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A recent paper [1] considered the problem of quantum limited estimation of the separation vector
for a pair of incoherent point sources in all three dimensions. Here we extend our analysis to treat
the problem of simultaneously estimating the location of the centroid and the separation of the
source pair, which is equivalent to localizing both sources simultaneously. We first calculate the
quantum Fisher information for simultaneous pair centroid-separation estimation and then discuss
the fundamental, estimation-theoretic trade-offs between the two tasks, which we confirm using
simulations.

I. INTRODUCTION

Optical superresolution imaging has been a sub-
ject of great current interest, ranging from single-
molecule localization imaging using uncorrelated photons
from randomly photoactivated, well separated individ-
ual molecules [2] to quantum-correlated, optical centroid
measuring states [3–5] to the use of wavefront projections
[6–12].
A recent paper [1] by the present authors has extended

the analysis of quantum limited estimation of the separa-
tion of a pair of incoherent point sources from one [6, 7]
and two [13] transverse dimensions to include the third,
axial dimension in the photon-counting limit. The quan-
tum limit on the variance of unbiased estimation of the
three-dimensional (3D) separation vector, as determined
by the inverse of the quantum Fisher information (QFI)
[14–16], may be expressed most simply, as we showed,
in terms of the correlation of the wavefront phase gra-
dients in the imaging aperture. Because of the linear-
ity of the wavefront phase with respect to (w.r.t) the
pair-separation vector, QFI and its inverse, the quan-
tum Cramér-Rao bound (QCRB), are both independent
of that vector.

II. PROBLEM

Here we extend our work further to calculate QFI and
QCRB for the joint estimation of the position of the cen-
troid and the separation of a pair of equally bright, mu-
tually incoherent point sources in the photon-counting
(Poisson) limit in all three spatial dimensions. Our anal-
ysis is more general than that of Ref. [17] in which the
authors restrict the localization of the two sources jointly
to a single transverse dimension and the line-of-sight di-
mension. Furthermore, our analysis, like our previous
paper’s [1], makes no assumptions about the aperture
geometry, such as inversion symmetry that other papers
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on quantum-limited pair superresolution problem have
used to derive their results.

The QFI matrix,H, is defined to have elementsHµν
def
=

ReTr (ρ̂L̂µL̂ν), where Re denotes the real part and L̂µ is
the symmetric logarithmic derivative (SLD), w.r.t. the
µth parameter, of the density operator ρ̂,

ρ̂ =
1

2

(

|K̃+〉〈K̃+|+ |K̃−〉〈K̃−|
)

, (1)

for a photon emitted by the incoherent source pair and
captured by the imaging aperture. The six parameters,
lx, ly, lz and sx, sy, sz of interest here are the three Carte-
sian components of the normalized pair-separation and
pair-centroid position vectors, l and s, respectively, with
s defined in the same way as l is in Ref. [1]. The two pure

single-photon states, |K̃±〉, are emitted by the two point
sources located at s± l, respectively. The corresponding
normalized wavefunctions have the following representa-
tions over the aperture plane (see Appendix A):

〈u|K̃±〉 =exp(±iφ0)P (u) exp(−i2πs⊥ · u− iπszu
2)

× exp[∓iΨ(u; l)], (2)

in which P (u) is a generally-complex pupil function obey-
ing the normalization condition,

∫

d2u |P (u)|2 = 1, (3)

the phase function, Ψ(u; l), has the form,

Ψ(u; l) = 2πu · l⊥ + πu2lz, (4)

and the phase constant, φ0, is conveniently chosen to

make the inner product, ∆
def
= 〈K̃−|K̃+〉, real. In view

of relations (2) and (4) for the wavefunction and Ψ, this
inner product may be expressed as

∆ = exp(−2iφ0)

∫

d2u |P (u)|2 exp(i4πl⊥ · u+ i2πlzu
2),

(5)
which like the phase constant, φ0, is independent of the
centroid position vector, s. For the clear, unit-radius cir-
cular aperture, P (u) is simply 1/

√
π times the indicator

function for the aperture. Due to form (2) of the wave-
functions, ∆ does not depend on s.
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III. THE QFI MATRIX

For the problem of estimating l alone, QFI matrix el-
ements were shown in Ref. [1] to have the form,

H(ll)
µν = 4

[

〈∂(l)
µ Ψ∂(l)

ν Ψ〉 − 〈∂(l)
µ Ψ〉〈∂(l)

ν Ψ〉
]

