;µi〉〈µi; νj|βqk〉
ǫaµ − ǫbν

〈φbν ||VNtβ ||φaµ〉k

×faµbν(r).

(47)

We can now employ another Clebsch-Gordan orthogo-
nality condition, which says,

∑

ij

〈sαr|νj;µi〉〈µi; νj|kβq〉 = δksδαβδqm. (48)

Because the sum is over i and j, and the eigenvalues and
reduced matrix elements in Eq. (47) are independent of
i and j, we find,

ρ
(1)
N+1 = δksδβγδqm

∑

µν

〈ν||VNtβ ||µ〉k
ǫaµ − ǫbν

faµbν(r)

+ρ
(1)
degen + φ∗m

sγ φm
sγ .

(49)

This says that ρ
(1)
N+1 (and by extension, VN+1) can be

written in the same basis of irreducible elements as VN ,
plus two additional terms that we have already shown
are properly diagonalized. To understand the implica-
tions, remember that we diagonalized V (1) by choosing
a basis of states that are diagonal within the degenerate
subspace of the symmetry group. Because VN can be

written in this same basis for arbitrary N , ν
(1)
ks must be

diagonal as well.
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IV. APPLICATION TO A TOY MODEL

To further investigate the structure of our equations
and demonstrate them in practice, we turn to a simple
toy model of ten electrons in a harmonic oscillator po-
tential, −V (r) = 1/2ω2

r
2. The local charge-density that

produces this potential can be found from its Laplacian,

∇2

(

1

2
ω2

r
2

)

= 3ω2. (50)

This uniform, positive, jellium charge-distribution is
sometimes used to model the nuclear potential in large
metal clusters [19]. In that vein, we can think of our toy
model as describing the Jahn-Teller distortions of a so-
called “superatom”; a sphere of uniform charge-density.
With the series of approximations we will make, the ac-
tual physical analogy is weak, however the model is still
sufficient, because our purpose is not to shed light on any
real system but to provide some context for the equations
we have developed.
Our first simplification will be to assume that the ra-

dius of the superatom is very large, taking the limit that
it goes to infinity. Second, we take the limit that the oscil-
lator frequency, ω, becomes infinite, so that the Coulomb
and XC potentials are small in comparison to the ex-
ternal potential, and our unperturbed orbitals are well
described by eigenvectors of

(

−1

2
∇2 +

1

2
ω2

r
2

)

|φi〉 = ǫi|φi〉. (51)

If the superatom is distorted, its total charge and
dipole moment will remain unchanged, and the lowest
order change to the external potential is its quadrupole
moment. However, the expansion of the external poten-
tial as a monopole plus a quadrupole is only valid outside
of the superatom, and the effects of the distortion dimin-
ish as we approach the center of charge. In fact, because
we have taken the limit that the superatom’s radius is
infinite, the nuclear potential and total energy are unaf-
fected by Jahn-Teller distortions.
To solve this, we cut out a spherical hole in the center

our superatom. This acts like a region of negative charge
with charge density −3ω2 sitting on top of the positively
charged background. The total charge, q of a hole with
radius R0 is then

q = −4πR3
0ω

2, (52)

and distortions of this hole generate a quadrupole po-
tential. We will assume that R0 is small so that our
harmonic oscillator solutions are still valid for the unper-
turbed orbitals.
The three-dimensional harmonic oscillator has spher-

ical symmetry and it’s eigenstates are the product of a
radial function Fk(r) with the spherical harmonics Y m

ℓ .
Spherical symmetry requires that the energy is indepen-
dent of m, which ranges from −ℓ to ℓ. However, deeper

TABLE I. Eigenvalues of the Hessian of the total energy/
√
ω

conserving the number of electrons

No SIC 0.000 0.000 1.445 254.1 6969.5
With SIC -100.2 -979.2 -951.0 -752.9 368.5

symmetries [20, 26] produce additional degeneracies, and
the eigenvalues are given by

ǫkℓ =

(

2k + ℓ+
3

2

)

ω. (53)

Unlike the hydrogen atom, ℓ is independent of k and can
take on any value greater than or equal to zero.
The first level is the nondegenerate ground state, k =

ℓ = 0, and three next three are degenerate states with k =
0, ℓ = 1. We fill these states fully with eight electrons.
The next level is six-fold degenerate, with five d-

orbital-like states with k = 0, ℓ = 2, and an s-like state,
with k = 1, ℓ = 0. We place only two electrons, both of
the same spin, in these six states. To preserve spherical
symmetry, we equally occupy the d states with 2/7 of an
electron and place the remaining 4/7 of an electron in
the s state. Using the convention φm

kℓ, the corresponding
orbitals are

φ0
10 =

(

ω3

4π

)1/4(
3

2
− ωr2

)

e−
ω

2
r2 (54)

