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We propose a quantum simulator based on driven superconducting qubits where the interactions are generated
parametrically by a bichromatic magnetic flux modulation of a tunable bus element. Using a time-dependent
Schrieffer-Wolff transformation, we analytically derive a multi-qubit Hamiltonian which features independently
tunableXX and Y Y -type interactions as well as local bias fields over a large parameter range. We demonstrate
the adiabatic simulation of the ground state of a hydrogen molecule using two superconducting qubits and
one tunable bus element. The time required to reach chemical accuracy lies in the few microsecond range.
Therefore, the proposed adiabatic protocol could be implemented using currently available superconducting
circuits. Further applications of this technique may also be found in the simulation of interacting spin systems.

I. INTRODUCTION

The simulation of a quantum system with a classical com-
puter is notoriously difficult as the number of parameters
needed to describe a quantum state grows exponentially with
increasing system size. It has been recognized early that these
scaling issues can be circumvented by using a controllable
quantum system as a simulator [1]. Quantum simulations
[2, 3] have been successfully implemented in NMR [4, 5],
photonic devices [6–9], ultracold atoms [10, 11], trapped
ions [12, 13] and superconducting qubits [14–20]. These ex-
periments mainly use gate based methods [15, 21, 22], in
which the dynamics of the system is discretized into Trotter-
ized time-steps [17, 23], or static properties such as ground
states are calculated using a variational quantum eigensolver
[18, 24]. In contrast, analogue simulations that directly im-
plement the desired Hamiltonian in hardware have been pro-
posed [25–29] and realized [16, 19, 30]. These simulations
are typically based on the adiabatic theorem [31]. The sys-
tem is initialized in an easily accessible eigenstate. Subse-
quently, the Hamiltonian parameters are varied slowly such
that the Hamiltonian at the end of the evolution is equivalent
to some target Hamiltonian. If the change is performed suffi-
ciently slowly, the state of the system will remain an eigen-
state throughout the evolution and adiabatically follow the
changing Hamiltonian. The advantages of this approach are
for example that the qubits can be tuned simultaneously to
efficiently generate entangled eigenstates of the target Hamil-
tonian and that there is no need for Trotterization.

One particular interesting application of quantum simula-
tions is quantum chemistry. Here, the fermionic degrees of
freedom are mapped to qubit operators [32, 33]. In general,
these mappings create k-local terms that are challenging to
implement in experiments. To circumvent this problem, sev-
eral methods such as perturbative gadgets [28, 34] or alter-
native mapping schemes [35] have been employed to reduce
the problem to Hamiltonians that only feature two-local in-
teractions. In this paper, we focus on a subset of two-local
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where ai, bi and ci are the coefficients of the single qubit terms
and Jxij and Jyij are the coefficients of the two-qubit XX-
and Y Y -interactions, respectively. Such two-qubit interac-
tions can be realized with superconducting qubits using para-
metric coupling schemes [19, 36–40]. The interactions are
mediated by harmonically modulating the frequency of a tun-
able coupler. The possibility of using fixed-frequency qubits
is among the benefits of this method. This reduces the sensi-
tivity to flux noise which is reflected in increased coherence
times compared to approaches that require frequency tunable
qubits [15, 41]. Such a parametric setup can generate many
different types of interactions such as the iSWAP-type inter-
action that couples the |10〉 and |01〉 states and the bSWAP-
type interaction which induces transitions between the |00〉
and |11〉 states [37]. In this paper we, propose to realize inde-
pendently tunable XX and Y Y -type interactions by combin-
ing iSWAP and bSWAP-type interactions using a bichromatic
flux pulse similar to the qubit-resonator entanglement scheme
in [42].
Analytic expressions for these effective interactions are ob-
tained by eliminating the coupler degrees of freedom with a
generalized Schrieffer-Wolff transformation [37, 43] that ac-
counts for the dynamics of the coupler. By explicitly con-
sidering the counter-rotating terms, we are able to accurately
describe the effective two-qubit interactions as shown by a
comparison to numerical simulations. This method has been
previously used in an undriven system with two qubits and a
monochromatically modulated tunable coupler [37]. Here, we
generalize this approach toN qubits interacting with one cou-
pler modulated at M frequencies. Furthermore, we show the
applicability of this approach in the weak-driving limit.
As an example of a quantum simulation we adiabatically de-
termine the ground state of the hydrogen molecule. The sin-
gle qubit terms of the Hamiltonian are realized by driving the
qubits via a coherent microwave tone. In the rotating frame
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FIG. 1. Schematic of N qubits q1, . . . , qN with fixed frequen-
cies ω1 . . . , ωN coupled to a tunable coupler (TC) with coupling
strenghts g1, . . . , gN. The frequency of the coupler can be controlled
via a current I(t) through a flux line (FL) resulting in a flux Φ(t)
threading the superconducting quantum interference device (SQUID)
loop.

of the drive, arbitrary longitudinal fields as well as transverse
fields in a wide parameter range can be realized. Using a stan-
dard Markovian master equation, we show that the external
driving results in a non-equilibrium steady state that attains a
maximum fidelity at an optimal protocol run time. For typi-
cal coherence parameters, this optimum is reached after a few
microseconds. The paper is structured in the following way.
Section II discusses the general setup and introduces the phys-
ical model. The effective Hamiltonian of the superconducting
qubit device is derived in Sections II.1 and II.2. Section II.3
shows a numerical validation of the two-qubit interactions ob-
tained by a bichromatic modulation of the coupler. Finally,
Section III presents numerical results of the adiabatic simula-
tion of the hydrogen molecule which is followed by the con-
clusion in section IV.