, (6)

where angular brackets here denote weighted aperture
averages, with |P (u)|2 being the weight function.
The minimum error of joint estimation of l and s is

given by the inverse of a 6× 6 QFI matrix of which H(ll)

given by expression (6) may be regarded as a 3× 3 diag-
onal block. The full QFI matrix may be organized as a
collection of four 3× 3 blocks,

H =

(

H(ll) H(ls)

H(sl) H(ss)

)

, (7)

with matrix elements defined by the formula

H(ab)
µν = H(ba)

νµ

= ReTr (ρ̂L̂(a)
µ L̂(b)

ν ); a, b = l, s; µ, ν = x, y, z. (8)

The remaining matrix elements, H
(ls)
µν , H

(ss)
µν , follow

from their general form [1],

H(ab)
µν =

∑

i=±

1

ei
∂(a)
µ ei∂

(b)
ν ei

+ 4Re
∑

i=±

1

ei
(∂(a)

µ 〈ei|)(ρ̂− eiÎ)
2∂(b)

ν |ei〉

+ 4∆2Re
∑

i6=j

(

1

ei
− ei

)

〈ei|∂(a)
µ |ej〉〈ej |∂(b)

ν |ei〉,

(9)

in which ∂
(l)
µ

def
= ∂/∂lµ and ∂

(s)
µ

def
= ∂/∂sµ denote partial

derivatives relative to lµ and sµ, respectively, and Î is the
identity operator. The eigenvalues, e±, and associated
orthonormal eigenstates, |e±〉, are easily derived,

e± =
1±∆

2
, |e±〉 =

1
√

2(1±∆)

(

|K̃+〉 ± |K̃−〉
)

. (10)

Since ρ̂ = e+|e+〉〈e+|+ e−|e−〉〈e−|, we may write

(ρ̂− e+Î)∂ν |e+〉 =e+[|e+〉〈e+|∂ν |e+〉 − ∂ν |e+〉]
+ e−|e−〉〈e−|∂ν |e+〉, (11)

in which ∂ν denotes a partial derivative w.r.t. any of the
six parameters being estimated. Multiplying Eq. (11) by
its Hermitian adjoint (h.a.) on the left, with ν replaced
by µ in the latter, we reach one of the two inner products
occurring in the middle sum of expression (9). Two of the
nine terms of which this product is comprised vanish from
the orthogonality of the eigenstates, 〈e+|e−〉 = 0. Two

other terms cancel out identically, and the remaining five
combine neatly into a set of three distinct terms,

(∂µ〈e+|)(ρ̂− e+Î)
2∂ν |e+〉 = −(e2− − 2e+e−)〈e+|∂µ|e−〉

× 〈e−|∂ν |e+〉+ e2+〈e+|∂µ|e+〉〈e+|∂ν |e+〉
+ e2+(∂µ〈e+|)∂ν |e+〉. (12)

Noting that ρ̂ is formally invariant under an interchange
of the + and − subscripts in relation (12) yields the sec-
ond inner product in the second sum,

(∂µ〈e−|)(ρ̂− e−Î)
2∂ν |e−〉 = −(e2+ − 2e+e−)〈e−|∂µ|e+〉

× 〈e+|∂ν |e−〉+ e2−〈e−|∂µ|e−〉〈e−|∂ν |e−〉
+ e2−(∂µ〈e−|)∂ν |e−〉. (13)

Since ∆ does not depend on s, taking the partial
derivative of |e+〉, given by expression (10), w.r.t. any
component of s, and taking the inner product of the re-
sulting expression with the bra 〈e±|, obtained by taking
the h.a. of expression (10), generates the following useful
identities:

〈e+|∂(s)
µ |e+〉 =

〈K̃+|∂(s)
µ |K̃+〉+ iIm〈K̃+|∂(s)

µ |K̃−〉
(1 + ∆)

;

〈e−|∂(s)
µ |e+〉 =

Re〈K̃+|∂(s)
µ |K̃−〉√

1−∆2
. (14)

To arrive at these identities, we used the relations,

〈K̃+|∂(s)
µ |K̃+〉 = 〈K̃−|∂(s)

µ |K̃−〉 and 〈K̃+|∂(s)
µ |K̃−〉 =

−〈K̃−|∂(s)
µ |K̃+〉∗, that follow from form (2) of the states

|K̃±〉 and from the fact that ∂
(s)
µ (〈K̃−|K̃+〉) = 0, respec-

tively. The identities,

〈e+|∂(l)
µ |e+〉 = 0, 〈e−|∂(l)