φm
02 =

√

√

ω3

π

2ω2

15
r2e−

ω

2
r2Y m

0 , (55)

In the limit that ω becomes infinite, there is no mixing
between nondegenerate orbitals, so

∂ρ

∂nm
kℓ

= φm
kℓφ

m
kℓ + 2Re

∑

k′ℓ′m′

k′′ℓ′′m′′

nk′ℓ′U
(1)m′′,m′

k′′ℓ′′,k′ℓ′ φ
m′∗
k′ℓ′φ

m′′

k′′ℓ′′

(56)
where the summations over k′, ℓ′, m′ and k′′, ℓ′′, m′′ have
the appropriate limits so that φm′

k′ℓ′ and φm′′

k′′ℓ′′ degenerate
with φm

kℓ.
The second derivative, or Hessian, of the total energy

with respect to occupation numbers, then, simplifies to

Hnm

kℓ
,nm′

k′ℓ′

= 〈φm
kℓ|

δνks
δρ

φm′

k′ℓ′φ
m′

k′ℓ′ |φm
kℓ〉

+2Re
∑

k′′ℓ′′m′′

jln

nk′′ℓ′′U
µ(1)m′′,n
k′′ℓ′′,jl 〈φm

kℓ|
δνks
δρ

φm′′∗
k′′ℓ′′φ

n
jl|φm

kℓ〉,

(57)

where the index µ refers collectively to k′, ℓ′,m′.
The constraint that the number of electrons is con-

served decreases the dimension of the Hessian by one.
Because we are only moving electrons between orbitals
at the Fermi level, we can satisfy this constraint by set-
ting

n1s = 2−
∑

nm
kℓ. (58)



8

With this constraint, the Hessian becomes

Hnm

kℓ
,nm′

k′ℓ′

= 〈φm
kℓ|

δνks
δρ

φm′

k′ℓ′φ
m′

k′ℓ′ (1− δk′ℓ′m′,100) |φm
kℓ〉

× (1− δkℓm,100) + 2Re
∑

k′′ℓ′′m′′

jln

nk′′ℓ′′U
µ(1)m′′,n
k′′ℓ′′,jl

×〈φm
kℓ|

δνks
δρ

φm′′∗
k′′ℓ′′φ

n
jl (1− δµ,100) |φm

kℓ〉 (1− δkℓm,100)

(59)

The eigenvalues of the constrained Hessian are given
in Table I. In the first row, Slater’s Xα functional[27, 28]
with α = 1 was used for exchange without correlation.
The particular choice of XC potential does not affect

the overall form of our equations and only determines the
values of matrix elements that appear in various places.
However, with α = 1, the exchange interaction is not
strong enough to favor integer occupation. All of the
eigenvalues of the Hessian are either zero or positive,
meaning that to second-order, the energy cannot be low-
ered by changing occupation numbers.
In the second row of Table I, we applied the self-

interaction correction (SIC) of Perdew and Zunger[29]
to Slater’s exchange potential. Although the SIC is not
well-defined for fractionally occupied states, we can make
a reasonable extension [13] where we use the following
substitution

∂ν

∂ρ
δρ|φi〉 →

∂ν

∂ρ
(δρ− δniφ

∗
i φi − 2niReφ∗

i δφi) |φi〉.
(60)

This correction eliminates the Coulomb and XC energy
of any electron density in a given orbital with itself. Be-
cause the Coulomb energy is positive and typically much
larger than the XC energy, the SIC will usually reduce
the energy of integer occupied states relative to fraction-
ally occupied states. This is apparent from the fact that
the in the first row of Table I, four of the five eigenvalues
are negative.
If the potential of the hole is expanded in multipole mo-

ments, because it consists only of negative charge which
is symmetrically distributed around the center, and be-
cause the total charge of the hole doesn’t change, the
lowest order term is its quadrupole moment. The change
in potential, then can be written as

δV ≈ Q−2Y
−2
2 +Q−1Y

−1
2 +Q0Y

0
2 +Q1Y

1
2 +Q2Y

2
2

|r|3 .

(61)
The only term in this expression for δV with a diagonal

matrix element in the d orbitals is Y 0
2 , which corresponds

to a stretch of the hole along the Z axis. To show that
this corresponds to a zero-eigenvector of Eq. (34), we
note that to pick out the Y 0

2 quadrupole, we must set
U

nm
ℓ = δm0. Multiplying this vector by the matrix in

Eq. (34), we get
∑

m

∑

m′>m′′

〈φm′′

kℓ |Y q
2 |φm′

kℓ 〉〈φm′

kℓ |Y m
2 |φm′′

kℓ 〉δm0 = 0, (62)

because the matrix elements are only nonzero if m+m′′−
m′ = 0. Therefore, δm0 is indeed a zero-eigenvector.
The Z axis in particular is picked out by our choice

of orbital basis. However, the spherical symmetry of the
problem makes it equivalent to a stretch along any other
axis. A different, symmetry equivalent direction could be
picked out by rotating the orbitals into one another.
Note that after the hole is stretched along one direction

it loses its spherical symmetry but retains axial symme-
try. According to Jahn and Teller, this axially symmet-
ric state is stable, which is apparent from our equations
as well. The fact that only the Y 0

