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We compare the performance of quantum error correcting codes when memory errors are unitary
with the more familiar case of dephasing noise. For a wide range of codes we analytically compute
the effective logical channel that results when the error correction steps are performed noiselessly.
Our examples include the entire family of repetition codes, the 5-qubit, Steane, Shor, and surface
codes. When errors are measured in terms of the diamond norm, we find that the error correction
is typically much more effective for unitary errors than for dephasing. We observe this behavior
for a wide range of codes after a single level of encoding, and in the thresholds of concatenated
codes using hard decoders. We show that this holds with great generality by proving a bound on
the performance of any stabilizer code when the noise at the physical level is unitary. By comparing
the diamond norm error D′� of the logical qubit with the same quantity at the physical level D�, we
show that D′� ≤ cDd

� where d is the distance of the code and c is a constant that depends on the
code but not on the error. This bound compares very favorably to the performance of error correction
for dephasing noise and other Pauli channels, where an error correcting code of odd distance d will
exhibit a scaling D′� ∼ D

(d+1)/2
� .

I. INTRODUCTION

Building a large-scale quantum computer will require substantial efforts to mitigate noise through the use
of quantum error correction and fault tolerance. The fault tolerance threshold theorem [1–4] guarantees that
as long as the errors are sufficiently rare and weakly correlated, an arbitrarily long quantum computation can
proceed indefinitely and with low overhead. The exact numerical value of the threshold depends critically
on the assumptions about the noise, and from the perspective of fault-tolerant quantum computing not all
types of errors are equivalent. This is even true for uncorrelated noise, since errors such as dephasing and
depolarizing noise are purely stochastic, but control errors such as unitary over- or under-rotation can add
coherently.

This distinction between stochastic and coherent errors was recognized quite early on to be important [5].
In particular, using our best theorems to date, the only known way to relate the threshold for stochastic errors
to the threshold for coherent errors is to square the stochastic value of the threshold [6]. Thresholds quoted
in the literature for stochastic-type noise range between values of about 10−2 to 10−4 depending on how
generous the assumptions are on the stochastic noise and whether the threshold is a numerical estimate based
on simulation [7] or a theorem based on rigorous proof [8] (or something intermediate). Not knowing if
these values need to be squared therefore represents a rather large gap in our understanding of the threshold.
The situation is complicated by the fact that the only large-scale numerical simulations that are tractable
must necessarily deal with Pauli errors, for which it is known that the squaring is unnecessary [9].

The role that non-Pauli errors play in the fault-tolerance threshold is therefore quite poorly understood.
Some recent works are beginning to develop our understanding, such as the use of the so-called honest Pauli
approximation [10] or recent full-scale simulations of coherent noise, using small codes [11], using tools
such as tensor networks [12], or in some special cases via an exact solution [13–15].

The focus of this paper is on understanding the role of coherent errors in quantum error correction. In
order to motivate our main results, it is helpful to focus the discussion on two meaningful quantities that we
wish to study, the average gate infidelity r and the diamond distance D�, defined below. This will also help
motivate the particular scaling behavior that we seek to quantify.

We would like to compare quantities that can actually be measured in experiments directly to the fault-
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tolerance threshold. Unfortunately, here we see another large gap between what we can measure and what
we can infer about the threshold. For example, the average gate infidelity r(E), defined as

r(E) = 1−
∫

dψ〈ψ|E(ψ)|ψ〉, (1)

is routinely measured to high precision in randomized benchmarking experiments [16]. However, all of our
provable knowledge about thresholds uses a much stricter error metric, the diamond distance D�(E) to the
identity, defined as

D�(E) =
1

2
‖E − I‖� :=

1

2
sup
ρ

∥∥E ⊗ I(ρ)− ρ
∥∥

1
(2)

in terms of the Schatten 1-norm (the sum of the singular values). The gap between these two quantities
in the regime of interest can be orders of magnitude in general, a point recently emphasized by Sanders
et al. [17]. Unfortunately, there is no simple way to measure the diamond distance in general without doing
complete process tomography [18].

Recent work has sought ways to quantify the worst-case behavior needed to prove a threshold theorem
using measurement methods that are preferably scalable and avoid tomography. Examples include gate
set tomography [18] and the unitarity [19], though neither method is completely scalable in contrast to
randomized benchmarking.

Complementing this line of research, and motivating the upper bound we prove below in Theorem 1,
is the theoretical approach of [20, 21], which seeks to classify physical noise sources in terms of “good”
and “bad” noise scaling. A family {Eγ : γ ∈ [0, 1]} of noise models with E0 = I has “good” scaling
if D�(Eγ) ≤ Cr(Eγ) and “bad” scaling if D�(Eγ) ≥ C ′

√
r(Eγ) for all γ ∈ [0, 1] and some constants

C,C ′ > 0 that are independent of γ. Other scalings are also possible, and could be called “intermediate”.
The purpose of this coarse distinction is that for a given noise channel E , if D�(E) ≈ r(E) then the proxy
measure of r(E) that is easily obtained via benchmarking gives a good indication of how close one might
be to the threshold, while if D�(E) ≈

√
r(E) then the proxy is highly misleading. These scaling limits

are extremal [17, 20–22]. Of course, the usefulness of this distinction depends implicitly on the constants
C and C ′ being relatively civilized. Taking, say, C = 1015 shows that all noise is trivially good until
r(Eγ) . 10−30. Similarly, we also need C ′ to be sufficiently large for this distinction to be meaningful in
practice. However, while we are always ultimately interested in absolute noise rates on single instances,
hiding these constants and discussing scaling enables us to make important physical insights into the nature
of noise sources and what the expected effect might be on quantum information.

Illustrating the utility of this scaling behavior perspective, Ref. [20] classifies many common qubit noise
models such as dephasing, depolarizing, amplitude damping, leakage, and unitary errors according to this
dichotomy. It is only the unitary errors and so-called “coherent leakage” that exhibit bad error scaling [20].
By combining some knowledge of the dominant noise process with measurements of r(E) and the afore-
mentioned unitarity, Refs. [20, 21] show that it is possible to obtain pertinent information about how close
one’s qubits are to the fault-tolerance threshold.

This discussion of scaling focused on the case of physical errors, but even more desirable would be
to understand the scaling of logical error rates in quantum error correcting codes [23]. Motivated by the
above notions of good and bad error scaling in regards to physical errors, we seek to develop an analogous
understanding of how coherent and incoherent errors scale at the logical level. It has been observed numer-
ically that there can be orders of magnitude difference in the logical error rates after concatenating quantum
codes [24], so a priori it is not clear that it is possible to obtain a simple scaling dichotomy as we seem to
have in the case of physical errors.
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A. Summary of Results

In this paper, we focus on physical qubit noise channels with both unitary control errors and dephasing
noise. We aim to compare the performance of ideal error correction for coherent noise channels, for which
the diamond norm distance greatly exceeds the average fidelity error, with dephasing, for which they are
comparable. The main tool is to calculate effective noise channels for the encoded qubits after error correc-
tion, following Rahn et al. [25]. Broadly, the results of our investigations into the performance of ideal error
correction under coherent errors suggest that simply considering diamond norm error at the physical level
overstates the effect that residual coherent errors will have on logical information in a quantum computer.

In order to develop our analytical methods we begin in section III by revisiting the case of the repetition
codes studied by Greenbaum and Dutton [13]. Although these are not proper quantum error correcting
codes they can correct against Z-rotations and dephasing, and are simple enough to be analytically tractable
for arbitrarily high distance codes. As has been shown previously [24], the performance of error correction
depends very strongly on how coherent the noise process is, and is not predicted by a single figure of merit
for the noise, such as average fidelity or diamond norm distance.

One apparently new result of this analysis relates to the nature of the effective noise channels for codes
where the distance is odd or even. If the noise process is a purely unitary rotation about Z and the repetition
code has odd distance we find that the effective noise channel conditioned on syndrome measurement is
also unitary. Consequently the statistics of syndrome measurement are independent of the logical state
of the code. For the case of even distance repetition codes, however, we find that the effective channel
conditioned on the syndrome measurement corresponds to a (very) weak measurement of logical Z. As a
result the syndrome measurement outcomes do depend weakly on the logical state of the qubit. However,
the effective noise channel averaged over syndromes is pure dephasing, even when the underlying physical
noise process is purely unitary. We have observed qualitatively similar behavior for even distance surface
codes.

In section IV we apply these methods of calculation of effective channels to general stabilizer codes.
Our main analytical result is theorem 1, which roughly states the following. For any [n, k, d] stabilizer
code, the logical diamond norm error D′� after ideal error correction of a purely unitary error is bounded
by D′� ≤ cn,kD

d
� in terms of the physical diamond norm error D�, where cn,k is a constant independent

of the errors (but may depend on the code). This result does not just apply to uniform unitary noise, but is
readily generalized to hold for all single qubit unitary noise if we express the bound in terms of the largest
value of D� across the physical qubits. This is very favorable behavior compared to the performance of
error correction for dephasing noise. Recall that an error correcting code of odd distance d will correct t
dephasing errors where d = 2t + 1. Consequently for dephasing it is known that D′� scales like Dt+1

� .
Another way to assess this comparison between coherent and dephasing noise after error correction is to
express this bound in terms of the average fidelity error r at the physical level D′� ≤ crt+1/2, where c is a
constant that depends on the code but not on the unitary error. (Recall that for a coherent error D� scales
like r1/2.) This compares quite favorably to the well-known scaling rt+1 for dephasing errors.

In section V we compute the effective noise channels for a range of quantum codes using an automated
procedure. We consider unitary qubit noise and study how the performance of the code depends on the axis
of rotation in the Bloch sphere. There are frequently large effects. For example, for the surface code the
error correction performs much better for rotations about the Y axis, than for rotations about X and Z. This
observation is analogous to the recently discussed behavior of the surface code under Pauli noise [26].