µ |e+〉 =
1√

1−∆2
〈K̃+|∂µ|K̃+〉,

(15)
proved similarly in the supplemental notes of Ref. [1],
and four more obtained by the interchange of |e+〉 and
|e−〉 in Eqs. (14) and (15), which entails the substitutions

|K̃±〉 → ±|K̃±〉 and ∆ → −∆ according to expressions
(10) for |e±〉, namely

〈e−|∂(s)
µ |e−〉 =

〈K̃+|∂(s)
µ |K̃+〉 − iIm〈K̃+|∂(s)

µ |K̃−〉
(1 −∆)

,

〈e+|∂(s)
µ |e−〉 = −Re〈K̃+|∂(s)

µ |K̃−〉√
1−∆2

, (16)

and

〈e−|∂(l)
µ |e−〉 = 0, 〈e+|∂(l)

µ |e−〉 =
1√

1−∆2
〈K̃+|∂µ|K̃+〉,

(17)
comprise the full set of identities that can simplify expres-
sion (9) for the elements of the blocks H(sl) and H(ss).
Since e± are independent of s, it follows that the

first sum on the right hand side in expression (9) van-
ishes identically, while the other two sums may be com-
bined into one in view of expressions (12) and (13) for
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the two terms of the second sum. Using the identities,
e2∓−2e+e− = ∆2−e2±, we may thus obtain the following

expression for the block H(sl):

H(sl)
µν = 4(1−∆2)Re

∑

i6=j

ei〈ei|∂(s)
µ |ej〉〈ej |∂(l)

ν |ei〉

+ 4Re
∑

i=±

ei(∂
(s)
µ 〈ei|)∂(l)

ν |ei〉. (18)

From identities (15)-(17), we see that 〈e±|∂(s)
µ |e∓〉 are

real, while 〈e±|∂(l)
ν |e∓〉 are purely imaginary, the latter

since 〈|K̃+|∂(l)
µ |K̃+〉 is purely imaginary on account of

the form (2) of the wavefunctions. Consequently, the
first term in expression (18) vanishes identically. That
the second sum there - and thus the entire off-diagonal
QFI block, H(sl) - also vanishes,

H(sl) = 0, (19)

is shown in Appendix B. In other words, there is no in-
crease of the minimum error of unbiased joint estimation
of the pair centroid-location and separation vectors over
that of unbiased independent estimation of the two vec-
tors.
We turn now to H(ss), which entails some of the same

calculational steps as H(sl). The main difference, how-

ever, is that 〈e−|∂(s)
ν |e+〉 is purely real, unlike the purely

imaginary 〈e−|∂(l)
ν |e+〉, so the analog of the first term

in expression (18) for H
(sl)
µν no longer vanishes for H

(ss)
µν .

After some algebra, as we show in Appendix C, we reach
the following expression for H(ss):

H(ss)
µν = 4

[

(∂(s)
µ 〈K̃+|)∂(s)

ν |K̃+〉

− Re〈K̃+|∂(s)
µ |K̃−〉Re〈K̃+|∂(s)

ν |K̃−〉
]

− 4

1−∆2

(

Im〈K̃+|∂(s)
µ |K̃+〉Im〈K̃+|∂(s)

ν |K̃+〉

+ Im〈K̃+|∂(s)
µ |K̃−〉Im〈K̃+|∂(s)

ν |K̃−〉
)

+
4∆

1−∆2

(

Im〈K̃+|∂(s)
µ |K̃+〉Im〈K̃+|∂(s)

ν |K̃−〉

+ Im〈K̃+|∂(s)
ν |K̃+〉Im〈K̃+|∂(s)

µ |K̃−〉
)

. (20)

In Eq. (20), all matrix elements involving only |K̃+〉 and
its derivatives, but not |K̃−〉, are easily evaluated as sim-
ple aperture averages of powers of aperture coordinates,

while the matrix element 〈K̃+|∂(s)
µ |K̃−〉 may be evalu-

ated in the aperture plane using the wavefunctions (2)
and ∆ given by relation (5),

〈K̃+|∂(s)
µ |K̃−〉 = −exp(−i2φ0)

2π

∫

A

d2u

× ∂(l)
µ [exp(4iπu · l⊥ + 2iπu2lz)]

=− ∆
∫

A
d2u ∂

(l)
µ [exp(4iπu · l⊥ + 2iπu2lz)]

2
∫

A
d2u exp(4iπu · l⊥ + 2iπu2lz)

.