II. MODEL

We study a quantum device with N computational qubits
with frequencies ωj (j = 1, ..., N ) transversely coupled to
a tunable coupler with time-dependent frequency ωc(t). A
schematic of the setup using transmon qubits [44] is shown in

Fig. 1. The Hamiltonian is given by [36, 37]

HTr(t) =

N∑
j

[
ωja
†
jaj +

uj
2
a†jaj(a

†
jaj − 1)

+
fj
2

(
a†je
−i(ωd

j t+ϕj) + aje
i(ωd

j t+ϕj)
) ]

+ ωc(t)a†cac +
uc

2
a†cac(a†cac − 1)

+

N∑
j

gj(a
†
j + aj)(a

†
c + ac) , (2)

where aj (a†j) and ac (a†c) are bosonic annihilation (creation)
operators of the jth transmon and the coupler, respectively.
Here, we use the convention ~ = 1. The computational qubits
are subject to an external drive of strength fj , frequency ωd

j

and phase ϕj . The coupling strength between the computa-
tional qubits and the tunable coupler is gj . Each transmon has
an anharmonicity uj . The frequency of the tunable coupler in
Eq. (2) can be tuned with an external flux parameter Φ(t) via
[36]

ωc(t) = ω0
c

√
|cos(πΦ(t)/φ0)| , (3)

where φ0 is the flux quantum and ω0
c is the coupler frequency

at zero flux. For large anharmonicities, the bosonic operators
can be restricted to a two-level state space consisting of the
ground state and the first excited state of the transmon. In this
two-level approximation the Hamiltonian in Eq. (2) reduces to

H(t) =

N∑
j

[
−ωj

2
σzj +

fj
2

(
e−i(ω

d
j t+ϕj)σ+

j + h.c.
)]

− ωc(t)

2
σzc +

N∑
j

gjσ
x
j σ

x
c . (4)

Here, σαj and σαc (α = x, y, z) denote the standard Pauli op-
erators and σ±j =

(
σxj ± iσ

y
j

)
/2 is the raising (lowering) op-

erator of qubit j. We now consider a flux modulation

Φ(t) = θ +
M∑
m

δm cos
(
ωφmt

)
, (5)

with dc-bias θ and M independent harmonic tones of strength
δm and frequency ωφm [36, 37]. By expanding the frequency of
the coupler in Eq. (3) in powers of the modulation amplitudes
δm, we obtain harmonic modulations of the coupler frequency

ωc(t) ≈ ωθc + ∂Φωc

∣∣
Φ=θ

M∑
m

δm cos
(
ωφmt

)
+O(δ2

m/φ
2
0) ,

(6)

with ωθc = ω0
c

√
|cos(πθ/φ0)|. A monochromatic flux mod-

ulation with a single tone (M = 1) allows for the activation
of iSWAP (∼ XX + Y Y ) or bSWAP-type (∼ XX − Y Y )
interactions between the computational qubits [37]. In the fol-
lowing, we show that a bichromatic modulation of the coupler
(M = 2) combined with external driving of the computational
qubits allows us to simulate independent XX and Y Y -type
interactions and transverse fields.
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II.1. Dispersive regime in the rotating frame

We require the coupler to be detuned from both compu-
tational qubits such that |ωj − ωc(t)| � gj for all times t.
For that purpose, we choose the modulation strengths δm in
Eq. (5) sufficiently small during the whole time evolution and
the dc-bias θ such that

∣∣∆θ
j,−
∣∣ � gj with the qubit-coupler

detunings ∆θ
j,± = ωj ± ωθc . In this dispersive regime, the

coupler degree of freedom is eliminated using a generalized
Schrieffer-Wolff transformation (SWT) U(t) = exp{S(t)},
where S(t) is the anti-hermitian matrix

S(t) =

N∑
j

(
αj,−(t)σ+

j σ
−
c + αj,+(t)σ+

j σ
+
c − h.c.

)
. (7)

This transformation has been introduced in [37] for the non-
driven system. The parameters αj,±(t) are chosen to be the
solutions of the ordinary differential equation

iα̇j,±(t) + gj − [ωj ± ωc(t)]αj,±(t) = 0 . (8)

With this choice, the computational subspace decouples from
the tunable coupler resulting in an effective Hamiltonian
where the coupler can be eliminated (see Appendix A). In Ap-
pendix B, we argue that the external drive does not modify this
picture as long as the weak driving conditions is satisfied, i.e.,
fj � gj .

A second unitary transformation R(t) =

exp
(
−i
∑
j ω

d
j σ

z
j t/2

)
into a frame rotating at the drive

frequencies then yields the time-dependent N -qubit Hamilto-
nian

H̃(t) =

N∑
j

[
εj
2
σzj +

fj
2

(
cos(ϕj)σ

x
j − sin(ϕj)σ

y
j

)]
+
∑
i<j

[
Ω+
ij(t)e

i(ωdi−ω
d
j )tσ+

i σ
−
j

+ Ω−ij(t)e
i(ωdi +ωdj )tσ+

i σ
+
j + h.c.

]
, (9)

with the drive-qubit detuning εj = ωd
j − ω̄j . The dispersively

shifted qubit frequencies ω̄j are given in Appendix A. The
last two lines in Eq. (9) describe iSWAP and bSWAP type
interactions, respectively. In general, the time-dependent cou-
pling coefficients Ω±ij(t) in Eq. (9) can be decomposed into
harmonics rotating at linear combinations of the modulation
frequencies (see Appendix C). Static iSWAP and bSWAP in-
teractions between qubit i and j can be obtained by modulat-
ing the coupler at integer fractions of the sum or difference of
their respective drive frequencies. In the following, we there-
fore focus on modulations of this kind. In this case, and under
the assumption that the sum and difference of the qubit fre-
quencies are detuned from linear combinations of the coupler
modulation frequencies that involve more than one modula-
tion frequency, it is sufficient to only consider the components
of Ω±ij(t) that rotate at multiples of ωφm

Ω±ij(t) ≈
M∑
m

∞∑
k=−∞

Ω̄±ij(k,m)eikω
φ
mt . (10)

The amplitudes in Eq. (10) can be written explicitely as

Ω̄±ij(k,m) =
[
giᾱj,−(∓k,m) + gjᾱi,−(k,m)

−giᾱj,+(∓k,m)− gjᾱi,+(k,m)
]
/2 , (11)

where ᾱj,±(k,m) are the Fourier components of the the
αj,±(t) parameters found in Eq. (8), i.e.,

αj,±(t) ≈ ᾱj,±(0) +

M∑
m

∑
k 6=0

αj,±(k,m)eikω
φ
mt . (12)

In Appendix C we derive the following analytic expression for
the case of bichromatic driving (M = 2) valid to first order in
the modulation strength, i.e.,

ᾱj,±(k, 1) = gj
∑
q,p

Jk−q (∓λ1) Jq (±λ1) Jp (±λ2)
2

qωφ1 + pωφ2 + ∆θ
j,±

,

(13)

ᾱj,±(k, 2) = gj
∑
q,p

Jk−q (∓λ2) Jq (±λ2) Jp (±λ1)
2

qωφ2 + pωφ1 + ∆θ
j,±

,

(14)

and

ᾱj,±(0) = gj
∑
q,p

Jq (±λ1)
2
Jp (±λ2)

2

qωφ1 + pωφ2 + ∆θ
j,±

. (15)

Here, Jn(x) is the n-th Bessel function of the first kind. Fur-
thermore, we have defined the effective modulation strength
parameter λm = δm∂Φωc

∣∣
Φ=θ

/ωφm [37].