Finally, in section VI we study concatenated codes for noise channels that combine Z-rotations with
dephasing using a hard decoder. Again we use an automated procedure to generate the effective channel for
a single level of encoding. By regarding these effective channels as a map on noise processes it is possible
to find the threshold for a hard decoder as a fixed point of the map. We compare the two extreme limits of
unitary Z rotations and pure dephasing and find that the threshold as a function of the diamond norm error
is in every code we tested larger for the case of unitary errors.
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II. NOISE MODELS AND EFFECTIVE CHANNELS

Suppose we have a qubit Hamiltonian H with H2 = I , then coherent noise channels result from unitary
noise processes of the form

UH,θ = e−iθH = cos θI − i sin θH. (3)

Physically, such error processes arise from over or under rotation in qubit control pulses. Note that since we
are considering qubit noise processes, the choice H2 = I allows for a general Bloch sphere rotation axis.

It is frequently of interest to combine coherent and incoherent errors. To study this sort of noise process
we will follow Kueng et al. [20] and specialize to rotations about the Z axis of angle θ and dephasing with
probability p. This simple phenomenological model allows us to make a detailed comparison between the
effects of coherent and incoherent errors, but it also corresponds to the dominant noise processes in many
experimental implementations of quantum computing. The resulting noise channel is

N (ρ) = e−iθZ [(1− p)ρ+ pZρZ] eiθZ (4)

= (1− x)ρ+ xZρZ − iy(Zρ− ρZ). (5)

In the second expression we have used an alternative parameterization of the noise process that will greatly
simplify certain calculations. The real parameters x, y are defined as follows

x = p cos2 θ + (1− p) sin2 θ (6)

y = (1− 2p) cos θ sin θ. (7)

It has become common in the literature to compare a noise model such as this with some Pauli channel that
approximates it [10, 11, 27, 28]. For this example the Pauli Twirling Approximation to this error is just to
project down to the case where y = 0. Thus for a given initial noise model given by p, θ the Pauli Twirling
Approximation is to consider instead the model with p′ = p cos2 θ + (1− p) sin2 θ and θ′ = 0.

Since we are mainly interested in the scaling when error rates are small, we will often expand expressions
such as x and y to lowest nontrivial order in p and θ. So for example, we have x ≈ p+ θ2 and y ≈ θ.

In the following we will also occasionally be interested in the noise operations conditional on the out-
come of a syndrome measurement in an error correction procedure. These noise processes will likewise
combine unitary and dephasing error but will not necessarily preserve trace, being of the form

Ns(ρ) = x̄ρ+ xZρZ − iy(Zρ− ρZ). (8)

with the case x̄ = 1 − x preserving the trace, and x + x̄ ≤ 1 corresponding to some stochastic process
occurring with probability x+ x̄. Here the subscript s labels a particular syndrome.

We will frequently be concerned with measures of the strength of the noise process. Though there
are many possible choices, we will confine ourselves to two frequently used measures. The first is the
average gate infidelity r because it can be estimated accurately in randomized benchmarking experiments.
The second is the diamond norm error D� because it can be used to bound the overall error when noise
processes can occur sequentially in a computation and therefore appears in the statement of fault tolerance
threshold theorems. For our model channel both of these error metrics were calculated by Kueng et al. [20]
for the above unitary and dephasing channel:

r =
2x

3
=

2

3

[
p cos(2θ) + sin2(θ)

]
≈ 2

3

(
p+ θ2

)
(9)

D� =
√
x2 + y2 =

1

2

∣∣∣1− (1− 2p)e2iθ
∣∣∣ ≈√p2 + θ2. (10)
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Notice that in the limit p → 0 corresponding to a unitary error, D� = |sin θ| ≈ |θ| while r ≈ θ2 so that
the diamond norm distance can be much larger than the average fidelity error [17, 20]. Also notice the
simplifications in these formulas when expressed in terms of x and y, and in particular that r is independent
of y, while the diamond norm distance is just the length of the vector (x, y).

We wish to study the performance of [n, k, d] quantum error correcting codes that encode k logical
qubits in n physical qubits with code distance d. As discussed in the introduction, we will focus on ideal
error correction where noise processes act only on the qubit memory and the encoding and error correction
are performed ideally. Such an ideal error correction process defines an effective channel on the logical
qubits. We wish to build intuition about the effectiveness of error correction for coherent errors by studying
these error channels analytically.

The effective channel on the logical qubits arises from composing the operations of encoding, noise,
error correction then decoding. As such it is described by a completely positive trace-preserving map on
the k logical qubits. It can be written in the form

NL = E†RÑE (11)

where E is the encoding map (an isometry), Ñ is the noise acting on the n qubits of the code,R is recovery
by syndrome measurement with correction and E† reverses the encoding. The application of quantum
operations in our notation follows the same conventions as matrix multiplication, with operations occurring
earlier being written to the right of later operations.

For independent qubit noise on an n-qubit code the noise process acts on each physical qubit indepen-
dently and

Ñ =

n⊗
m=1

N , (12)

where the single qubit noise process N is assumed to act independently and identically on each physical
qubit. Most of our considerations can be generalized to the case of non-identical noise processes acting
independently on the different physical qubits, but for now we defer a discussion of this case.

The error correction process is made up of syndrome measurement followed by correction. We consider
two natural cases. First, to obtain a trace-preserving map, we average over all syndromes to obtain the
error correction map R. Physically this corresponds to the error process assigned by an observer external
to the error correction process who is unaware of which syndrome arose. Alternatively we can evaluate
the conditional operation where a particular syndrome s is specified and the recovery map Rs applies
the projection corresponding to this syndrome and then performs the subsequent correction. The resulting
conditional noise process on the logical qubits Ns will be completely positive but not trace preserving; it
will be normalized by the probability of the specified syndrome.

Techniques for calculating the effective noise channelNL are discussed at length by Rahn et al. [25]. As
described there we can regard the error correction procedure as a map on qubit noise channels N → NL.
Note that while the encoding, error correction and decoding operations are linear when regarded as a map
on the noise process Ñ , the map N → Ñ is a polynomial map on the matrix elements that define N .
Specifically, we can expand a general qubit noise process as follows

N (ρ) =
∑
P,P ′

nPP ′PρP ′ (13)

where the sum runs over all qubit Pauli matrices. Then the coefficients in the corresponding expansion
for either NL or Ns are nth-order polynomials of the coefficients nPP ′ . In the case of the noise process
eq. (5) we conclude that the effective channels after error correction can be written as polynomials of the
parameters x and y. We will make use of this observation to simplify analytical calculations in the following
section.
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In the majority of our examples below we have used Mathematica to automate the computation of the
effective channel NL using the approach outlined by Rahn et al. [25]. The results of those calculations are
discussed in detail in sections V and VI. However, when the error correcting code and recovery map have
high symmetry it is possible to compute the effective channel explicitly for unitary error processes, and we
will now describe that process using the repetition codes as a specific example (this case was also considered
by Greenbaum and Dutton [13]). The techniques developed to analyze these codes will then be sufficient to
allow us to place bounds on the diamond norm error after correction for general [n, k, d] stabilizer codes.

III. EFFECTIVE ERROR CHANNELS FOR COHERENT ERRORS AND REPETITION CODES

In this section we will describe how to calculate effective error channels for coherent error processes,
using the repetition codes as a primary example. The high symmetry of these codes allows us to find simple
closed form expressions for essentially all quantities of interest. Despite the fact that these are not proper
quantum error correcting codes, the behavior of these simple examples is qualitatively similar to all the
other (more interesting) examples that we have studied.

The effective channels for the repetition code with odd nwere first calculated by Greenbaum and Dutton
[13]. We present a slightly streamlined analysis and apply it to both the case of even n and the conditional
noise processes Ns. We will also see that our techniques can be used to find the effective channel for more
general codes and to obtain our main analytical result which is a bound on the diamond norm error after
ideal correction for unitary errors and general stabilizer [n, k, d] codes.

Our approach involves considering the case of unitary errors initially. We are therefore motivated to
consider correcting errors of the form U = exp(−iθH) using an [n, k, d] error correcting code. So we have
n physical qubits each undergoing an error U . We will confine ourselves to identically distributed errors for
now. Since U = cos θI − i sin θH and H2 = I we can think of the fundamental error process as H and
each qubit will either have experienced an error H or not. We can specify all possible tensor products of H
by a binary vectorw, with ones indicating that H acts on the corresponding qubit. The Hamming weight w
is just the number of ones |w| in w. Therefore w is the number of qubits that have a non-trivial error. We
can indicate error configurations by the operators Hw = H⊗w. There are

(
n
w

)
configurations of weight w,

and we can define the sum over these error configurations as follows Ew =
∑

w:|w|=wHw. So the overall
n-qubit error operator is as follows

Ũ = [exp(iθH)]⊗n = [cos θI − i sin θH]⊗n =
n∑

w=0

(−i sin θ)w(cos θ)n−wEw. (14)

This expression for the overall unitary error as a sum over Hamming weights holds for any independent
unitary error regardless of the error correcting code of interest. In the following it will be convenient to
define the function

fw(θ) = (−i sin θ)w cosn−w(θ). (15)

Notice that these functions are increasingly small for high weight. It is easy to see that |fw(θ)| ≤
|sin θ|w|cos(θ)|n−w ≤ Dw

� where D� is the diamond norm error of the unitary noise.
At this point we have characterized the noise process Ñ on the n physical qubits. The next step is

to calculate the effect of error recovery R. This will involve measuring the syndrome, and performing a
corresponding correction. As a resultR involves a sum over the 2n−k syndromes and it will not be possible
to find a closed form expression for a general code. In this work we have used automated procedures
to handle examples with small k. Moreover, the codes of most interest possess high symmetry, and this
enhanced symmetry can be used to find closed form expressions in a number of interesting cases.