(21)

Expression (20) for QFI for estimating the centroid lo-
cation coordinates alone is independent of those coordi-
nates. This is fundamentally a consequence of the global
translational invariance of a shift-invariant imager, as the
centroid location vector, s, can be changed by an arbi-
trary additive constant vector by a mere change of the
origin of the coordinate system, under which the pair
separation vector, l, is invariant. Physically speaking, an
axial refocusing and a transverse alignment of the imager
are all that are needed to place the pair centroid at the
origin in the source space, an action that cannot affect the
fidelity with which the centroid can be estimated. This
QFI depends only on l through ∆ and certain aperture
integrals.
The off-diagonal elements ofH(ss) do not vanish, which

reflects the interdependence of the errors of estimation
of the three coordinates of the centroid location when
estimating them jointly. This is in sharp contrast to the
three components of the pair-separation vector, which
can be estimated independently of each other [1].
Since the overall QFI matrix (7) is block diagonal, its

inverse is obtained by inverting each diagonal block,

H−1 =

(

(

H(ll)
)−1

0

0
(

H(ss)
)−1

)

, (22)

in which
(

H(ll)
)−1

has the value [1],

(

H(ll))−1 =





1
4π2 0 0
0 1

4π2 0
0 0 3

π2



 . (23)

IV. NUMERICAL EVALUATION OF

PAIR-CENTROID QCRB

Specializing to the case of the imaging aperture being
clear and circular, we numerically evaluated the elements
(20) of the QFI matrix H(ss) and then inverted it to com-
pute the values of QCRB for estimating the centroid loca-
tion coordinates. In Fig. 1, we plot QCRB for estimating
sx vs lx for a number of different values of the other trans-
verse component of the pair-separation vector, namely
ly. The curves start out close to the source-localization
QCRB of 1/(4π2) ≈ 0.0253 when the two sources are
close to each other and thus approximate a single source.
They also asymptote toward the same QCRB value for
large separations, since in this limit sources can be lo-
calized individually and their centroid thus determined
to the same precision as their individual positions. For
intermediate values of lx, the minimum error variance for
estimating sx is increased due to the image blur caused
by a finite aperture size when the sources are transversely
not well separated on the Abbe-Rayleigh scale, l⊥ . 0.25.
Changing lz, the axial separation of the pair, from a small
value of 0.025 to 0.25 does not improve the sx estimation
error significantly, as seen in the small difference between
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the curves in the left and right panels. Because of per-
fect x ↔ y symmetry for a circular aperture, an identical
behavior was confirmed by our numerical evaluation of
QCRB for the estimation of sy vs. ly.
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FIG. 1. Plots of QCRB for sx vs. lx for two different values
of lz, namely 0.025 (left panel) and 0.25 (right panel)

In Fig. 2, we display QCRB for estimating sx vs. ly.
As expected, with increasing ly, the minimum error vari-
ance for estimating sx decreases as the sources get far-
ther apart in the orthogonal direction. Once again, as the
sources get well separated, when either lx or ly or both
become large, the minimum error variance for locating
the pair centroid in the transverse plane approaches the
localization QCRB, namely 0.0253. The relative verti-
cal positions of the curves for different values of lx are
consistent with the peaks seen in Fig. 1.
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FIG. 2. Plots of QCRB for sx vs. ly for two different values
of lz, namely 0.025 (left panel) and 0.25 (right panel)

In Fig. 3, we plot QCRB for estimating sz, the ax-
ial coordinate of the pair centroid, as a function of lz,
the axial component of the pair-separation vector. The
intrinsic imprecision of estimating the axial coordinate,
as reflected in the larger axial-localization QCRB of
3/π2 ≈ 0.304 than the transverse-localization QCRB of
0.0253, is seen in the larger scatter, at the two ends of
small and large axial separations, among plots for dif-
ferent values of l⊥, the transverse separation. Interest-

ingly, there are multiple values of lz for which QCRB for
estimating sz has minima at the localization QCRB of
0.304 with increasing lz. The larger QCRB for sz than
that for sx or sy has to do with the quadratic, rather
than linear, dependence of the aperture phase on ax-
ial coordinates, which implies a lower overall first-order
differential sensitivity of wavefront projections to them.
This fact also accounts for why the horizontal scale of the
plots for axial-coordinate estimation is larger than that
for transverse-coordinate estimation plotted in previous
figures.
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FIG. 3. Plots of QCRB for sz vs. lz for several values of l⊥

V. SIMULATION OF MAXIMUM-LIKELIHOOD

ESTIMATION OF PAIR SEPARATION IN THE

PRESENCE OF CENTROID-LOCATION

UNCERTAINTY

For small pair separations, the pair centroid can be
localized by standard image based methods to a preci-
sion comparable to QCRB, but coherent projections are
necessary to attain quantum limited estimation of the
pair separation. We envisage a two-arm experimental ap-
proach, similar to that of Ref. [6], in which a beam split-
ter directs, on average, a preset fraction of photons into
one arm in which a 3D localization imager like a rotating-
PSF imager [18–21], an astigmatic imager [22], a multi-
plane imager [23], or a radial shearing interferometer [24]
is placed. The remaining photons traverse a second arm
that has the same holographic aperture-plane filter as
that described in Ref. [1], namely