2 quadrupole has any
diagonal matrix elements at the Fermi-level means that
no matter how we shift the occupation numbers between
these states, the molecule will remain stable along the X
and Y axes.
For an elliptical charge distribution of charge q, radius

R0 along the X and Y axes, and a radius along the Z
axis of R0 + δZ, its quadrupole moment is

Q0
2 =

2q

5

(

2R0δZ + δR2
)

, (63)

and we have,

∂V (r)

∂Z
=

4qR0

5|r|3 (64)

∂2V (r)

∂Z2
=

4q

5|r|3 =
1

R0

∂V (r)

∂Z
. (65)

Because there are no discrete nuclei in this problem,
the equivalent of the nuclear-nuclear interaction energy
is potential energy of the positive jellium charge distri-
bution. It can be computed from the electric field, or
equivalently, the electrostatic potential, in atomic units
as (∇V )2/8π.
Only the second derivative of the nuclear-nuclear en-

ergy at δZ = 0 is needed to compute Jahn-Teller distor-
tions, and we therefore only need to compute the term
proportional to δZ2, which is

4R3
0q

2

50
δZ2

∫ π

0

∫ ∞

R0

9|Y 0
2 |2 + ∂

∂θ |Y 0
2 |2

|r|6 sin θdrdθ. (66)

Substituting in the value of q from Eq. (52), we find

∂2En

∂Z2
=

192

5
πω4R3

0. (67)

The final piece we need to compute Jahn-Teller distor-
tions is the derivative of the electron density with respect
to occupation numbers, is obtained from PT. Because
we are working in the limit that ω is infinite, the sepa-
ration between energy levels is also infinite, and we can
neglect occupied-virtual orbital mixing. The first-order
density is then the result of the unitary transformations
in Eqs. (25) and (26) that remove off-diagonal matrix
elements between accidentally degenerate orbitals.
The spherical harmonic Y 0

2 couples only φ0
10 and

φ0
02. Therefore, the first-order unitary matrices U

n(1)
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TABLE II. Changes in energy and displacements associated
with symmetry equivalent orbital occupations

Occupied With SIC No SIC
orbitals δE/

√
ω δZ × 102

√
ω δE/

√
ω δZ × 102

√
ω

d±2d±1 −1036.882 −1.194 352.187 0.308
d±2d0 −1076.244 −0.941 334.864 0.000
d−2d2 −800.650 −5.907 624.309 1.230
d±2s −658.039 −2.765 260.406 0.615

d±1d0 −899.188 3.771 497.271 −0.923
d−1d1 −962.790 3.518 407.767 −0.615
d±1s −687.870 1.947 206.271 −0.308
d0s −657.626 2.200 261.129 −0.615

and U
Z(1) needed to decouple them have only a single

nonzero element each. Plugging the relevant quantities
into Eqs. (22) and (23), we get

〈φ0
10|

∂V

∂Z
|φ0

02〉 = −U
Z(1)0,0
02,10 (n02 − n10)

×〈φ0
10|

δνks
δρ

φ0
10φ

0
02|φ0

02〉,
(68)

〈φ0
10|φ∗m

kℓ φm
kℓ|φ0

02〉 = −U
n(1)0,0
02,10 (n02 − n10)

×〈φ0
10|

δνks
δρ

φ0
10φ

0
02|φ0

02〉.
(69)

Equations (68) and (69) can be solved for U
R(1)00
02,10

and U
n(1)00
02,10 , which is are used to generate ∂ρ/∂Z and

∂ρ/∂nm
kℓ as

∂ρ

∂Z
= U

Z(1)00
02,10 φ0

10φ
0
02

= − 〈φ0
10|∂V∂Z |φ0

02〉φ0
10φ

0
02

(n02 − n10)〈φ0
10|

δνks(r)
δρ(r′) φ

0
10φ

0
02|φ0

02〉
,

(70)

∂ρ

∂nm
kℓ

= φ∗m
kℓ φm

kℓ +U
n(1)00
02,10 φ0

10φ
0
02

= − 〈φ0
10|φ∗m

kℓ φm
kℓ|φ0

02〉φ0
10φ

0
02

(n02 − n10)〈φ0
10|

δνks(r)
δρ(r′) φ

0
10φ

0
02|φ0

02〉
+ φ∗m

kℓ φm
kℓ.