II.2. Effective Hamiltonian

In the following, we consider two qubits (N = 2) and a
bichromatic modulation (M = 2). Assuming ω̄1 > ω̄2, static
interactions can be obtained from Eq. (9) and Eq. (10) for
modulation frequencies ωφm = (ωdi ± ωdj )/k with −k ∈ N.
The largest interaction strength corresponds to |k| = 1. We fo-
cus on the case of near resonant driving of the qubits ωd

j ≈ ω̄j .
Choosing the modulation frequencies to be resonant with
the difference and sum of the qubit drive frequencies, i.e.,
ωφ1 = ωd

1 − ωd
2 and ωφ2 = ωd

1 + ωd
2 , yields an effective, time-

independent two-qubit Hamiltonian

H̃eff ≈
∑
j=1,2

[
εj
2
σzj +

fj
2

(
cos(ϕj)σ

x
j − sin(ϕj)σ

y
j

)]
+

Ωx

2
σx1σ

x
2 +

Ωy

2
σy1σ

y
2 ,

(16)

where

Ωx = Ω̄+
1,2(−1, 1) + Ω̄−1,2(−1, 2) , (17)

and

Ωy = Ω̄+
1,2(−1, 1)− Ω̄−1,2(−1, 2) . (18)
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Here, only the term with k = −1 in Eq. (10) is relevant as
the remaining terms are off-resonant and can be neglected as
long as |g1g2/∆j | � ω1 − ω2 for j = 1, 2. To first order
in the modulation strength δm, we obtain analytic expressions
for these amplitudes (see Appendix D), i.e.,

Ω̄+
1,2(−1, 1) ≈δ1

g1g2

2
∂Φωc

∣∣
Φ=θ

×
( 1

∆θ
1,−∆θ

2,−
+

1

∆θ
1,+∆θ

2,+

)
, (19)

and

Ω̄−1,2(−1, 2) ≈− δ2
g1g2

2
∂Φωc

∣∣
Φ=θ

×
( 1

∆θ
1,−∆θ

2,+

+
1

∆θ
1,+∆θ

2,−

)
. (20)

The bichromatic modulation thus enables the independent
tuning of XX- and Y Y -type interactions where the strength
of the interaction mainly depends on the values of the modu-
lation amplitudes δ1 and δ2 applied to the tunable coupler. At
the same time, the external drive generates a transverse field
which can be used to simulate the classical and the quantum
Ising model as discussed in the next section. We note that
the results in Eq. (19) and Eq. (20) are equivalent to the cou-
pling strength of iSWAP and bSWAP gates as generated by
a monochromatic modulation with M = 1 [37]. However,
already to second order in λ1 and λ2, the coupling strength
of XX- and Y Y -type interactions cannot simply be obtained
from a linear superposition of the respective monochromatic
coupling strengths. This can be seen in Eqs. (13) and (14),
where the weight for the m-th modulation tone also depends
on the strength and frequencies of all other tones. For the
moment, we restrict ourselves to the case of resonant driving
with the single-qubit drive frequency equal to the dispersively
shifted qubit frequency, ωdj = ω̄j . Fig. 2 (a) shows a color plot
of Ωx in the plane defined by the two modulation strengths.
The corresponding values for Ωy can be seen in Fig. 2 (b).
The values for Ωx and Ωy are the result of pertubation theory
to second order in δ1 and δ2. They are obtained by expanding
the coupler frequency in Eq. (8) to second order in δ1 and δ2
and subsequent solution analogous to Appendix C.

II.3. Special case: Ising interactions

Driving the qubits on resonance and choosing the modula-
tion amplitudes δ1 and δ2 such that Ωy = 0 generates an ef-
fective Hamiltonian with pure Ising-type interaction (∼ XX).
The phase ϕj of the qubit drive determines the polarization of
the transverse field. Choosing ϕj = 0 yields single qubit σxj
terms that correspond to the classical Ising model, whereas the
choice ϕj = −π/2 leads to single qubit σyj terms. Rotating
about the x-axis by an angle of π/2 such that σyj → σzj then
yields the transverse quantum Ising model

HIsing =
∑
j

fj
2
σzj +

Ωx

2
σx1σ

x
2 . (21)

FIG. 2. The coupling strengths Ωx (a) and Ωy (b) as a function
of the modulation amplitudes δ1 and δ2. The values for Ωx and Ωy

are obtained from second order perturbation theory in δ1 and δ2 (the
lengthy algebraic expression are not shown in the text). The dashed
line is obtained from the first-order results in Eq. (22) and indicates
where Ωy = 0. The solid line shows the corresponding second or-
der results. The parameters are chosen as ω1/(2π) = 5.8 GHz,
ω2/(2π) = 5.0 GHz, ω0

c/(2π) = 7.3 GHz, g1/(2π) = g2/(2π) =
130 MHz, θ = −0.1φ0, u1/(2π) = u2/(2π) = uc/(2π) =
−250 MHz.

FIG. 3. The coupling strength Ωx as a function of the modulation
strength δ1. The value for δ2 has been chosen such that Ωy ≈ 0
for all values of δ1 (pure Ising interactions). The results of exact
numerical simulations of the full transmon Hamiltonian (2) (dots)
are compared to analytical results obtained from perturbation theory
in δ1 and δ2 to first [dashed line, see also Eqs. (19) and (20)] and
second order (blue, solid). The inset shows the minimum infidelity
1−F [Eq. (23)] for varying coupling strengths. The parameters are
chosen as in Fig. 2.