∑

n Zn(u) cosqn ·u, in
which Zn denotes the nth Zernike polynomial [25] and
qn is the transverse offset wavevector of the nth mode.
We show results of a partial simulation of this approach

to estimate the pair separation using the maximum-
likelihood (ML) estimator described in [1], subject to a
certain centroid localization error achieved in the cen-
troid localization arm and a fixed number, M , of photons
in the holographic filter arm. The photons divide into the
various pure-Zernike channels according to the probabil-

ities, {Pn
def
= 〈Zn|ρ̂|Zn〉 | n = 1, . . . , N}, and into the un-
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measured channels with probability, P̄ = 1−∑N
n=1 Pn, to

yield a multinomial distribution of observed counts from
which the ML estimator can extract the separation vec-
tor. As we show in Appendix D, the classical FI matrix
elements [26, 27] for estimating the three pair-separation
coordinates from the multinomial distribution of counts
take the per-photon form,

J (ll)
µν /M =

N
∑

n=1

(∂
(l)
µ Pn) (∂

(l)
ν Pn)

Pn

+
(∂

(l)
µ P̄ ) (∂

(l)
ν P̄ )

P̄
, (24)

which was evaluated by numerical integration for N = 4.
In Fig. 4 (a), we plot the variance of the ML esti-

mation of lx obtained from a sample of 40 draws of
s from a product-Gaussian statistical distribution with

zero means and standard deviations, σ
(s)
x = σ

(s)
y =

0.005, σ
(s)
z = 0.01, with 400 multinomial data frames for

each such s sample and with 106 photons per frame. The
mean and standard deviation of these estimation vari-
ances over the 40 s draws are denoted by the square sym-
bols and error bars through them. The classical CRB,
which is the xx diagonal element of the inverse of the FI
matrix (24), when averaged over the 40 s draws, is shown
by the dot-dash curve and that for s = 0 by the solid
curve in the figure. The results of simulation track well
this last curve, presumably since for simulated data we
take s = 0 when extracting the estimates of l. The diver-
gence of the dot-dash curve for lx → 0 is due to the fact
that for sx 6= 0, neither Z2 nor another pure Zernike is an
exclusively matched filter [28] for lx in the limit lx → 0.
For most of the range of lx away from 0, however, the
four Zernike projections furnish excellent convergence of
the variance of the separation estimate based on them to
QCRB. Because of the azimuthal symmetry of the optical
system and our choice of the Zernikes, the same results
as shown in this figure also hold for the estimation of ly.
In Fig. 4 (b), we display analogous curves for estimat-

ing the axial separation, lz. An important difference from
the estimation of lateral separation is that all classical
CRB curves diverge in the limit lz → 0, as no Zernike
provides an exclusively matched filter for the azimuthally
symmetric defocus phase, as we noted in Ref. [1]. All
CRB curves asymptote toward the QCRB line, however,
as lz grows in value.

VI. CONCLUDING REMARKS

The present paper has extended our previous analysis
of quantum limited source pair separation to include 3D
localization of the pair centroid as well. While no funda-
mental bounds on estimator variances can depend on the
centroid coordinates for a spatially invariant system like
the one we have considered, any uncertainties in their es-
timation, for which image-based methods suffice, affect
the estimation variances of the pair separation.
We have shown that the joint estimation of the 3D pair-

centroid location and pair-separation vectors is funda-
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FIG. 4. (a) Plot of variance of estimation of lx with changing
values of lx, with the other two l coordinates being equal to
0.025, for σsx = σsy = 0.005; σsz = 0.01; (b) Same as (a)
except lx → lz.

mentally limited only by the actual pair-separation vec-
tor, not the actual location of the pair centroid under the
assumption of a well corrected imaging system with no
source-position-dependent aberrations. In effect, our cal-
culations provide the ultimate, quantum limited bound
on localizing the six coordinates of a point-source pair by
such an aberration-free system. Field-independent aber-
rations, such as spherical aberration, may be included in
our analysis by allowing the aperture function, P (u), to
have an appropriate complex form.