In order to determine the syndrome that will arise from stabilizer measurement, we now replace the sum
over error weights in eq. (14) by a sum over syndromes. At this point we have to take advantage of the
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specific properties of the code. We will focus for the moment on a repetition code with an odd number
n = 2t + 1 of physical qubits. The stabilizer generators of the code are XiXi+1 for i = 1, ...n− 1. There
is one encoded qubit with logical operators X̄ = X⊗n and Z̄ = Z⊗n. Recall that logical operators of
stabiliser codes are defined only up to multiplication by stabilisers. So we could equally have chosen X̄
to be X ⊗ I⊗n−1, but we make this choice to emphasize the permutation symmetry of the code. While
this is only technically a quantum error correcting code, as it has distance d = 1, it does have distance n
for Z-errors. Consequently it should be effective in correcting unitary errors when H = Z. We will now
specialize to that case. Notice that this corresponds to our noise model eq. (5) with p = 0, or equivalently
x = sin2 θ and y = sin θ cos θ.

Since the code can correct t Z-errors, each of the 2n−1 error configurations Zw with weight less than
or equal to t results in a unique syndrome. For each error configuration w with weight w ≤ t the weight
n − w error configuration ZwZ̄ results in the same syndrome. Together these account for all 2n error
configurations. We can rewrite the error unitary (14) as follows

Ũ =
t∑

w=0

∑
w:|w|=w

Zw[fw(θ)Ī + fn−w(θ)Z̄]. (16)

Each term in the sum over w results in a unique syndrome and so the syndrome measurement step projects
onto a single value of w. The vector w, which has weight less than or equal to t, specifies the correction
Zw. Consequently when the syndrome requires a correction of weight w the logical qubit undergoes the
effective channel

NLw(ρL) = KwρLK
†
w (17)

where

Kw = fw(θ)Ī + fn−w(θ)Z̄. (18)

It is straightforward to show that K†wKw =
(
|fw|2 + |fn−w|2

)
Ī and therefore Kw is proportional to a

unitary. The normalization relates to the probability of the syndrome, and for small θ this is approximately
θ2w. The unitary is a rotation about Z and the rotation angle is approximately (−1)t−wθ2(t−w)+1 in this
limit. Notice that this rotation angle is much larger for the less likely syndromes; we will discuss this further
in a subsequent section. The fact that the effective channel only depends on the weight of the correction is
a consequence of the permutation symmetry of the code. For general noise processes, the effective channel
conditioned on a given syndrome is analyzed by Chamberland et al. [29] as a generalization of the approach
of Rahn et al. [25].

We can now evaluate the overall noise map as follows

NL(ρ) =

t∑
w=0

(
n

w

)
KwρLK

†
w = (1− x′)ρ+ x′Z̄ρZ̄ − iy′(Z̄ρ− ρZ̄), (19)

with

x′ =

t∑
w=0

(
n

w

)
xn−w(1− x)w =

n∑
w′=t+1

(
n

w′

)
xw

′
(1− x)n−w

′
(20)

y′ = yn
t∑

w=0

(
n

w

)
(−1)t−w =

(
2t

t

)
y2t+1. (21)

The final expression for x′ is a simple reorganization of the sum to make it clear that x′ '
(
n
t+1

)
xt+1 for

small x. It is clear that for small x the sum for the effective error rate x′ is dominated by the terms arising
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from syndromes with w = t+1, the lowest weight uncorrected errors. (The repetition code corrects t errors
with t ' n/2 so the combinatorial factor

(
n
t+1

)
attains its maximum possible value. By contrast, for surface

codes with large distance, for example, the lowest weight errors do not necessarily dominate the effective
error rate for realistic values of the parameters.) The final expression for y′ arises from applying Pascal’s
rule to consecutive terms in the sum [13]. It is clear from this expression that in contrast to x′, all Hamming
weights contribute to the expression for y′ at the same order y2t+1. Thus any characterization of the average
error will get contributions from all syndromes, even those that correspond to very high weight errors and
arise with very low probability. However the combinatorial factors in the sum in eq. (21) means that the
sum is largely determined by terms where w is not too different from t.

Inpsecting the sum in eq. (21), it is clear that the value of y′ is reduced due to the fact that the sign of the
rotation angle of the effective channel for each syndrome oscillates with the Hamming weight. By reducing
the magnitude of y′ this cancellation reduces the coherence of the effective channel. It is straightforward to
assess the extent to which this cancellation is reducing the coherence of the average channel. If we remove
the factor (−1)t−w from the sum in eq. (21) we would obtain the value 2ny2t+1. So this quantity scales
with y as before but it is larger than y′ by a factor roughly equal to

√
πt in the limit of large t.

We have established this identity only for the unitary case where x = sin2 θ and y = sin θ cos θ.
However we will show below that this formula holds for all the combinations of unitary and dephasing
errors in eq. (5). Notice that since x′ depends on x alone, the Pauli Twirling Approximation to the effective
channel can be found starting from the Pauli Twirling Approximation at the physical level. This seems
unlikely to be a general property of these noise maps.

We can also write the conditional channel (17) for a given syndrome w. Note that

NLw(ρL) = KwρLK
†
w = x̄′wρL + x′wZ̄ρLZ̄ − iy′w(Z̄ρL − ρLZ̄) (22)

where

x̄′w = xw(1− x)n−w (23)

x′w = xn−w(1− x)w (24)

y′w = (−1)t−wyn. (25)

Note that all of these are proportional to unitary processes satisfying y′2w = x′wx̄
′
w since the underlying

process is unitary and has y2 = x(1− x).
The overall probability of this syndrome is

pw = xw(1− x)n−w + xn−w(1− x)w, (26)

and there are
(
n
w

)
syndromes that have a correction operation of weight w. Since the probability of each

weight depends on x alone, it can be computed using the Pauli approximation to eq. (5). Also the probability
of a given weight arising is independent of the logical state. We will see that these properties do not hold
for all codes.

As for the unconditional effective channel, we have so far explained how to establish these results with
unitary errors p = 0, but we have rewritten these expressions in terms of the parameters x and y such that
they hold for all instances of the noise model eq. (5). We will establish these formulas in the general case
in the next subsection.

A. Effective channels with dephasing as well as unitary errors

Given the calculations so far it is straightforward to see that for the general case of the noise model of
eq. (5) we have

Ñ (ρ) =
∑

w′,w̄,w̄′

pw
′
(1− p)n−w′

fw̄(θ)f∗w̄′(θ)Zw′+w̄ρZw′+w̄′ . (27)
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Here and elsewhere addition of the binary vectors w is modulo two.
If we consider a syndrome measurement with outcome w then a projection onto the corresponding

stabilizer subspace just picks out the four terms of this sum where both w′ + w̄ and w′ + w̄′ are equal to
either w or n − w. (n is the n-component binary vector with Hamming weight n.) The corresponding
correction operator is Zw as before, and this results in a conditional effective channel of the form of eq. (22)
as expected.

We now just need to evaluate the parameters x̄′w, x
′
w, y

′
w. Considering first the coefficient of ρL we find

x̄′w =
∑

w′,w̄=w−w′

pw
′
(1− p)n−w′ |fw̄(θ)|2

=
n∑

w′=0

w′∑
w̃=0

(
w

w̃

)(
n− w
w′ − w̃

)
pw

′
(1− p)n−w′ |fw+w′−2w̃(θ)|2

= xw(1− x)n−w. (28)

In the first equality we sum over all binary vectors w′ and w̄ = w − w′. Consider a fixed w′. Let w̃ be
the number of locations where both w and w′ have ones. There are w′ − w̃ locations where w′ has a one
and w has a zero. Consequently w̄ has weight |w̄| = w − w̃ + (w′ − w̃) = w + w′ − 2w̃. For each
0 ≤ w̃ ≤ w′ there are

(
w
w̃

)(
n−w
w′−w̃

)
distinct choices of w′ that have this value of w̃. This establishes the

second equality above. The final equality is most easily seen by observing that x = (1−p) sin2 θ+p cos2 θ
and 1− x = (1− p) cos2 θ + p sin2 θ and then applying the binomial expansion to xw and (1− x)n−w.

The same procedure can be used to compute the other parameters. The case of x′w is precisely the same
as for x̄′w. For y′w we find

−iy′w =
∑

w′,w̄=n−w−w′,w̄′=w−w′

pw
′
(1− p)n−w′

fw̄(θ)f∗w̄′(θ)

=
n∑

w′=0

w′∑
w̃=0

(
w

w̃

)(
n− w
w′ − w̃

)
pw

′
(1− p)n−w′

fn+2w̃−w−w′(θ)f∗w+w′−2w̃(θ)

= −i(−1)t−w[sin θ cos θ]n
n∑

w′=0

w′∑
w̃=0

(
w

w̃

)(
n− w
w′ − w̃

)
(−p)w′

(1− p)n−w′

= −i(−1)t−wyn. (29)

One way to see the final equality, is to note that y = cos θ sin θ[(1−p)−p] and apply the binomial expansion
to yw and yn−w.

This establishes the claimed result for the conditional effective channels. Averaging over syndromes
recovers the result for the unconditional effective channel.

B. Repetition codes with even distance

So far we have considered the case where n = 2t+ 1 is odd. It is also interesting to look at the case of
an even distance code where n = 2t+ 2 physical qubits.

We will note two interesting features of this case. First, the unitary part of the logical error channel
(y′) vanishes after a single round of error correction, so that the effective logical channel is pure dephasing.
Second, the probabilities of various syndrome measurement outcomes will depend on the initial logical state
(albeit weakly).