Using Eq. (19) and Eq. (20), we can explicitly write the con-
dition Ωy = 0 as

δ1
δ2

= −
∆θ

1,−∆θ
2,+ + ∆θ

1,+∆θ
2,−

∆θ
1,−∆θ

2,− + ∆θ
1,+∆θ

2,+

. (22)
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The dashed black line in Fig. 2 (b) corresponds to the sim-
ple formula in Eq. (22) and agrees well with the results ob-
tained from higher order pertubation theory for small modu-
lation amplitudes.
To benchmark our analytical findings for the coupling strength
of the XX-interaction, we perform numerical simulations of
the full transmon Hamiltonian Eq. (2) with the QuTiP pack-
age for Python [45]. In these simulations, the Hilbert space
is truncated to three levels per transmon. The system is ini-
tialized in the four computational basis states and then time-
evolved with the tunable coupler being modulated with differ-
ent modulation amplitudes δ1 and δ2. For the coupler mod-
ulation we use an envelope of a square pulse with a Gaus-
sian rise of ∼ 20 ns. In order to generated pure XX inter-
actions, we fix δ1 and choose δ2 according to the condition
Ωy = 0. The frequency of the resulting oscillations, i.e., the
coupling strength, is then extracted numerically. As we are in-
terested in the performance of the XX-gate Uxx = eiξσ

x
1σ

x
2 /2

for ξ = π, the qubit drives are turned off during the simula-
tions, i.e., f1 = f2 = 0. The results are shown in Fig. 3. A
comparison with analytic results obtained from a perturbative
expansion of the coupling strength in Eq. (16) in powers of
the modulation amplitudes shows excellent agreement (solid
and dashed line). The inset shows 1−F with F = maxt F(t)
and the average fidelity

F(t) =
1

4

∑
ψ0

∣∣〈ψ0|U†xxUnsim(t) |ψ0〉
∣∣2 . (23)

Here, the sum runs over all computational basis states and
Unsim(t) |ψ0〉 ≡ |ψ(t)〉 is the numerically time-evolved wave
function. We conclude that for the chosen parameters, a cou-
pling strength of up to ∼ 1.2 MHz with an infidelity 1 − F
below ∼ 10−3 is readily achievable. For a stronger modula-
tion, the fidelity of the gate decreases rapidly due to side-band
excitations of the coupler [37]. We also note that the sign of
the Ising interaction strength can be chosen arbitrarily by ad-
justing the phase of the flux modulation in Eq. (5).

III. ADIABATIC SIMULATION IN THE ROTATING
FRAME

The parametric setup introduced in Section II can be used
as an adiabatic quantum simulator. Here, the system is ini-
tialized in an eigenstate of an easily preparable Hamiltonian
H0 followed by an adiabatic variation of the Hamiltonian pa-
rameters. The final parameter configuration after a protocol
run time T is such that the system Hamiltonian matches some
target Hamiltonian HT

H(t) = (1− t/T )H0 + (t/T )HT . (24)

We propose a scheme for the adiabatic simulation of Hamil-
tonian (1). It consists of three basic steps: initialization, time
evolution and measurement. As in Sections II.2 and II.3, we
focus on the special case of two qubits N = 2. A schematic
of the adiabatic protocol can be found in Fig. 4.

FIG. 4. Effective parameters of the Hamiltonian (16) as a function of
time t during a linear, adiabatic protocol. The final parameter con-
figuration corresponds to the Hamiltonian of the hydrogen molecule
Eq. (30) for an atomic separation of R = 0.37 Å. The system pa-
rameters are the same as in Fig. 2. The parameters of the single
qubit terms are shown in (a). The strength fj(t) (orange, dashed)
of the transverse fields increases linearly [Eq. (31)]. The shape of
the detunings εj(t) (red, solid) is the result of the linear frequency
variation of ωd

j (t) [Eq. (33)] and an additional non-linear dispersive
shift proportional to the modulation amplitudes δ1(t) and δ2(t). The
dispersive shifts are obtained from second order pertubation theory
(see Appendix A). The interaction strength Ωx (purple, solid) and Ωy

(green, dashed) of the XX and Y Y -interaction terms due to a linear
increase of the flux modulation amplitude [see Eq. 32] are shown in
(b). A schematic (not to scale) for the external qubit drive and the
magnetic flux threading the coupler can be seen in the insets of panel
(a) and (b), respectively.

First, as an initial Hamiltonian H0, we choose the un-
modulated and undriven Hamiltonian (2) with ωc = ωθc and
f1 = f2 = 0. The eigenstates of the effective initial Hamil-
tonian are thus Z-polarized states. Subsequently, the exter-
nal drives and the modulation of the coupler are adiabatically
turned on such that after a protocol runtime T , the effective
Hamiltonian (16) is equivalent to HT. For the qubit-qubit in-
teractions, this is achieved by choosing the final values δT

1

and δT
2 such that they correspond to the interaction strengths

Jx
1,2 and Jy

1,2 of HT in Eq. (1). Using the analytical results in
Eq. (19) and Eq. (20) this gives the conditions

δT
1 =

Jx
1,2 + Jy

1,2

g1g2∂ωc|Φ=θ

(
∆1,−∆1,+∆2,−∆2,+

∆1,−∆2,− + ∆1,+∆2,+

)
, (25)

and

δT
2 =

Jx
1,2 − J

y
1,2

g1g2∂ωc|Φ=θ

(
∆1,−∆1,+∆2,−∆2,+

∆1,−∆2,+ + ∆1,+∆2,−

)
. (26)

The local bias fields can be simulated by generalizing the drive
term used in Eq. (9) to incorporate explicitely time dependent
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frequencies

Hd(t) = fj(t)/2
(
σ+
j exp(−i [ϑj(t) + ϕj ]) + h.c.

)
. (27)

Here, the drive strength fj(t) is potentially time-dependent as
well. The transformation to the rotating frame is then medi-
ated by

R′(t) = exp

−i ∑
j=1,2

ϑj(t)σ
z
j /2

 . (28)

As a result, the detuning εj in Eq. (9) and Eq. (16) is replaced
by the generalized expression

εj(t) = ωd
j (t)− ω̄i(t) , (29)

where ωd
j (t) = ∂tϑj(t). Here, ω̄i(t) denotes the effective

qubit frequency, which is time-dependent because the disper-
sive shift depends on the modulation strength. An adiabatic
variation of the σzj terms can be thus accomplished by appro-
priatly varying the frequencies of the single qubit drives. The
strength and polarization of the transverse fields can be con-
trolled by the amplitude and phase of the qubit drives.