Finally, we presented results of simulation of the
wavefront-projection approach for maximum-likelihood
estimation of the source separation vector in the pres-
ence of finite errors with which the pair centroid lo-
cation may have been estimated. From these simula-
tions, we were able to show that it is possible for the
errors of such an estimation to approach from above the
quantum-limited minimum error bound represented by
QCRB. The achievability of such quantum error bounds
on estimating the separation of closely spaced point
sources in all three dimensions bodes well for the optical
super-resolution of point sources at dramatically reduced
power levels than possible with the more conventional
image-based techniques. More study is needed to as-
sess whether the wavefront-projection approach demon-
strated for point-source separation can be successfully ex-
tended to super-resolution imaging of extended sources
at low light levels.
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Appendix A: Photon wavefunction in the pupil plane

Consider a thin-lens imager of aperture radius R for
which the reference source plane is the xy coordinate
plane, and the pupil and image planes are, resepctively,
distances zO and zO+zI away from that coordinate plane.
Then under paraxial optical propagation in the Fresnel-
diffraction approximation, the complex amplitude of the
imaging wavefront is given by the following integral over
the pupil plane [29]:

〈rI |K±〉 =
∫

d2ρ P̃ (ρ ) exp

[

− i
2π

λ
ρ ·
(rI

zI

+
rO ± δrO

zO + ζO ± δζO

)

+ i
π

λ

(

1

zO + ζO ± δζO
− 1

zO

)

ρ2

]

,

(A1)

where (rO ± δrO, ζO ± δζO), (ρ , zO), and (rI , zO + zI)
label the point-source, pupil-plane, and image-plane po-
sition vectors, respectively. The pupil function, P̃ (ρ ), is
restricted only by the normalization condition,

∫

d2ρ |P̃ (ρ )|2 = 1, (A2)

and a complex quadratic phase factor dependent on ob-
ject and image coordinates alone has been suppressed on
the RHS of Eq. (A1).
If we assume that the axial source coordinates, ζO ±

δζO, are small in magnitude compared to the pupil and
image plane distances, zO and zI , and their 2D position
vectors, rO ± δrO, are also comparably small in mag-
nitude, conditions that surely hold for high-numerical-
aperture microscopy, then correct to the linear order in
these small quantities we may express Eq. (A1) as

〈rI |K±〉 =
∫

d2uP (u) exp[− i2πs⊥ · u− iπszu
2

∓ iΨ(l,u)− i2πu · v],
(A3)

in which we have used normalized source, pupil, and im-
age plane coordinates defined as

u =
ρ

R
, v =

rI

λzI/R
, (s⊥, l⊥) =

(rO, δrO)

λzO/R
,

(sz ,lz) =
(ζO, δζO)

λz2O/R
2

(A4)

in which M = −zI/zO is the image magnification, and
the pupil phase function, Ψ(l,u), which depends only on
the pair-separation and pupil coordinates, has the form,

Ψ(l,u) = 2πu · l⊥ + πu2lz. (A5)

The pupil function in normalized coordinates is defined
by the relation, P (u) = R2P̃ (ρ ).

Since exp(i2πu ·v) is the complex Fourier exponential
connecting the pupil and image planes, we may regard
the rest of the integrand as the pupil-plane wavefunc-
tion of a single imaging photon emitted by the incoherent
point source at position (rO ± δrO, ζO ± δζO) and trans-
mitted through the imager. In other words, apart from
an arbitrary overall phase factor, we may write

〈u|K±〉 = P (u) exp[−i2πs⊥·u−iπszu
2∓iΨ(l,u)]. (A6)

Appendix B: Vanishing of the off-diagonal QFI

block, H(sl)

In Eq. (18), the first term of the RHS vanishes, as we
already noted. We may simplify the second term there

by noting that ∂
(s)
µ |e±〉 and ∂

(l)
ν |e±〉, when the form (10)

of the eigenstates is used, may be written as

∂(s)
µ 〈e±| =

1
√

2(1±∆)

(

∂(s)
µ 〈K̃+| ± ∂(s)

µ 〈K̃−|
)

;

∂(l)
ν |e±〉 =

1
√

2(1±∆)

(

∂(l)
ν |K̃+〉 ± ∂(l)

ν |K̃−〉
)

∓ ∂
(l)
ν ∆

2(1±∆)
|e±〉 (B1)

in which we used the fact that ∆ is independent of the
centroid vector, s, to arrive at the first line. Taking the
inner product of the above two states, multiplying the
product by e± = (1 ± ∆)/2, and then adding the two
terms that result corresponding to the upper and lower
signs, we may express the second sum in Eq. (18) as

∑

i=±

ei(∂
(s)
µ 〈ei|)∂(l)

ν |ei〉 =
1

2

[

(∂(s)
µ 〈K̃+|)∂(l)

ν |K̃+〉

+ (∂(s)
µ 〈K̃−|)∂(l)

ν |K̃−〉
]