The stabilizer generators of the code are XiXi+1 for i = 1, ...n − 1. There is one encoded qubit with
logical operators X̄ = X ⊗ I⊗n−1 and Z̄ = Z⊗n. For the odd repetition codes, each syndrome indicates
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either a weight w or a weight n−w error and the symmetric decoder corrects the lowest weight error. When
n is even there is no good way of correcting the Hamming weight t + 1 errors, and we just need to decide
on some procedure that doesn’t lower the symmetry of the code. In this case for each of the w = t + 1
syndromes we will choose one of the two corresponding weight t+ 1 errors as the correction operation. So
for example one of the pair will act nontrivially on the first qubit, and we will choose this as the correction
operator. This procedure results in a state in the code space and preserves the overall structure and symmetry
of the decoder. Looking at the sum over the syndromes in eq. (16) we should therefore treat the w = t+ 1
term separately as follows:

Ũ =
t∑

w=0

∑
w:|w|=w

Zw[fw(θ)Ī + fn−w(θ)Z̄] +
∑

w:|w|=t+1,w1=1

ft+1(θ)Zw[Ī + Z̄]. (30)

It is already clear from the expression for the noise operator in terms of the syndromes that the effective
channel conditioned on a stabilizer measurement is quite different in the even distance case as compared to
the odd distance case. We can read off from eq. (30) that a weight t + 1 syndrome results in a projection
on a Z̄ eigenstate of the logical qubit, which would of course totally destroy the quantum information. In
contrast for odd distance codes the conditional channel was unitary. For the other syndromes we have as
before a conditional channel given by eq. (17) with the Kraus operator Kw given by eq. (18). However in
the even distance case it is easy to show that the Kraus operator is not unitary and in fact K†w = ±Kw.
For small θ we find Kw ≈ (−i)wθw[Ī − (−1)t−wθ2(t−w)+2Z̄]. Each of these Kraus operators corresponds
to performing a weak measurement of Z̄ with a measurement outcome that depends on the weight of the
stabilizer.

An important takeaway is this: whereas previously the syndrome probabilities were completely indepen-
dent of the logical state, this is no longer true for the even distance codes. For these codes the unitary error
is generating some entanglement between the logical and stabilizer qubits and the stabilizer measurement
outcomes can depend on the initial logical state.

We can now evaluate the overall noise map for even distance repetition codes, which has the same form
as eq. (19) but with the parameters as follows

x′ =
t∑

w=0

(
n

w

)
xn−w(1− x)w +

1

2

(
n

t+ 1

)
xt+1(1− x)t+1 (31)

=
1

2

(
n

t+ 1

)
xt+1(1− x)t+1 +

n∑
w′=t+2

(
n

w′

)
xw

′
(1− x)n−w

′
(32)

iy′ = yn

[
t∑

w=0

(
n

w

)
(−1)t−w − 1

2

(
n

t+ 1

)]
= 0. (33)

As we argued in the odd case this expression holds for all initial x and y. A cancellation arises such that
the unitary component of the error is totally removed after a single round of error correction. Once again
this cancellation depends on the fact that all Kraus operators contribute at the same order, so in practice for
a large t code this involves averaging over very rare events.

As for the case of odd distance repetition codes, it is possible to generalize the the conditional effective
channels to the general noise model of eq. (5). We won’t write the formulas for x̄′w, x

′
w, y

′
w explicitly.

However note that the overall probability for a syndrome w is

pw = xw(1− x)n−w + xn−w(1− x)w − 2(−1)t−wyn〈Z̄〉. (34)

In contrast to the case of odd distance, this probability depends on y as well as x and so the behavior is
distinct from that for the Pauli channel approximation. It also depends on the logical state. Measuring the
syndrome implements a weak measurement of Z̄ and this is reflected in the syndrome outcome probabilities.
Note that for low w this dependence is rather weak.
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C. Non-uniform single-qubit errors

These considerations work equally well when the unitary error on each physical qubit can be distinct.
The generalization from the case of uniform unitary errors can largely be handled by modifying the notation.
We will consider the case of rotations about the z-axis by angles θj that differ between the qubits.

Stepping through the calculations above to find the effective channel for a given syndrome we first write
the error process on the n qubits as a sum over syndromes as follows

Ũ =
n⊗
i=1

U(θi) =
t∑

w=0

∑
w:|w|=w

Zw[fw(θ)Ī + fn−w(θ)Z̄]. (35)

We have defined the following function

fw(θ) =

n∏
j=1

(−i sin θj)
wj cos1−wj (θj). (36)

Consequently the Kraus operator corresponding to the syndrome w is as follows

Kw = fw(θ)Ī + fn−w(θ)Z̄. (37)

Now that the unitary errors are not uniform, the effective channels for each syndrome are distinct. The
number of distinct effective channels has risen from t to 2n−1.

We can write these effective channels in terms of the parameters xj and yj as follows

x̄′w =
n∏
j=1

x
wj

j (1− xj)1−wj (38)

x′w =
n∏
j=1

x
1−wj

j (1− xj)wj (39)

y′w = (−1)t−w
n∏
j=1

yj . (40)

As in our earlier examples these expressions have been established only for unitary rotations about the
z axis but hold also for the model with non-uniform dephasing included. In this case the generalization
can be established more straightforwardly. The map from the physical noise process, specified by the
parameters {xj}, {yj} and {x̄j = 1− xj} to the effective logical noise process for the syndrome w, given
by x̄′w, x

′
w, y

′
w is a polynomial where each term is n-th order overall and first order in x̄j , xj , yj for each

j. These polynomials are fixed uniquely by considering just the unitary case. We were not able to use
this argument previously because in the unitary case y2 = x̄x which generally leads to an ambiguity in
generalizing from the unitary to the general case using this method. This ambiguity is avoided here because
no quadratics in the parameters x̄j , xj , yj arise. Having established these results for non-uniform noise
without explicitly considering dephasing we could re-obtain the results of section III A by specializing to
the uniform case and then averaging over syndromes.

IV. EFFECTIVE CHANNELS WITH COHERENT ERRORS FOR GENERAL STABILIZER CODES

The same approach can be used to find effective channels for more general stabilizer codes, including
the channel conditioned on a given syndrome. The main ideas have already arisen in the context of the
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repetition codes, but for a general stabilizer code there is a greater overhead of notation and some technical
details.

The main result of this subsection is that the diamond distance error for unitary noise processes after
ideal correction scales like θd where d is the distance of the code when a minimum distance decoder is
used. Readers who are more interested in the specific effective channels may wish to skip ahead to the next
section.

As discussed in the appendix, a general product of Pauli matrices on n qubits can be specified by a
binary vector b of length 2n. Ones in the first n entries specify the locations of X operators, while the
ones in the second group of n entries specify the locations of Z operators. A qubit acted on by both an X
and a Z is understood to be acted on by Y . We will use the notation Pb to indicate the resulting product
of Paulis. If mx, my and mz are the numbers of X , Y and Z operators in the product, then the Hamming
weight is w = mx + my + mz . We refer the reader to [30] for further information on stabilizer quantum
error correcting codes. The discussion in the appendix provides a brief summary and fixes our notation.

We now wish to consider general unitary rotations, so we have H = αxX+αyY +αzZ. Since H2 = I
we have α2

x + α2
y + α2

z = 1. We can therefore rewrite our overall unitary on n qubits (14) as follows

Ũ =
∑
b

fw(θ)αmPb (41)

where we have used the shorthand notation αm = αmx
x α

my
y αmz

z .
As before we can generalize to the case of non-uniform unitary noise straightforwardly. We obtain

Ũ =
∑
b

gb(θ,α)Pb, (42)

with the definition

gb(θ,α) =
n∏
j=1

(−i sin θj)
wj(b) cos1−wj(b)(θj)α

mxj(b)
xj α

myj(b)
yj α

mzj(b)
zj . (43)

Both the rotation angles θj and the rotation axes, given by αxj , αyj , αzj , now change from qubit to qubit.
We have used a notation such that mxj(b) is one if Pb has an X for qubit j and is zero otherwise.

Consider now a stabilizer code. The stabilizer generators are signed products of Pauli matrices ±Pgi

where the binary vectors gi satisfy certain constraints, for example that the stabilizer generators all com-
mute. A general member of the stabilizer group St is described by the length n− k binary vector t, where
ones in the vector signify that the corresponding stabilizer generator is part of the product that results in St.
The code has k logical X operators X̄i = Pxi and k logical Z operators Z̄i = Pzi . These logical operators
are defined only up to multiplication by elements of the stabilizer group, but here we will pick particular
coset representatives. We can describe products of logical Pauli operators Ll by a length 2k binary vector
l = (lx, lz), in analogy to the Pauli matrices.

Now consider implementing the error correction with a specific decoder. First the stabilizers are mea-
sured, and there are 2n−k syndromes. For a given Pauli error Pb, we associate the syndrome y = s(b).
We will choose a fiducial Pauli error Ey having the lowest possible weight among all errors that lead to
that syndrome. There may be more than one choice for some syndromes, particularly for degenerate codes,
and in that case we choose the lexicographically first choice of Pauli. We therefore define the symmetric
decoder (or minimum weight decoder) to be the decoder that chooses the following correction,

E†y = Pr(y), r(y) = lex arg min
b

{
|b| : s(b) = y

}
, (44)

where recall that |b| is the Hamming weight of b. We note that this decoder is generally not optimal, so
some decoders could potentially do even better than suggested by our analysis.
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Later in the paper we will discuss two slight variants of this decoder. In section IV A we consider sim-
plifications to the effective noise channels that arise from symmetries of the code. In that case choosing the
correction to be the lexicographically first choice of Pauli with the required syndrome and lowest possible
weight can result in a correction procedure that has less symmetry than the code itself. An example is the
Steane code, where certain two qubit errors can be corrected. If these are chosen to be the two-qubit Paulis
made up of oneX and one Z error then the effective noise channels simplify. In such examples it is possible
to specify the corrections Ey out of the set of possible lowest weight corrections for that syndrome so as
to preserve the symmetry of the code. A second modification of the decoder is used in section VI where
we consider noise processes that are combinations of dephasing and Z-rotations. Since for these noise
processes only Z errors can occur, we can improve the performance of the code by choosing Ey to be the
lowest weight product of Pauli Z errors that could produce the syndrome y. If no product of Zs results in
the syndrome we can, as before, choose the lowest weight correction, however this syndrome will not arise.