Finally, after this adiabatic variation step, the drives are
turned off quickly and the final state of the system is mea-
sured.

III.1. Example: hydrogen molecule

A particular interesting application of adiabatic comput-
ing concerns the simulation of ground states of molecules in
quantum chemistry. In the following, we apply the scheme
described above to the simulation of the ground state of the
hydrogen molecule and perform numerical simulations using
realistic device parameters. The two-qubit target Hamiltonian

HH2(R) = Ay(R) (σy1 + σy2 ) + Jx(R)σx1σ
x
2 + Jy(R)σy1σ

y
2 ,

(30)
is isospectral to the hydrogen molecule in the singlet sub-
space [46]. We effectively obtain this Hamiltonian by choos-
ing ϕj = −π/2 as well as a vanishing detuning εj = 0
in Eq. (16). The precise parameter values for the drive and
interaction strength then depend on the distance R between
the hydrogen atoms. Their spatial dependence is shown in
Fig. 5 (a). For small atomic distances, the eigenstates of this
Hamiltonian are mostly governed by the single qubit terms,
whereas with increasing atomic distances, the XX interac-
tions become dominant.

We use QuTiP to perform numerical simulations of the
Schrödinger equation for the full parametric setup with the
Hamiltonian (2) truncated to three levels per transmon. An
exemplary time evolution of the effective Hamiltonian param-
eters involved in the simulation of Eq. (30) is shown in Fig. 4.
For simplicity, we choose a linear adiabatic protocol for all
parameters. The drive and modulation strengths are tuned ac-
cording to

f1(t) = f2(t) = Ay(R)
t

T
, (31)

FIG. 5. (a) Parameters of the Hamiltonian (30) of the hydro-
gen molecule as a function of the distance R between the hydrogen
atoms. The curves correspond to the final values in the adiabatic
protocol and depict Ay (orange, solid), Jx (dashed, green) and Jy
(dotted, purple). (b) Ground state energy of the hydrogen molecule
as a function of R. The solid line is obtained from numerical di-
agonalization of Eq. (30) whereas the dots (blue) are the results of
numerical simulations with a fixed evolution time of T = 3.5µs.
The upper inset shows the difference ∆E between the energy ob-
tained from numerical diagonalization of Eq. (30) and the simulation
results (blue, dots), and the error 1 − FT of the fidelity at the end
of the evolution (black, triangles). The lower inset shows the inverse
of the minimal spectral gap during the adiabatic protocol. Here, we
have chosen ε0/(2π) = 2.5 MHz for all R with the device parame-
ters for the simulation being the same as in Fig. 2.

and

δm(t) = δT
m(R)

t

T
, (32)

where δT
m(R) is chosen such that Ωx(T ) = Jx(R) and

Ωy(T ) = Jy(R). The protocol for the drive frequency ωd
j (t)

is given by

ωd
j (t) = ω̄Tj − ε0

(
1− t

T

)
. (33)

The second term in Eq. (33) ensures a small initial qubit de-
tuning at t = 0 in order to mimic a Z-polarization of the
initial Hamiltonian in the rotating frame. The effective qubit
frequencies ω̄T

j = ω̄i(T ) at the end of the evolution are ob-
tained by numerically maximizing the contrast of the oscilla-
tions between the |01〉 and |10〉, and the |00〉 and |11〉 states
while simultaneously modulating the coupler at both final val-
ues δT

1 and δT
2 of the modulation amplitudes. The effective

qubit frequencies are then given by half of the sum/difference
of the respective transition frequencies. In order to ensure
that the interaction terms in Eq. (9) are static in the rotating
frame, the coupler modulation frequencies are kept in reso-
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nance with the sum and difference of the qubit drive frequen-
cies throughout the evolution. In Eq. (33) we have chosen ε0
to be the same for both qubits such that the difference modu-
lation frequency ωφ1 (t) = ω̄T

1 − ω̄T2 is constant during the pro-
tocol whereas the sum modulation frequency ωφ2 (t) is given
by ωφ2 (t) = ω̄T

1 + ω̄T
2 − 2ε0 (1− t/T ). In the numerical sim-

ulations, we have fixed ε0/(2π) = 2.5 MHz.

At the end of the evolution, we extract a two-qubit state
ψT from the three-transmon state ΨT by performing a partial
trace over the coupler degrees of freedom followed by a pro-
jection to the two lowest qubit energy levels. By calculating
the norm of the projected state ψT, we can quantify the leak-
age to higher transmon levels. For all simulations performed
in this section, we find the deviation from the unit norm to be
smaller than 3 × 10−4, indicating that the population of the
higher transmon levels is negligible. After the projection, we
transform ψT to the rotating frame ψ̃T = R′(T )ψTR

′†(T ).
From this state, we calculate the energy for each value of R
by determining the expectation values 〈σy1 〉, 〈σ

y
2 〉, 〈σ

y
1σ

y
2 〉 and

〈σx1σx2 〉. The energy is given by

E = 〈HT〉 = Ay (〈σy1 〉+ 〈σy2 〉) + Jx 〈σx1σx2 〉+ Jy 〈σy1σ
y
2 〉 .
(34)

Fig. 5 (b) shows the ground state energy of the hydrogen
molecule. For the results of the numerical simulations (dots),
the protocol time is kept fixed at T = 3.5µs for all values of
R. The respective final values for the modulation amplitudes
δT
1 and δT

2 are obtained from second order pertubation theory
in δ1 and δ2. The minimal evolution time required for an adi-
abatic evolution is inversely proportional to the minimal gap
gmin between the ground state and the first excited state. The
inverse g−1

min of this spectral gap for the effective Hamiltonian
Eq. (16) can be seen in the lower inset of Fig. 5 (b). We find
that the simulation results are in very good agreement with the
exact ground state for atomic distances below ∼ 0.8 Å. The
difference ∆E between the energy obtained from the simu-
lations and the numerical diagonalization of Eq. (30) is well
below chemical accuracy (< 1.5 mhartree). In this regime,
the final Hamiltonian is dominated by single qubit terms and
the corresponding spectral energy gap is relatively large. Fi-
nally, we calculate the final fidelity

FT = Tr

(√√
ψ̃TφT

√
ψ̃T

)2

, (35)

with φT = |φT 〉〈φT | being the ground state of the tar-
get Hamiltonian obtained from numerical diagonalization of
Eq. (30). Both, ∆E and the error 1−FT increase notably for
an atomic distance larger than ∼ 0.8 Å. This is due to the de-
creasing spectral gap with increasing R. Achieving the same
level of precision as for smaller values of R requires slower
sweep speeds which correspond to longer evolution times for
a fixed protocol.