− ∂
(l)
ν ∆

4

[

(∂(s)
µ 〈e+|)|e+〉 − (∂(s)

µ 〈e−|)|e−〉
]

, (B2)

where the terms inside the second bracket follow from
the expression for ∂

(s)
µ 〈e±| given in Eq. (B1). From the

form of the wavefunctions (2), it follows that the two
terms inside the first bracket on the RHS of Eq. (B2)
are exactly negative of each other, so their sum vanishes,
which simplifies Eq. (B2) to the form

∑

i=±

ei(∂
(s)
µ 〈ei|)∂(l)

ν |ei〉 = −∂
(l)
ν ∆

4

[

(∂(s)
µ 〈e+|)|e+〉

− (∂(s)
µ 〈e−|)|e−〉

]

. (B3)

Since the eigenstates are normalized, 〈e±|e±〉 = 1, we

have the identity, ∂
(s)
µ (〈e±|e±〉) = 0, which from the

product rule of differentiation is equivalent to the rela-
tion,

(∂(s)
µ 〈e±|)|e±〉 = −〈e±|∂(s)

µ |e±〉. (B4)



7

Using the complex-conjugation property of the inner
product, we may write the left-hand side of Eq. (B4)

as 〈e±|∂(s)
µ |e±〉∗, which when equated to its RHS im-

plies that (∂
(s)
µ 〈e±|)|e±〉 is purely imaginary. Conse-

quently, expression (B3) is purely imaginary, and thus

H
(sl)
µν , which is the proportional to its real part, vanishes

identically,

H(sl)
µν = 0. (B5)

Appendix C: Derivation of centroid-localization QFI

The matrix elements of the centroid-localization
QFI, H(ss), are given by replacing all ∂(l) deriva-
tives by ∂(s) in Eq. (18) and then adding the sum,
∑

i=± ei〈ei|∂(s)
µ |ei〉〈ei|∂(s)

ν |ei〉, arising from the non-
vanishing second terms on the RHS of Eqs. (12) and (13),

H(ss)
µν =4(1−∆2)Re

∑

i6=j

ei〈ei|∂(s)
µ |ej〉〈ej |∂(s)

ν |ei〉

+4Re
∑

i=±

ei
[

〈ei|∂(s)
µ |ei〉〈ei|∂(s)

ν |ei〉

+ (∂(s)
µ 〈ei|)∂(s)

ν |ei〉
]

. (C1)

The matrix elements, 〈e+|∂(s)
µ |e±〉 and 〈e−|∂(s)

µ |e±〉, were
already evaluated in terms of those involving the pure
emission states, |K̃±〉, as

〈e+|∂(s)
µ |e+〉 =

〈K̃+|∂(s)
µ |K̃+〉+ iIm〈K̃+|∂(s)

µ |K̃−〉
(1 + ∆)

;

〈e−|∂(s)
µ |e−〉 =

〈K̃+|∂(s)
µ |K̃+〉 − iIm〈K̃+|∂(s)

µ |K̃−〉
(1−∆)

;

〈e−|∂(s)
µ |e+〉 =

Re〈K̃+|∂(s)
µ |K̃−〉√

1−∆2
= −〈e+|∂(s)

µ |e−〉.
(C2)

The remaining matrix elements, (∂
(s)
µ 〈e±|)∂(s)

ν |e±〉, are
obtained by taking appropriate derivatives of the follow-
ing expressions for |e±〉 in terms of the pure emission
states:

|e±〉 =
1

√

2(1±∆)

(

|K̃+〉 ± |K̃−〉
)

, (C3)

and noting that ∆ is independent of all centroid-location
coordinates. These matrix elements may thus be ex-
pressed as

(∂(s)
µ 〈e±|)∂(s)

ν |e±〉 =
1

2(1±∆)

(

∂(s)
µ 〈K̃+| ± ∂(s)

µ 〈K̃−|
)

×
(

∂(s)
ν |K̃+〉 ± ∂(s)

ν |K̃−〉
)

. (C4)

Since e± = (1/2)(1 ± ∆), substituting the last of the
matrix elements in Eq. (C2) into the first sum in Eq. (C1)

reduces it to the form,

4(1−∆2)Re
∑

i6=j

ei〈ei|∂(s)
µ |ej〉〈ej |∂(s)

ν |ei〉

= −4Re〈K̃+|∂(s)
µ |K̃−〉Re〈K̃+|∂(s)

ν |K̃−〉. (C5)

Substituting the first two of the matrix elements in
Eq. (C4) into the first part of the second sum on the
RHS of Eq. (C1) and then taking its real part evaluates
it to the form,

4Re
∑

i=±

ei〈ei|∂(s)
µ |ei〉〈ei|∂(s)