Having specified a decoder we know that for any Pauli matrix Pb there is a unique syndrome s(b) and
correction E†s(b) such that E†s(b)Pb commutes with the stabilizer group. Thus E†s(b)Pb is in the normalizer
group that is generated by the logical operators and the stabilizer group, see for example [30]. Thus there
exists a logical operator Ll(b), stabilizer St(b), and phase factor ηb equal to ±1 or ±i such that E†s(b)Pb =
ηbLl(b)St(b). Consequently every Pauli matrix can be written uniquely in the form Pb = ηbEs(b)Ll(b)St(b).
This mapping is a property of the chosen error correcting code, encoding unitary and decoding scheme.
Equally for any choice of syndrome s, logical operator l, and stabilizer element t their product is a Pauli
matrix up to a phase so that there is a unique b(s, l, t) and ηs,l,t such that Pb = ηs,l,tEsLlSt. So the
mapping between b and (s, l, t) is one-to-one and onto. Note that the 4n Pauli products Pb are accounted
for since there are 2n−k syndromes, 4k logical operators and 2n−k stabilizer elements, which can together
result in 2n−k · 4k · 2n−k = 4n distinct products.

With these preliminaries completed, we can now rewrite the expression for Ũ from eq. (41) as a sum
over syndromes, rather than a sum over products of Paulis:

Ũ =
∑
s

∑
l

∑
t

fw(s,l,t)(θ)α
m(s,l,t)ηs,l,tEsLlSt. (45)

This expansion for Ũ makes it very straightforward to read off the Kraus operators of the effective
channel. Since we start in the code space the stabilizers in this product act trivially. The syndrome mea-
surement projects the system onto a single value of s and the correction E†s removes the fiducial error for
that syndrome. Consequently we obtain 2n−k Kraus operators indexed by s acting on the logical qubit as
follows

Ks =
∑
l

∑
t

fw(s,l,t)(θ)α
m(s,l,t)ηs,l,tLl. (46)

The non-uniform case is nearly identical

Ks =
∑
l

∑
t

gb(s,l,t)(θ,α)ηs,l,tLl. (47)

This expression can be used to study general properties of the effective channel. We will restrict our
discussion to the following theorem.

Theorem 1. For any [n, k, d] stabilizer code, the diamond norm error D′� of the logical qubits after ideal
error correction using a minimum weight decoder satisfies

D′� ≤ cn,kDd
� (48)

for independent unitary errors with rotation angles satisfying |θi| ≤ π/4, where D� = maxi|sin θi|. The
constant cn,k depends on n and k but is independent of the errors.
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Proof. Our result is analogous to Theorem 5.5 of [31] when applied to unitary errors, and our proof follows
the contours of that theorem. We will explicitly consider the case of uniform errors. The generalization to
non-uniform errors is a straightforward modification using the approach of section III C and eq. (47) for the
Kraus operator arising from the syndrome s with non-uniform unitary noise.

We must first explicitly separate the nontrivial logical operators from the identity in the expansion over
syndromes. So consider

Ũ =
∑
s

∑
t

fw(s,0,t)(θ)α
m(s,0,t)ηs,0,tEsĪSt +

∑
s

∑
l6=0

∑
t

fw(s,l,t)(θ)α
m(s,l,t)ηs,l,tEsL

′
lSt. (49)

We have written L′l in the second term above just to emphasize that the logical identity operator does not
arise in the sum. We seek to understand the relative size of the terms in this expansion. We have restricted
attention to |θ| ≤ π/4 so that higher weight errors are less likely than lower weight errors. Notice that in
this regime we have |tan θ| ≤ 1 and therefore |fw(θ)| ≤ |fw′(θ)| when w ≥ w′. On the other hand all the
factors αm satisfy |ηbαm| ≤ 1 and the operator norm of the product of Pauli matrices EsLlSt is ≤ 1.

We now analyze the Hamming weights of the various terms in eq. (49). In each term of this sum we will
specify the weight of the correction operator E†s by ws. Considering the first of the two terms in eq. (49),
the identity is a member of the stabilizer group, so that one of the terms is just Es itself and has Hamming
weight ws. The other terms in the sum are of the form EsSt and each of these terms is a possible error
process that leads to the same syndrome s. But we have chosen our decoder such that ws is the lowest
possible weight for an error with this syndrome. So all the contributions to the first term in eq. (49) have
w ≥ ws. Since we have a quantum error correcting code, all errors up to and including some Hamming
weight t will be corrected by the code. For odd d we have d = 2t + 1, while for even d, d = 2t + 2.
Every product of Paulis of Hamming weight w ≤ t is either a member of the stabilizer group, or one of the
fiducial errors Es, or is equivalent to some Es up to multiplication by a stabilizer operator. Consequently
every product of Paulis with Hamming weight w ≤ t occurs somewhere in the first term of eq. (49).
Considering now the second term in eq. (49), clearly we have w ≥ t+ 1 for all the contributions, regardless
of s. For specific values of s we can be more precise. For each syndrome the factor L′lSt is a non-trivial
logical operator and therefore has weight at least d. Therefore in each contribution to the syndrome s the
product of Pauli matrices EsL

′
lSt has weight w ≥ d−ws. (Note that in examples like the Steane code it is

possible to correct certain errors Es with ws > t. For these syndromes w ≥ t+ 1 will be a better bound on
the Hamming weight of EsL

′
lSt.)

Consequently we can consider the corresponding expansion of Ks

Ks =
∑
t

fw(s,0,t)(θ)α
m(s,0,t)ηs,0,tĪ +

∑
l6=0

∑
t

fw(s,l,t)(θ)α
m(s,l,t)ηs,l,tL

′
l. (50)

In the first term we have w ≥ ws and in the second we have w ≥ max(d−ws, t+ 1). The overall effective
channel is

NL(ρ) =
∑
s

KsρK
†
s =

∑
l,l′

rl,l′LlρL
†
l′ . (51)

Specifically

rl,l′ =
∑
s,t,t′

fw(s,l,t)(θ)fw(s,l′,t′)(θ)α
m(s,l,t)αm(s,l′,t′)ηs,l,tηs,l′,t′ . (52)

This is a trace-preserving, unital, completely positive map, since the encoding, recovery and decoding maps
are all unital and trace preserving.
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If we specify that both l and l′ are non-trivial so Ll, Ll′ 6= Ī then

|rl,l′ | ≤
∑
s,t,t′

|fw(s,l,t)(θ)fw(s,l′,t′)(θ)| ≤ 8n−k|ft+1(θ)|2 ≤ 8n−k|f2t+2(θ)| ≤ 8n−k|fd(θ)|. (53)

The first inequality is just the triangle inequality combined with the fact that |αm| ≤ 1 and ηs,l,t ≤ 1.
The second inequality follows from the fact that each w appearing in the sum satisfies w ≥ t + 1 and
so |fw| ≤ |ft+1| when |θ| ≤ π/4. The prefactor just counts the number of terms in the sum over the
syndromes and two copies of the stabilizer group. To see the third inequality notice that if w+w′ ≤ n then
|fwfw′ | = |sin(θ)|w+w′ |cos(θ)|2n−w−w′ ≤ |sin(θ)|w+w′ |cos(θ)|n−w−w′

= |fw+w′ |.
Applying the same logic to the case where l′ = 0, so that Ll′ = Ī , and l 6= 0 we see that

|rl,0| ≤
∑
s,t,t′

|fw(s,l,t)(θ)fw(s,0,t′)(θ)| ≤ 4n−k
∑
s

|fws(θ)fd−ws(θ)| ≤ 8n−k|fd(θ)|. (54)

The second inequality here results from the fact discussed above that for each term in the sum w(s, l, t) ≥
d− ws and w(s,0, t) ≥ ws. Clearly the case of r0l′ with l′ 6= 0 is the same.

Finally we can bound r0,0 since NL(ρ) is trace preserving and unital and so
∑

l rl,l = 1, and therefore

|r0,0 − 1| ≤ (4k − 1)8n−k|fd(θ)|. (55)

The result follows by applying the triangle inequality and the fact that if Nl,l′(ρ) = LlρL
†
l′ then

‖Nl,l′‖� = 1. This last statement follows from the characterization of the diamond norm in terms of
the maximum output fidelity in [32, Theorem 5].

A couple of remarks are in order. First, collecting the constant factors and simplifying, we see that
the statement holds with cn,k = 23n+k + 23n−k ≤ 23n+k+1, but no attempt was made to optimize the
constant and significantly better bounds might exist. Second, we note that most of the error correcting
codes that we have studied saturate this inequality in the sense that the diamond norm distance after error
correction scales as |θ|d for a small initial unitary angle, regardless of code or rotation axis. Only for certain
codes and specific rotation axes have we observed a more favorable scaling. Third, our theorem bounds
the diamond norm error in terms of θd for all stabilizer codes. However for large distance codes operating
close to threshold this bound will be very weak. For large distance codes the expected θd dependence of the
effective channel will occur but only for very small values of θ, very far below threshold. We also note that
the intermediate stages of our proof reproduce the observations about unitary channels made at the level of
the process matrix by Gutiérrez et al. [11]. Finally, we note that a related version of this result in terms of
the average gate infidelity was recently proven independently by Beale et al. [33].

A. Effective channels for symmetric codes

It has been observed that the effective channels for widely studied error correcting codes, such as the five
qubit and Steane codes, typically have many fewer distinct conditional channels than there are syndromes
of the code [29]. We saw an example of this for the repetition code where, due to the permutation symmetry
of the code, the conditional channel just depends on the weight of the correction operator and not on the
detailed syndrome for uniform noise. Clearly symmetries of the error correcting code can simplify the
effective channels that arise for uniform noise. Here we briefly discuss these simplifications. Symmetries
of stabilizer codes have been studied previously, see for example [34–37].