III.2. Dissipative protocol

In order to take dissipative effects into account, we simulate
the Lindblad master equation

Ψ̇ = −i[HTr,Ψ] +
∑

j=1,2,c

(
Γ−j L[aj ]Ψ + Γz

jL[a†jaj ]Ψ
)
,

(36)
with the standard Lindblad operator

L[C] = (2CΨ(t)C† −
{

Ψ(t), C†C
}

)/2 . (37)

Here, {·, ·} denotes the anticommutator. Note that since HTr

is the transmon Hamiltonian defined in Eq. (2), the simu-
lations are carried out in the lab frame. The decoherence
rates are determined in terms of coherence times T1,j and
T2,j (j = 1, 2, c) via Γz

j = (1/2)(1/T2,j − 1/(2T1,j)) and
Γ−j = 1/T1,j .

Fig. 6 shows results of simulations performed with the same
device parameters as in the caption of Fig. 2. The dissipation
rates Γ−j and Γz

j , stated in the caption of Fig. 6, are chosen to
have realistic values for currently used devices. In contrast to
the dissipation-free simulations, there are two competing pro-
cesses that lead to the emergence of an optimal protocol run
time Topt at which FT is maximal and ∆E is minimal. Short
protocol times, i.e., fast sweep rates lead to a decrease in the
fidelity because of non-adiabatic transitions whereas for long
protocol times, i.e., slow sweep rates, a decrease in fidelity is
caused by dissipation and decoherence. This determines the
optimal protocol run times Topt. Note that in Eq. (36) we
implicitly assume a zero-temperature bath. In non-driven sys-
tems, this leads to a relaxation into the instantaneous ground
state [47]. This is in contrast to the case considered here where
the external driving leads to a non-equlibrium steady state.
The optimal protocol time as a function of atomic separation
as obtained by numerical simulation of the adiabatic protocol
for values of T ranging from 0.4µs to 10µs is shown in Fig. 6
(a). The optimal time Topt remains approximately constant at
about ∼ 1µs for atomic distances below R ∼ 0.55 Å and in-
creases asR is increased further. This is in agreement with the
findings for the dissipation-less protocol. The decreasing gap
for large values of R requires slow adiabatic sweep speeds to
reduce the effects of non-adiabatic transitions. As can be seen
in the inset of Fig. 6 (a), the fidelity as a function T features
oscillation for short evolution times in the regime of small R
which are smoothened for larger values of R. The shape of
these oscillations is strongly dependent on the protocol [48]
and the precise location of their maxima determines the exact
values of ∆E andFT. As can be seen in Fig. 6 (b), the fidelity
and the accuracy in determining E decrease with increasing
R similar to the dissipation-free case. Notably however, they
feature a maximum around ∼ 0.3 Å (corresponding to a min-
imum in ∆E and 1−F).
To study the influence of the different decoherence channels
in more detail, we perform simulations with varying qubit and
coupler coherence times. The inset in Fig. 6 (b) shows the er-
ror ∆E of the energy as a function of coherence times Tcoh of
the qubits where for simplicity, the T1 and T2 times are cho-
sen to be the same, i.e., Tcoh ≡ T1,j = T2,j for (j = 1, 2). In
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FIG. 6. (a) Optimal run time Topt of the adiabatic protocol for the
ground state of the hydrogen molecule as a function of atomic dis-
tanceR. Results are numerical solutions of the master equation (36).
The inset shows the final fidelityFT as a function of the protocol run
time T forR = 0.37 Å (red, solid),R = 0.74 Å (orange, dotted) and
R = 1.30 Å (purple, dashed). The corresponding data points in the
main plot are highlighted with the respective colors. (b) Error ∆E of
the energy (blue) and error 1− FT of the final fidelity (black) at the
optimal protocol runtimes Topt for varying values of R. The Hamil-
tonian parameters are chosen as in Fig. 2 with an initial detuning of
ε0/(2π) = 2.5 MHz. Decoherence times are T1,1 = T1,2 = 60µs,
T2,1 = T2,2 = 40µs, T1,c = 10µs and T2,c = 1µs of qubit 1,
qubit 2 and the tunable coupler, respectively. The inset in (b) shows
∆E for R = 0.37 Å for a fixed protocol run time T = 730 ns as
function of coherence times Tcoh ≡ T1,j = T2,j for (j = 1, 2) of
the qubits. The solid line (blue) shows the result for a decoherence-
free coupler Γz

c = Γ−
c = 0. The dashed (orange) and dotted (red)

lines are both obtained with the same T1,c and different T2,c, i.e.,
T1,c = 10µs and T2,c = 10µs and T2,c = 1µs, respectively.
The chemical accuracy threshold is shown as a horizontal line (black,
dashed).

this example, the atomic separation is R = 0.37 Å with a pro-
tocol run time of 730 ns. We compared the results obtained
with an ideal coupler with Γzc = Γ−c = 0 to simulations with
a coupler coherence time of T1,c = 10µs and two different
T2 times T2,c = 1µs (red, dotted) and T2,c = 10µs (orange,
dashed). We find that chemical accuracy can be reached at a
qubit coherence time of Tcoh ∼ 650µs for the dissipation-
free coupler. With the same qubit coherence times, the re-
sults obtained from a dissipative coupler with T2,c = 1µs are
∼ 2 mhartree away from chemical accuracy, whereas with a

coupler coherence time of T2,c = 10µs the error ∆E is only
∼ 0.2 mhartree away from chemical accuracy. We there-
fore conclude that the dominant coherence time scale in the
adiabatic protocol is the coherence time of the computational
qubits if the coupler coherence is longer than the protocol du-
ration T . This is in agreement with the results obtained for the
gate fidelity of iSWAP and bSWAP gates in Ref. [37].