(71)

Putting everything together, we compute the stretch
along the Z axis as

δZ =
∑

kℓm

∂Z

∂nm
kℓ

δnm
kℓ

=
∑

kℓm

∫∞

R0

∂ρ(r)
∂Z

4q
|r|3drδn

m
kℓ

∫∞

R0

4q
|r3|

(

1
R0

∂ρ(r)
∂Z + ρ(0)(r)

)

dr+ 192πω4

5 R2
0

,

(72)

where ρ(r) is the original electron density, prior to shift-
ing occupation numbers.
In Table II, we calculated δZ and the corresponding

second-order change in energy for all fifteen possible in-
teger occupation states, using R0 = 0.1/

√
ω. From these

0 0.01 0.02 0.03 0.04 0.050 1 2 3 4 5

⇒

FIG. 1. The original electron density of the superatom per
Bohr3 (left) and the change in density overlayed with the
quadropole potential as it undergoes a Jahn-Teller distortion
(right).

fifteen states, symmetry reduces the number of inequiva-
lent energies and geometries to eight, because the result-
ing electron density is the same for φm

kℓ and φ−m
kℓ .

In the first column, the orbitals φm
kℓ are indicated with

either s or d corresponding to an ℓ index of 0 or 2, and a
superscript indicating the m index. The index k is either
0 or 1, as necessary so that 2k + ℓ = 2. In the first
row, for example, there are four different combinations
of occupied orbitals that are equivalent, where the first
orbital is d-like with m = ±2 and k = 0, and the second
orbital is also d-like with m = ±1 and k = 0.
With the self-interaction correction, all integer occu-

pation states are lower in energy than the initial state,
and the reverse is true without the self-interaction correc-
tion. In both cases, the lowest energy integer-occupied
state, calculated using the Hessian in Table I, is in bold,
along with the accompanying δZ. Both states have a
negative δZ corresponding to a shrink along the Z axis.
The change in geometry and electron density for the cal-
culation with a self interaction correction is depicted in
FIG. 1, with the compression along the Z axis exagger-
ated for visualization purposes.

V. CONCLUSIONS

Fractional occupation numbers can be used to give
HKS the same symmetries and degeneracies as the true
quantum mechanical Hamiltonian, which saves compu-
tational time in both the self-consistent field calcula-
tions and geometry optimizations. However, computing
the true, Jahn-Teller distorted geometry requires moving
electrons from a totally symmetric configuration into one
that breaks symmetry. As electrons are shifted between
orbitals, there is an associated shift in the ground-state
geometry of the molecule.
Our equations determine the Jahn-Teller distortions,

to second-order, associated with moving electrons into a
symmetry breaking configuration. Often times, it will
be desirable to move electrons into the the lowest energy
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state with integer occupation numbers, which we found
for our example in Section IV using the Hessian of the
energy with respect to occupation numbers.
Moving electrons between degenerate orbitals requires

the use of degenerate PT, which is greatly simplified
through exploitation of the molecule’s point-group. In
the initial, symmetric configuration, there are multi-
ple symmetry-equivalent choices of orbital basis as well
as multiple symmetry-equivalent directions in which the
molecule can distort. The particular choice of orbital
basis picks out a corresponding subset of displacements
from the symmetry adapted nuclear coordinates, which
forms a basis for Jahn-Teller distortions.
This set of allowed nuclear displacements is chosen

by the requirement that matrix elements of the result-
ing first-order nuclear potential vanish between degen-
erate orbitals from the same irrep. We then proved
that this first-order nuclear potential generates first-order
Coulomb and XC potentials in response that share the
same symmetry properties. Matrix elements between de-
generate orbitals from different irreps must by eliminated
by a first-order unitary transformation that modifies the
Coulomb and XC potentials in such a way that they can-
cel the off-diagonal elements of the nuclear potential.
Our method preserves the advantages of performing

molecular calculations in the maximal symmetry and can
be used for molecules of any size. The initial geometry
optimization only needs to be carried out with respect to

totally symmetric degrees of freedom, which are usually
a small subset of all nuclear degrees of freedom, even in
small but highly symmetric molecules. Symmetrizing the
electron density also significantly reduces the number of
degrees of freedom in the electronic wave function. The
computational bottleneck of our method occurs in calcu-
lating derivatives of the electron density with respect to
orbital occupations. However, only one such derivative is
needed per degenerate orbital at the Fermi level, which
does not necessarily grow larger with either the number
of electrons or nuclei.

In our work, JT distortions can be understood as a
consequence of symmetry breaking in the KS potential
when integer occupation numbers are used. Perturba-
tively transforming a fractionally occupied solution into
an integer occupied solution builds a connection between
the original work of Jahn and Teller [1], which makes use
of degenerate PT, and DFT, for which degenerate PT
was only recently formulated [12–14].
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