We will largely focus on the automorphism group of the code under permuting qubits, but we can
formulate the notion of symmetry more generally. For our purposes, a stabilizer code together with its
error correction procedure will have interesting symmetries when there is some subgroup G of the Clifford
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group acting on the physical qubits that preserves the error correction procedure. We will say that an error
correcting code is symmetric under G if the logical operators can be chosen to be invariant under G and the
stabilizer group is preserved under the action of G. Specifically for allG ∈ G and stabilizer elements t there
exists some t′ such that GStG† = St′ , while for all G ∈ G and l we have GLlG

† = Ll. We will say that
the decoding procedure is symmetric if the code is symmetric and for all G and t there is some t′ such that
GEtG

† = Et′ . Up until now we have used the term symmetric decoder if the correction E†t has the lowest
weight of any error that could have caused the syndrome t. We now place this further requirement on the
choice of correction.

When the error correction procedure is symmetric the syndromes will break up into orbits under the
action of G. Rather than considering general Clifford symmetries of stabilizer codes we will now specialize
to the case where the symmetry of the code is some group of permutations of physical qubits. Qubit
permutations are very special because they preserve the Hamming weight and αn. Thus if we perform a
permutation GPbG

† = Pb′ then w(b′) = w(b) and so on. We will see that conditional channels of all
syndromes in a given orbit are equal for such permutation symmetries of stabilizer codes. This explains the
simplifications observed in section III for the repetition code and in [29] for a range of other codes.

To demonstrate that the effective channels for syndromes in a single orbit are equal, consider a fixed
syndrome s and a fixed permutation G ∈ G. Then we define s′ such that GEsG

† = Es′ . Now let us
consider a single term in eq. (45) that has the chosen s, we have

Pb = ηs,l,tEsLlSt (56)

and if we define b′ such that GPbG
† = Pb′ we have

Pb′ = ηs,l,t(GEsG
†)(GLlG

†)(GStG
†) = ηs,l,tEs′LlSt′ = ηs′,l,t′Es′LlSt′ . (57)

The second equality just arises from the definitions and the fact that the error correction procedure is sym-
metric under G. The third equality holds because η can be written in terms of the commutators of the various
factors, and these are preserved under the action of the unitary. (Alternatively it can be written in terms of
the symplectic inner product which is manifestly invariant under swapping qubits; see the appendix for
more details.) Moreover we have

w(s, l, t) = w(b) = w(b′) = w(s′, l, t′) (58)

since permutations leave the weight unchanged, and the same identity holds for αn. The mapping takes St
to St′ under the group G so in the formula for the Kraus operator of the conditional channel (46) each term
in the sum for Ks maps invertibly to a single term in the sum for Ks′ . Consequently we have

Ks =
∑
l

∑
t

fw(s,l,t)(θ)α
n(s,l,t)ηs,l,tLl (59)

=
∑
l

∑
t′

fw(s′,l,t′)(θ)α
n(s′,l,t′)ηs′,l,t′Ll = Ks′ . (60)

Thus all the Kraus operators corresponding to syndromes in a given orbit of the symmetry are equal.
We have shown these simplifications only for unitary noise at the physical level. It would be interesting

to extend this analysis to noise processes with more than a single Kraus operator.
In the case of repetition codes with an odd number of qubits, we can choose the code and decoding

procedure to have the full permutation symmetry of the d qubits. This implies that the Kraus operators can
only depend on the Hamming weight of the correction procedure, as we observed in section III.

In the case of the five-qubit code [38], the stabilizer group is generated by the operators XZZXI
and its cyclic permutations and the logical operators can be chosen to be X̄ = XXXXX and Z̄ =
ZZZZZ. It is clear that this code is symmetric under cyclic permutations of the qubits. It is also symmetric
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under the permutation (1, 5)(2, 4), which is a reflection if the five qubits are arranged on the vertices of a
pentagon. This generates the group D10 of symmetries of the pentagon. (We believe that this is the full
symmetry group of the code.) The five qubit code is a [5, 1, 3] code and there are 2n−k = 16 distinct
syndromes. In the symmetric decoder we choose correction operations that are the lowest weight Paulis
that can result in each syndrome. These are the identity IIIII , and the fifteen single qubit Pauli’s. This set
of correction operators is symmetric under the full permutation group, so we can conclude that the overall
error correction procedure is symmetric under D10. The correction operations break into 4 orbits under this
group. Representatives of these orbits are IIIII,XIIII, Y IIII and ZIIII . Consequently there are 4
distinct conditional effective channels for the 5 qubit code under the symmetric decoder. This agrees with
the number of conditional effective channels in [29].

For the Steane code [39] we can use similar arguments. This is a CSS code with its X-type stabilizers
generated byXXXIXII,XIXXIXI andXXIXIIX . TheZ-type stabilizer generators are obtained by
replacingX withZ. The logical operators can be chosen to be X̄ = XXXXXXX and Z̄ = ZZZZZZZ.
The code is symmetric under the permutations (2, 3)(6, 7), (2, 3, 4)(5, 6, 7), (1, 3)(2, 5), and (1, 3)(4, 6).
These permutations generate the 168-element group GL(3, 2), which is the group of symmetries of the
Fano plane. One can check by exhaustive search that this is the full symmetry group of the code. In order
to identify the symmetry group we found it useful to picture the Steane code as the smallest possible color
code. From this point of view the qubits in the code correspond one-to-one with the points of the Fano
plane. Moreover the lines of the Fano plane correspond to the logical operators with weight 3. (It would
be interesting to know whether some relationship of this kind holds between other color codes and other
finite geometries.) Since the Steane code is a [7, 1, 3] code there are 2n−k = 64 distinct syndromes. In
the symmetric decoder the correction operations are the identity IIIIIII , the 21 single qubit Paulis, and
the 42 Paulis that are the tensor product of a single X with a single Z. This set of correction operators is
symmetric under the full permutation group, so we can conclude that the overall error correction procedure
is symmetric under GL(3, 2). The correction operations break into 5 orbits under this group. Representa-
tives of these orbits are IIIIIII,XIIIIII, Y IIIIII, ZIIIIII , and XZIIIII . This number of orbits
does not agree with the seven inequivalent conditional effective channels stated in [29] for general noise
processes. However our result only applies to unitary channels (which may have higher symmetries than
the more general channels considered in [29]) and it is not clear whether the decoder in [29] has the highest
possible symmetry. So we expect that these statements are not in disagreement.

Note that these simplifications are independent of the exact unitary error that has occurred and for certain
highly symmetric noise processes it is possible that there are further reductions in the number of distinct
conditional effective channels. We will see that an example of this is the 5 qubit code with unitary errors of
the form exp[−iθ(X + Y + Z)/

√
3].

For specific examples that we considered there are still patterns in the expressions for the conditional
effective channels that arise from the structure of the code. One instance where such examples arise is when
the code has a non-trivial single-qubit transversal gate. Such a transversal gate maps the stabilizer group to
itself but acts non-trivially on the logical operations, the corrections Es, and the factors αn. In the example
of the 5 qubit code the Clifford gate that maps X → Y → Z → X is transversal. This makes it possible to
infer the conditional effective channel for an error in the orbit given by Y IIII in terms of the one for errors
in the orbit containing XIIII .

V. PERFORMANCE OF STABILIZER CODES UNDER COHERENT ERRORS

In this section we will review the performance of a variety of quantum error correcting codes against co-
herent errors using the techniques developed so far. Recall that for a unitary error we have D� ≈ 3

√
r/2 ≈

|θ| so that there is a large difference between the size of errors as estimated in randomized benchmarking
and errors as measured by diamond norm distance. Characteristically we find that after error correction
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the diamond norm error of the effective channel D′� is much smaller than would be expected based on the
diamond norm error at the physical level. For dephasing errors D′� ∝ Dt+1

� for a small error. On the other
hand we have seen that for a unitary error D′� ≤ cDd

� .
The difference in this behavior is almost sufficient to overcome the distinction between diamond norm

error and average gate infidelity at the physical level. If r is the average fidelity error at the physical level
then for an odd distance code we find D′� ≤ c(3/2)2t+1rt+1/2 for unitary errors, while for dephasing errors
D′� ∝ rt+1. For even distance codes this comparison is even more striking, we find D′� ≤ c(3/2)2t+2rt+1

for unitary errors, compared to D′� ∝ rt+1 for dephasing errors. So the scaling with r is the same for both
unitary and dephasing errors. We emphasize that these results assume ideal error correction, and do not
analyze fault tolerant gadgets and noisy gates and measurements. They do suggest that there is a need for a
sharper analysis of the performance of fault tolerant gadgets against unitary errors.

The remainder of this section explores the logical effective channels and the logical diamond norm error
scaling relative to the physical diamond norm error and the physical average gate infidelity for a variety
of small quantum codes using pure unitary errors around arbitrary axes. In the next section, we will also
consider the more general noise model that includes dephasing and demonstrate with the Steane code how
the computation of the effective logical channel can be used to find thresholds for concatenated codes with
the symmetric decoder.

A. Repetition codes

In the limit of low error x, y � 1 we can compute simple approximations for the diamond norm error of
the effective channel of the repetition codes discussed in III. For pure dephasing noise we have y = 0 and
D′� '

(
n
t+1

)
xt+1 =

(
n
t+1

)
Dt+1
� =

(
n
t+1

)
(3/2)t+1rt+1 which is the expected scaling with error probability,

physical diamond norm error, and average gate infidelity respectively.
For unitary errors we have y2 = x(1 − x) and it is possible to see that D′� is dominated by the con-

tribution arising from y′. Consequently we have D′� '
(

2t
t

)
|y|2t+1 '

(
2t
t

)
D2t+1
� '

(
2t
t

)
(3/2)t+1/2rt+1/2,

which is the scaling suggested by theorem 1. Notice that these results imply that a simple Pauli Twirling
Approximation to a unitary error, which just sets y = 0, would underestimate the logical error, finding
D′PTA� '

(
2t+1
t+1

)
|θ|2t+2 in the limit of small |θ|, as opposed to

(
2t
t

)
|θ|2t+1. In the terminology of [40]

this implies that the Pauli Twirling Approximation to the effective noise channel is dishonest but it is less
dishonest than when the PTA is applied at the logical level.