IV. SUMMARY AND OUTLOOK

In summary, we have theoretically studied a parametric
modulation scheme based on the bichromatic modulation of
a tunable coupling device that allows for the creation of pure
Ising-type interactions as well as a combination of XX and
Y Y -type interactions with an arbitrary ratio. We have de-
rived compact analytic expressions for the resulting coupling
strength that are in good agreement with numerical calcula-
tions for the case of bichromatic driving. In addition, it is
possible to obtain a ZZ-term by driving the |11〉 ↔ |20〉 tran-
sition off-resonantly [49, 50], which in combination with the
XX and Y Y -terms can be used to implement more general
Hamiltonians as subject of further studies.
By considering the hydrogen molecule as an example system,
we have numerically demonstrated the feasibility of perform-
ing adiabatic quantum simulations with parametrically gener-
ated interactions. The proposed simulations are performed in
a rotating frame with an external drive applied to the qubits.
For small atomic distances, we are able to calculate the molec-
ular energy with chemical accuracy in dissipation-free simu-
lations. The predicted optimal protocol run time for dissipa-
tive simulations is in the few microsecond range for typical
device and coherence parameters. We find that for the lin-
ear protocol used in this work, coherence times of a few hun-
dred microseconds are needed to reach chemical accuracy. We
are optimistic that coherence times will improve in future de-
vices. However, using optimized adiabatic pulses rather than
a linear protocol could be a way of mitigating the errors in
the meanwhile. An optimized protocol reduces the amount
of non-adiabatic transitions for a given protocol time. The
protocol time can therefore be reduced while keeping the adi-
abatic error constant. The reduction of the protocol time in
turn reduces the errors due to decoherence, as the dissipative
effects take place over a shorter period of time. The presented
scheme is generalizable to the simulation of excited states by
choosing different initial states. Furthermore, the model is
also valid for more than two qubits coupled to a single tun-
able coupler which would allow for the simulation of more
complex systems. In this case, the simultaneous generation of
pairwise coupling between qubits is accessible by modulating
the coupler at the respective difference and sum frequencies.
This requires a modulation of the coupler at M > 2 frequen-
cies which goes beyond the case of M = 2 discussed in detail
here. To avoid problems such as frequency crowding, the sys-
tem parameters have to be chosen carefully. This is especially
true if the coupler is modulated at more than two frequencies
at a time. A detailed analysis of multiple qubits coupled to a
single resonator is therefore subject of future work. While for
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simple systems such as the hydrogen molecule the required
interactions can be implemented directly, for more compli-
cated molecules interactions may have to be decomposed into
2-local interactions using perturbative gadgets. However, our
method is directly applicable to study interacting spin systems
with nearest-neighbour couplings with adjustable ferromag-
netic and anti-ferromagnetic couplings.
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Appendix A: Time-dependent Schrieffer-Wolff transformation
(SWT)

In this Appendix, we eliminate the coupling between the
qubits and the tunable coupler with a generalized SWT. An
effective N-qubit description of Eq. (4) can then be obtained
by assuming that the coupler remains in its ground state. To
this end, we briefly summarize the main results of the time-
dependent SWT derived in [37]. First, we separate the Hamil-
tonian (4) into a local part H0 and two-qubit interactions
V , i.e., we write H = H0 + V with V =

∑
j gjσ

x
j σ

x
c .

This Hamiltonian can be brought into block diagonal form
by applying a unitary transformation U(t) = exp{S(t)} with
S† = −S. A perturbative expansion to second order in the
coupling gj yields

H̄ = UHU† − iU
(
∂U

∂t

)†
≈ Heff +HV , (A1)

with

Heff ≈ H0 + [S, V ] +
1

2
[S, [S,H0]] +

i

2

[
S,
∂S

∂t

]
, (A2)

and

HV = i
∂S

∂t
+ [S,H0] + V . (A3)

Inserting the ansatz Eq. (7) into Eq. (A2) yields

Heff =
∑
j

[
− ω̄j

2
σzj +

(
fj
2
e−i(ω

d
j t+ϕj)σ+

j + h.c.

)]
− ω̄c(t)

2
σzc +

∑
i<j

(
Ω+
ij(t)σ

+
i σ
−
j σ

z
c

+ Ω−ij(t)σ
+
i σ

+
j σ

z
c + h.c.

)
. (A4)

Here, the dispersively shifted qubit frequencies

ω̄j(t) = ωj + gj
∑
µ=±

Re(αj,µ(t)) , (A5)

and the coupling strengths

Ω−ij(t) =
(
giα
∗
j,−(t) + gjαi,−(t)

−giα∗j,+(t)− gjαi,+(t)
)
/2 , (A6)

as well as

Ω+
ij(t) =

(
giαj,−(t) + gjαi,−(t)

−giαj,+(t)− gjαi,+(t)
)
/2 , (A7)

are functions of the Schrieffer-Wolff coefficients αj,±(t). The
necessary condition that the qubit and coupler subspaces de-
couple is HV = 0. This leads to the differential Eq. (8)
from which the coefficients αj,±(t) can be determined (see
Appendix C for an explicit solution). In arriving at Eq. (A4)
we assume that the drive is left invariant under the SWT (see
Appendix B).We now set σzc ≈ 1 in Eq. (A4) and omit the re-
sulting constant term. A subsequent transformation to a frame
rotating at the qubit drive frequencies yields the effective two-
qubit Hamiltonian (9) in the main text.