ν |ei〉

= − 2

1 + ∆

(

Im〈K̃+|∂(s)
µ |K̃+〉+ Im〈K̃+|∂(s)

µ |K̃−〉
)

×
(

Im〈K̃+|∂(s)
ν |K̃+〉+ Im〈K̃+|∂(s)

ν |K̃−〉
)

− 2

1−∆

(

Im〈K̃+|∂(s)
µ |K̃+〉 − Im〈K̃+|∂(s)

µ |K̃−〉
)

×
(

Im〈K̃+|∂(s)
ν |K̃+〉 − Im〈K̃+|∂(s)

ν |K̃−〉
)

= − 4

1−∆2

(

Im〈K̃+|∂(s)
µ |K̃+〉 Im〈K̃+|∂(s)

ν |K̃+〉

+Im〈K̃+|∂(s)
µ |K̃−〉 Im〈K̃+|∂(s)

ν |K̃−〉
)

+
4∆

1−∆2

(

Im〈K̃+|∂(s)
µ |K̃+〉 Im〈K̃+|∂(s)

ν |K̃−〉

+Im〈K̃+|∂(s)
ν |K̃+〉 Im〈K̃+|∂(s)

µ |K̃−〉
)

,

(C6)

in which we used the fact that 〈K̃±|∂(s)
µ |K̃±〉 are purely

imaginary quantities. Finally, substituting the matrix
element (C4) into the second part of the second sum in
Eq. (C1) also simplifies it,

4Re
∑

i=±

ei(∂
(s)
µ 〈ei|)∂(s)

ν |ei〉 =2
[

(∂(s)
µ 〈K̃+|)∂(s)

ν |K̃+〉

+ (∂(s)
µ 〈K̃−|)∂(s)

ν |K̃−〉
]

=4(∂(s)
µ 〈K̃+|)∂(s)

ν |K̃+〉, (C7)

in which we used the fact that the matrix elements,

(∂
(s)
µ 〈K̃±|)∂(s)

ν |K̃±〉, are both real and equal to each other

as both wavefunctions 〈u|K̃±〉 are pure exponential phase
functions over the aperture, with an identical dependence
on the centroid location vector, s. Substituting expres-
sions (C5)-(C7) into Eq. (C1) generates the final expres-
sion for the centroid-localization QFI, H(ss).

Appendix D: Derivation of FI for Multinomial

Photocount Distribution

For (N+1) projection channels, with per-photon prob-

abilities being P1, . . . , PN+1, in which PN+1
def
= P̄ =

1 −
∑N

n=1 Pn, the probability, P (m1, . . . ,mN+1), of de-
tecting m1, . . . ,mN+1 photons in those channels when a
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total of M photons are incident on the projection system
is given by the multi-nomial distribution (MND),

P (m1, . . . ,mN+1) = M !
N+1
∏

n=1

Pmn

n

mn!
Θ(m1, . . . ,mN+1),

(D1)
with Θ denoting the indicator function for the discrete
space of constraints defined as

N+1
∑

n=1

mn = M, m1, . . . ,mn = 0, 1, . . . ,M. (D2)

The channel probabilities, P1, . . . , PN , depend on the six
parameters being estimated in the present problem.
Taking the logarithm of expression (D1) and the par-

tial derivatives of the resulting expression with respect to
the µth and νth parameters successively, then multiply-
ing the resulting expressions with each other, and finally
taking the expectation of their product over MND yields
the following form for the µν matrix element of the as-
sociated FI:

Jµν =

N+1
∑

n=1

N+1
∑

l=1

〈mnml〉(∂µ lnPn) (∂ν lnPl)

= M(M − 1)

N+1
∑

n=1

N+1
∑

l=1

PnPl(∂µ lnPn) (∂ν lnPl)

+M

N+1
∑

n=1

Pn(∂µ lnPn) (∂ν lnPn)

= M(M − 1)

[

N+1
∑

n=1

Pn(∂µ lnPn)

] [

N+1
∑

l=1

Pl(∂ν lnPl)

]

+M

N+1
∑

n=1

Pn(∂µ lnPn) (∂ν lnPn)

= M

N+1
∑

n=1

(∂µPn) (∂νPn)

Pn

, (D3)

in which we used the well known formula for the second
moment of MND,

〈mnml〉 = M(M − 1)PnPl +MPnδnl, (D4)

to reach the second line and the fact that since
∑N+1

n=1 Pn = 1, any partial derivative of it vanishes,

N+1
∑

n=1

Pn(∂µ lnPn) = 0, (D5)

to arrive at the final expression.
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