B. Effective channels for unitary errors: the five-qubit code and others

As discussed in section IV A the five qubit code is symmetric under cyclic permutation of the qubits of
the code, and also possesses a symmetry resulting from the transversal Clifford gate operation that maps
X → Y → Z → X . Consequently we begin by considering unitary errors of the form exp[−iθ(X +
Y + Z)/

√
3] which enhances the symmetry of the various effective error channels. The five qubit code

has 16 syndromes, and in this highly symmetric case there are only two conditional effective channels, one
corresponding to the trivial syndrome. All the non-trivial syndromes result in the same effective channel.
These two channels are each described by a single Kraus operator K0 in the trivial case and K1 in the
non-trivial case. They can be written as follows

K0 = (g0 + 15g4)Ī − (10g3 − 6g5)(X̄ + Ȳ + Z̄) (61)

K1 = (g1 + 4g3 + 3g5)Ī − (2g2 + 2g4)(X̄ + Ȳ + Z̄), (62)

where gw = fw/(
√

3)w.
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Inspecting the expressions for K0 and K1 we can see that this behavior is qualitatively very similar
to what we observed for the repetition codes. It is straightforward to check that both K0 and K1 are
proportional to a unitary and correspond to rotation about the same axis (X + Y + Z)/

√
3 as occurs at

the physical level. In the case of a small rotation error θ � 2π we find that the trivial syndrome occurs
with high probability and results in a rotation θ′0 ' 10θ3/3. A non-trivial syndrome occurs with probability
' 15θ2 and results in a rotation θ′1 ' −2θ. Notice that conditioned on a non-trivial syndrome the rotation
angle has actually increased. Nevertheless this pattern is exactly the one seen in the repetition code, and
saturates the scaling limit of theorem 1 since we have D′� ' cD3

� for small θ. The qualitative behaviors that
we observed for the repetition codes and special rotation axes are also seen in proper stabilizer codes for
typical rotation axes.

Consider now a rotation about the Z-axis. In this case we find four inequivalent Kraus operators. The
first corresponds to the trivial syndrome. There are then five syndromes that detect single Z errors and result
in a effective error that is rotation about the Z axis. The other two classes of syndromes would generally
detect single Y and X errors. But since these do not arise for this noise model, they detect two-qubit Z
errors of the form ZZIII and ZIZII respectively. The resulting Kraus operators are

K0 = f0Ī + f5Z̄ (63)

K1 = f1Ī + f4Z̄ (64)

K2 = −f2Ȳ − if3X̄ (65)

K3 = −f2X̄ + if3Ȳ . (66)

Here K1 is the conditional channel that results when the correction operation is a Z operation, K2 corre-
sponds to a Y operation and K3 is an X operation. The Kraus operators are proportional to unitaries, but
this time the rotation axis is not necessarily the same as the original unitary. Notice that from these condi-
tional effective channels we find D′� ' cD4

� so that unitary errors about this axis are much better corrected
than for a typical rotation axis.

We see that for this Pauli axis rotation, the 5 qubit code behaves as if it corrects two errors rather than
one, and if we modified the correction operation to correct for two-qubit Z errors it would be possible to
correct the unitary rotation such that D′� ' cD5

�. This is consistent with the fact that the five qubit code has
distance 5 if there are only Z errors, as it becomes a repetition code in this limit. Note that this improvement
requires that the rotation axis of the unitary is known.

We will not write the effective channels for a general rotation axis, but it is illuminating to see how the
performance of the code varies as the rotation axis is changed. This is shown in fig. 1, where D′�/D

d
� is

plotted for various rotation axes. The improved performance for rotations about the Pauli axes is clearly
visible. It can be seen that rotations about axes like (X + Y + Z)/

√
3 are local maxima for the diamond

norm error after error correction.
We can study the performance of many other stabilizer codes in the same way. The general behavior is

similar to the five qubit code, although for typical codes the scaling of D′� with Dd
� holds for all rotation

axes. This is true of the Steane code, for example, as shown in fig. 2(a), where we see improved performance
for rotations about (X + Y + Z)/

√
3 and reduced performance for rotations about the Pauli axes.

We provide a few further examples of the dependence of the effective channel on the rotation axis of
the unitary which arises when using the symmetric decoder. In fig. 2(b) we show the analogous plot for
the Bare [7, 1, 3] code of Li et al. [41] and in fig. 2(c) the [9, 1, 3] Shor code [42]. In the case of the Shor
code errors for rotations about Z are corrected less well than rotations about X due to the structure of this
code as a concatenation of codes correcting bit flips and phase flips. This concatenation structure means
that the subgroup of the stabiliser group made up of products of X operators is larger than the subgroup
made of products of Z’s. Lastly, we show the [9, 1, 3] surface code [43] in fig. 2(d). Here again we see that
there is enhanced correction along (X + Z)/

√
2 and especially along Y . This is consistent with the large

increase in the error correction threshold observed for incoherent Y noise in the surface code when using
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FIG. 1. (a) Contour plot of the ratio D′�/D
d
� against the rotation axis of a single qubit unitary error for the [5, 1, 3]

five-qubit code using the symmetric decoder. The polar angle is u and the azimuthal angle is v. The rotation angle for
the unitary error was chosen to be θ = 0.01. (b) 3D spherical plot of the ratio D′�/D

3
� for the [5, 1, 3] five-qubit code

calculated as for (a). Rotations about Pauli axes are suppressed at a higher order than all other axes.

(a) (b) (c) (d)

FIG. 2. 3D spherical plots of the ratio D′�/D
d
� against the rotation axis of a single qubit unitary error for various error

correcting codes using the symmetric decoder. The rotation angle for the unitary error was chosen to be θ = 0.01. The
codes are (a) the Steane code, (b) the Bare [7, 1, 3] code [41], (c) the [9, 1, 3] Shor code, and (d) the [9, 1, 3] surface
code. Different codes have different axes along which the post-error correction diamond norm error is more favorable
than others.

an optimal decoder [26]. Unfortunately, we do not have a general understanding of the symmetry axes that
show enhanced performance for all of the codes that we plot in fig. 2, and it remains an intriguing open
problem to better explain or predict such behavior in the most general case.

VI. CONCATENATED CODE THRESHOLDS FOR JOINT UNITARY AND DEPHASING ERRORS

We now return to the noise model of eq. (5), which combines Z-axis rotation with dephasing. Whereas
previously we have always used the symmetric, minimum distance decoder, we now specialize to a Z-only
decoder that finds the minimum distance correction among all Paulis consisting only of Z and I . This is
sensible since for these noise channels only Z-type errors are supported.

For any given code we can regard the ideal error correction as a map on the noise channel. For most
of the codes we have investigated we find that the form of the noise is unchanged and there exist some
(x′, y′) such that the error correction implements the map (x, y) → (x′, y′). This type of calculation was
also performed by Gutiérrez et al. [11], but in contrast we don’t need the full process matrix since our noise
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model is restricted to eq. (5) and so is a function solely of x and y. For example, for the Steane code we find

x′ = 21x2 − 98x3 + 210x4 − 252x5 + 168x6 − 48x7

+ 42y4 − 252xy4 + 504x2y4 − 336x3y4
(67)

y′ = 14y3 − 168xy3 + 504x2y3 − 672x3y3 + 336x4y3 + 48y7, (68)

so to lowest order, under unitary noise only, p′ ≈ 63θ4 and θ′ ≈ 14θ3, which is consistent with theorem 1.
This procedure can handle rather larger codes. As a further example, consider the [16, 1, 4] surface code

described in [44]. We consider the noise model of eq. (5) and perform correction by measuringX-stabilizers
only. With the Z-only decoder, we find y′ = 0 and

x′ = 32x2 − 188x3 + 484x4 − 500x5 − 612x6 + 3136x7 − 5680x8 + 6080x9

− 4032x10 + 1536x11 − 256x12 + 28xy2 − 222x2y2 + 756x3y2 − 1378x4y2

+ 1104x5y2 + 752x6y2 − 2880x7y2 + 3120x8y2 − 1600x9y2 + 320x10y2

+ 12y4 − 96xy4 + 208x2y4 + 416x3y4 − 3088x4y4 + 7040x5y4 − 8320x6y4

+ 5120x7y4 − 1280x8y4 − 10y6 − 32xy6 + 704x2y6 − 2880x3y6 + 5280x4y6

− 4608x5y6 + 1536x6y6 − 48y8 + 384xy8 − 1152x2y8 + 1536x3y8

− 768x4y8 − 16y10 + 64xy10 − 64x2y10

(69)

It is striking that for this even distance error correcting code we reproduce the behavior for even distance
repetition codes where we also found y′ = 0. This confirms that the behavior seen there also arises for other
more interesting quantum error correcting codes, although we still do not know if this is true for every even
distance code in general.

As discussed by Rahn et al. [25] the effective channel can be used to study the performance of concate-
nated codes. The effective channel can be regarded as a map on noise processes, and iterating this map
corresponds to concatenated error correction. As always the noise map corresponds to a particular choice of
decoder. In this case the corrections are made at each level of the code using only the syndrome at that level.
The full syndrome of the concatenated error correcting code is not used to determine the correction. Such
decoders are known as hard decoders and it has been shown that soft decoders, that do consider the full syn-
drome, can lead to improved performance [45]. Moreover simply iterating the mapping means that at each
level of the code the symmetric decoder is used. It has also been shown that there are hard decoders that
can improve on this [29]. (The improvements in [29] typically depend on knowledge of the noise model,
whereas the concatenated symmetric or Z-only decoders can be specified independently of the precise noise
model.) Nevertheless it is of interest to study the threshold of the concatenated symmetric decoder under
unitary noise. For example it was shown in [13] that after two levels of concatenation through a repetition
code a unitary error of the form exp(−iθZ) results in an effective noise process dominated by dephasing.