Appendix B: Discussion of the drive terms

The generator of the SWT in Eq. (7) is chosen such that the
transformed Hamiltonian is block diagonal in the absence of
external driving (fj = 0). In order to ensure that this ansatz is
still applicable for small, but finite drive amplitudes, we now
consider the dispersive transformation of the drive Hamilto-
nian Hd =

∑
j(fj/2)σ+e−iω

d
j t + h.c. (here, we have chosen

ϕ1 = ϕ2 = 0 for simplicity). To leading order in gj we need
to consider H̃d ≈ Hd +

[
S,Hd

]
. The commutator yields

terms of the type ∼ fjαj,±(t)σzjσ
±
c , which in principle lead

to a coupling between the computational and the tunable cou-
pler. However, as long as fj � gj these terms are still small
compared to the effective interactions Ωj,± ∼ gjαj,±. With
the external drives near resonance and modulation frequen-
cies chosen as in the main text, the residual coupling terms
still rotate rapidly at the side-band frequencies ∼ |∆j,±| and
can thus be neglected. In this paper we have chosen bare cou-
pling strength gj which exceed the drive strength fj by more
than two orders of magnitude and find excellent agreement be-
tween the effective model in Eq. (16) and the exact numerics
based on Eq. (2), see Fig. 5.

Appendix C: SWT coefficients for bichromatic modulations

Eq. (8) is of the general form

ẏ + P (t)y = Q , (C1)

with y = αj,±(t), Q = igj and P (t) = ∆j,±(t). It has the
solution

y(t) = u−1(t)

(ˆ
u(t′)Qdt′ + C±

)
, (C2)



10

with the integrating factor u(t) = exp
(´
P (t′) dt′

)
and the

integration constant C±. For the bichromatic modulation
Eq. (5) we expand the coupler frequency to first order in δ1
and δ2 [Eq. (6)] which yields the integrating factor

u(t) = ei∆
θ
j,±te±i

∑
m λm sin(ωφmt) , (C3)

with λm = ∂Φωc

∣∣
Φ=θ

δm/ω
φ
m and the detuning ∆θ

j,± = ωj ±
ωθc . Using the identity

eix sin z =

∞∑
n=−∞

Jn(x)eiz , (C4)

where Jn(x) is the n-th Bessel function of the first kind, we
can solve the remaining integral

αj,±(t) =gj

[ ∞∑
r1,...,rM=−∞
q1,...,qM=−∞

Jr1−q1 (∓λ1) . . . JrM−qM (∓λM)

×Jq1 (±λ1) . . . JqM (±λM)

× eir1ω
φ
1 t . . . eirMω

φ
Mt

q1ω
φ
1 + · · ·+ qMω

φ
M + ∆θ

j,±

]
+ Cj,±(t) . (C5)

By plugging this expression into Eq. (A6) and Eq. (A7), we
see that the coupling coefficients Ω±ij(t) rotate at linear com-
binations of the modulation frequencies ωφm. For the case of a
bichromatic modulation (M = 2) we find

αj,±(t) = gj
[ ∞∑
m,n,n′,m′=−∞

Jm−m′ (∓λ1) Jn−n′ (∓λ2)

×Jm′ (±λ1) Jn′ (±λ2)
ei(mω

φ
1 +nωφ2 )t

m′ωφ1 + n′ωφ2 + ∆θ
j,±

]
+ Cj,±(t) , (C6)

where we have defined

Cj,±(t) = e−i∆
θ
j,±te±i

∑
m λm sin(ωφmt)C0

j,± . (C7)

With the initial condition αj,±(0) = gj/∆
θ
j,±, we obtain

C0
j,± =

gj
∆θ
j,±
− gj

∑
m,n

Jm(±λ1)Jn(±λ2)

mωφ1 + nωφ2 + ∆θ
j,±

. (C8)

As in the main text, we consider near resonant qubit driving
ωd
j ≈ ω̄j and choose the modulation frequencies to corre-

spond to the sum and the difference of the qubit drive fre-
quencies, i.e., ωφ1 ≈ ωd

1 − ωd
2 and ωφ2 ≈ ωd

1 + ωd
2 . In order

to generate static interactions in Eq. (16), we only keep terms

in Eq. (C6) that rotate at multiples of ωφ1 or ωφ2 . Here we
have assumed that mωφ + nωφ is detuned from ω̄1 ± ω̄2 for
|n|, |m| > 0. The only terms satisfying this conditions are
those where either m = 0, n 6= 0 or n = 0,m 6= 0, i.e.,

αj,±(t) ≈ ᾱj,±(0) +
∑
m,k 6=0

ᾱj,±(k,m)eikω
φ
mt , (C9)

with ᾱj,±(k,m) given in Eq. (C10) as

ᾱj,±(k,m) = gj
∑
q,p

Jk−q (∓λm) Jq (±λm) Jp (±λn)
2

qωφm + pωφn + ∆θ
j,±

,

(C10)

where n 6= m and

ᾱj,±(0) = gj
∑
q,p

Jq (±λ1)
2
Jp (±λ2)

2

qωφ1 + pωφ2 + ∆θ
j,±

. (C11)

Eq (C9) is then plugged into the corresponding expressions
Eq. (A6) and Eq. (A7) for the coupling strength whereas sub-
stituting Eq. (C9) into Eq. (A5) yields the dispersive shifts.
By expanding the coupler frequency up to second order in the
modulation strength δm one can still solve Eq. (8) and derive
analytic expression for the coupling strength and dispersive
shifts. Since these expressions are rather cumbersome to write
down, we have omitted them here for brevity.

Appendix D: Weak modulation approximation

We can simplify Eq. (C10) and Eq. (C11) in the limit of
small modulation strength δm such that λm � 1. In this
limit, the Bessel functions can be approximated by Jn(x) ≈
(1/n!)(x/2)n for n ≥ 0 and Jn(x) ≈ 1/(−n)!(−x/2)−n for
n < 0. First, we consider the term with k = 0 [Eq. (C11)]. To
leading order in λm we obtain

ᾱjj,±(0) =
gj

∆θ
j,±

+
∑

m′=1,2

gj
2

λ2
m′∆

θ
j,±

(∆θ
j,±)2 − (ωφm′)

2
+O(λ3

m) .

(D1)

Plugging this result into Eq (C9) and subsequently into
Eq. (A5) yields an analytic expression for the dispersive shifts.
Finally, we evaluate the term with |k| = 1 in Eq. (C10) and
obtain

ᾱj,±(k,m) = ±gj
2
k
[ λm

kωφm + ∆θ
j,±
− λm

∆θ
j,±

]
+O(λ3

m) .

(D2)

Plugging this result into Eq. (11) yields the effective coupling
strengths Eq. (19) and Eq. (20) in the main text.
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