Looking at the Steane code again, the mapping in eq. (67) can be concatenated to further reduce the
noise in terms of the diamond distance for unitary noise as in fig. 3(a). The level-1 pseudothreshold is

θth1 ≈ 0.3276 D� th1 ≈ 0.3218. (70)

For comparison, under incoherent dephasing noise alone, the level-1 pseudothreshold for concatenation of
the Steane code is

pth1 ≈ 0.0646 D� th1 ≈ 0.0646. (71)

As can be seen from fig. 3(b), this is also equal to the true threshold. This is because the logical noise model
is exactly of the same form at each level of concatenation. By contrast, the true threshold for unitary Z
rotation under concatenation is

θth ≈ 0.1918 D�th ≈ 0.1906, (72)
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FIG. 3. (a) Plots of the diamond distance D(k)
� of the effective channel for the k-th concatenation of the Steane code

over the diamond distance D� of the original unitary X noise channel for k = 0, 1, 2, 3, 4, 5. The true threshold and
level-1 pseudothresholds are indicated by dashed lines. (b) Thresholds for concatenation of the Steane code under
unitary bit flip noise as a basin of attraction in p and θ. Thresholds and level-1 pseudothresholds for coherent and
incoherent noise are labeled with dashed lines.

Code Incoherent Coherent

[n, k, d] name D�(pth) r(pth) D�(θth) r(θth) D�(θth1) r(θth1)

[5, 1, 3] 5-qubit 0.5000 0.3333 0.7071 0.3333 0.8284 0.4575
[7, 1, 3] Steane 0.0646 0.0431 0.1906 0.0242 0.3218 0.0690
[7, 1, 3] Bare 0.5000 0.3333 0.7077 0.3333 0.8761 0.5117
[9, 1, 3] Shor 0.0499 0.0333 0.1177 0.0092 0.1477 0.0145
[9, 1, 3] Surface 0.0753 0.0502 0.2053 0.0281 0.3085 0.0634

[16, 1, 4] Surface 0.0395 0.0263 0.1613 0.0173 0.3180 0.0674

TABLE I. Concatenated code thresholds in terms of physical diamond norm error and and average fidelity error for
unitary Z noise and incoherent dephasing using minimum-weight Z decoders. In each case, the threshold diamond
norm error exhibits two important effects. First, the level-1 pseudothreshold differs by a significant amount from the
true threshold only for the case of unitary noise. Second, the threshold is substantially higher in the case of unitary
errors compared to incoherent errors. Notice however that when the thresholds are expressed in terms of the average
fidelity error then the threshold for unitary error is less than or equal to the threshold for a dephasing error.

which is significantly lower than the level-1 pseudothreshold. We can look at the behavior over the full range
of parameters to find the region for which the noise is below threshold and can be reduced to an arbitrarily
small value by concatenating the code. This is done by considering the iterative map as a dynamical system
and finding the basin of attraction, as indicated in fig. 3(b).

We can repeat these calculations for a range of codes, as before. The results are summarized in table I.
It is worth noting that the true threshold for the two extremal noise models of pure unitary Z rotation error
or pure dephasing error exhibit a large gap in each of the cases we examine, and perhaps surprisingly the
threshold for coherent noise is higher in every case.

VII. CONCLUSION

We have studied the performance of quantum error correction against coherent noise, and coherent noise
together with dephasing. We have proven that the logical effective channel corrects coherent errors much
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more effectively than incoherent errors, in the precise sense of theorem 1. We have also shown that a natural
family of decoders exhibits this effect for a wide range of codes both in the single-level coding regime, and
for concatenated codes. The thresholds that we calculate suggest that quantum error correction performs
better than expected when the errors are coherent, at least in the sense that this seems to lead to higher
thresholds when these thresholds are expressed in terms of diamond norm errors.

There are many open questions suggested by this work, but the most interesting is to extend this analysis
to the context of fault tolerant quantum computation. It would be extremely interesting if the increased
thresholds that we observed for ideal error correction continued to hold for fault tolerant circuits. This
would in turn strongly suggest that a sharper analysis of the threshold is needed to get accurate estimates of
the threshold when coherent noise is taken into account. It would also be especially interesting to investigate
what further improvements could be obtained for these channels using optimal Pauli recovery channels
instead of minimum distance decoding, or other structured near-optimal recoveries [46].
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APPENDIX

In this appendix we will collect some formulas from the stabilizer formalism that are standard (see for
example [30]) but the discussion here will fix notation that will be required in the main text.

We will write every Pauli matrix on n qubits in terms of two length n binary vectors bx and bz . Ones in
this vector will correspond to a Pauli matrix acting on the corresponding qubit. The support of the vector bx
will be the set of qubits for which the corresponding entries of bx are equal to one. The size of the support
will be |bx|. We will also define the binary vector bx.bz which is the bitwise product of the two vectors, and
has ones on the intersection of the supports of bx and bz . These are the qubits on which the corresponding
Pauli matrix acts with Y . Recalling that XZ = −iY we have that a general Pauli matrix can be written

Pb = i|bx.bz |X⊗bxZ⊗bz (73)

and it is clear that the Pauli matrices are in one-to-one correspondence to the 4n binary vectors bx, bz . Note
that the Pauli matrices Pb so defined are the products of Pauli’s with a co-efficient +1 and are therefore
Hermitian. This Pauli has weight w = |bx| + |bz| − |bx.bz|, there are mx = |bx| − |bx.bz| X operators,
mz = |bz|−|bx.bz| Z operators andmy = |bx.bz| Y operators in this product, so thatmx+my+mz = w.

We will imagine that bx and bz are row vectors, and so we can use the length 2n row vector b = (bx, bz)
to denote a general Pauli matrix. We can define a 2n-by-2n symplectic matrix

Λ =

[
0 I
−I 0

]
(74)

We can define a symplectic inner product as follows bΛb′T = |bx.b′z| − |bz · b′x|. The two elements b
and b′ commute if and only if (−1)bΛb′T = 1. While we have defined the symplectic inner product as a
number, we will only ever use its value modulo 4. (Notice that there is a sign that is different compared to
Nielsen and Chuang [30] and we don’t evaluate inner products modulo 2, but rather use the conventional
inner product.)
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We can therefore compute products straightforwardly

PbPb′ = i|bx.bz |i|b
′
x.b

′
z |X⊗bxZ⊗bzX⊗b

′
xZ⊗b

′
z (75)

= (−1)|b
′
x.bz |i|bx.bz |i|b

′
x.b

′
z |X⊗bxX⊗b

′
xZ⊗bzZ⊗b

′
z (76)

= (−1)|b
′
x·bz |(−i)|b′x.bz |(−i)|bx.b′z |Pb+b′ = (−i)|bx.b′z |−|b′x.bz |Pb+b′ = (−i)bΛb′TPb+b′ (77)

The second line makes use of the commutation formula we have just derived. In the final line we use
(bx + b′x).(bz + b′z) = bx.bz + b′x.b

′
z + b′x.bz + bx.b

′
z . As claimed the symplectic inner product only

needs to be evaluated modulo 4. Since two Paulis commute if and only if the symplectic inner product is 0
mod 2, when we multiply two commuting Paulis the phase factor is ±1, conversely when multiplying two
anticommuting Paulis the phase factor is ±i.

Consider now a stabilizer code. The stabilizer generators are signed products of Pauli matrices ±Pgi

where the binary vectors gi satisfy certain constraints, for example that the stabilizer generators all com-
mute. Since the generators are associated with n − k row vectors gi we can collect these vectors into a
(n−k)-by-2n binary matrix G whose rows are the gi. For any given error E = Pb the syndrome is a length
n− k binary column vector s given by

s(b) = GΛbT mod 2 (78)

A general member of the stabilizer group St is described by the length n− k binary vector t such that

St = ±
n−k∏
i=1

P tigi = ±PtG. (79)

The first factor of ±1 is there to account for the signs of the stabilizer generators in product. In examples of
interest to us, this will always be one. The phase factor in the final expression arises from iterating equation
(77) and is real because all the stabilizer generators commute. It has a definite value that is suppressed in
the interests of lightening the notation.

The code has k logicalX operators X̄i = Pxi and k logical Z operators Z̄i = Pzi . Since the X operators
are specified by k binary row vectors of length 2n, we can specify the logical X operators by the k-by-2n
binary matrix X whose rows are the xi, and likewise a corresponding matrix Z for the logical Z matrices.

We can describe products of logical Pauli operators Ll by a length 2k binary vector l = (lx, lz), in
analogy to the Pauli matrices as follows

Ll = (−i)|lx.lz |
∏

X̄ lxi
i

∏
Z̄
lzj
j = ±(−i)|lx.lz |PlxXPlzZ (80)

The phase factor ±1 arises because the product of logical X’s is a product of commuting operators and
likewise the product of logical Z’s. Again, it has a definite value, given by iterating equation (77), but
suppressing this factor lightens the notation. Notice that the matrix product in the subscript results in a
length 2n binary row vector as expected.

There are 2n−k syndromes, and with each syndrome s we will associate the lowest weight error Es that
leads to that syndrome. Our decoder will reverse this error. Explicitly then Es = Pb̃ where b̃ is the lowest
weight solution to s = GΛb̃T . Then it can be shown that every Pauli matrix can be written in the form
Pb = ηbEs(b)Ll(b)St(b) where ηb is a phase factor equal to ±1 or ±i.
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